metadata
tags:
- ocr
- document-processing
- lighton-ocr
- markdown
- uv-script
- generated
Document OCR using LightOnOCR-0.9B-32k-1025
This dataset contains OCR results from images in stckmn/ocr-input-Directive017-1761353279 using LightOnOCR, a fast and compact 1B OCR model.
Processing Details
- Source Dataset: stckmn/ocr-input-Directive017-1761353279
- Model: lightonai/LightOnOCR-0.9B-32k-1025
- Vocabulary Size: 32k tokens
- Number of Samples: 21
- Processing Time: 1.2 min
- Processing Date: 2025-10-25 00:50 UTC
Configuration
- Image Column:
image - Output Column:
markdown - Dataset Split:
train - Batch Size: 32
- Target Image Size: 1288px (longest dimension)
- Max Model Length: 8,192 tokens
- Max Output Tokens: 6,500
- Temperature: 0.2
- Top P: 0.9
- GPU Memory Utilization: 80.0%
Model Information
LightOnOCR is a fast, compact OCR model that excels at:
- โก Production Speed - 5.71 pages/second on H100 GPU
- ๐ฏ Compact Size - Only 1B parameters
- ๐ LaTeX formulas - Mathematical notation in LaTeX format
- ๐ Tables - Extracted and formatted as markdown
- ๐ Document structure - Hierarchy and layout preservation
- ๐ Multilingual - Optimized for European languages
- ๐ค Flexible vocabulary - 151k/32k/16k token variants
Vocabulary Variants
- 151k tokens: Full vocabulary, supports all languages
- 32k tokens: European languages optimized (~12% faster decoding)
- 16k tokens: European languages optimized (~12% faster decoding)
Dataset Structure
The dataset contains all original columns plus:
markdown: The extracted text in markdown format with LaTeX formulasinference_info: JSON list tracking all OCR models applied to this dataset
Usage
from datasets import load_dataset
import json
# Load the dataset
dataset = load_dataset("{output_dataset_id}", split="train")
# Access the markdown text
for example in dataset:
print(example["markdown"])
break
# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
print(f"Column: {info['column_name']} - Model: {info['model_id']}")
Reproduction
This dataset was generated using the uv-scripts/ocr LightOnOCR script:
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/lighton-ocr.py \
stckmn/ocr-input-Directive017-1761353279 \
<output-dataset> \
--vocab-size 32k \
--image-column image \
--batch-size 32
Performance
- Processing Speed: ~0.29 images/second
- Benchmark Score: 76.1% overall (across diverse document types)
- Optimization: Native resolution ViT + lightweight decoder
Generated with ๐ค UV Scripts