Datasets:
				
			
			
	
			
	
		
			
	
		The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 17 new columns ({'question subtype', 'contrast', 'spacing', 'multiple-choice question', 'shape', 'question type', 'lesion', 'Question ID', 'split', 'age', 'question', 'sex', 'scanner', 'answer', 'correct option', 'organ', 'Image ID'}) and 2 missing columns ({'original id', 'AbdomenAtlas_id'}).
This happened while the csv dataset builder was generating data using
hf://datasets/tumor-vqa/DeepTumorVQA_1.0/Tumor_VQA_dataset_V3.csv (at revision 2557a8ccb9db849c7ac8983ed2f6b760bac86253)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Question ID: int64
              Image ID: string
              spacing: string
              shape: string
              sex: string
              age: double
              scanner: string
              contrast: string
              question: string
              answer: string
              multiple-choice question: string
              correct option: string
              organ: string
              lesion: string
              question type: string
              question subtype: string
              split: string
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 2259
              to
              {'original id': Value(dtype='string', id=None), 'AbdomenAtlas_id': Value(dtype='string', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1433, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1050, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 17 new columns ({'question subtype', 'contrast', 'spacing', 'multiple-choice question', 'shape', 'question type', 'lesion', 'Question ID', 'split', 'age', 'question', 'sex', 'scanner', 'answer', 'correct option', 'organ', 'Image ID'}) and 2 missing columns ({'original id', 'AbdomenAtlas_id'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/tumor-vqa/DeepTumorVQA_1.0/Tumor_VQA_dataset_V3.csv (at revision 2557a8ccb9db849c7ac8983ed2f6b760bac86253)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
| original id
				 string | AbdomenAtlas_id
				 string | 
|---|---|
| 
	autoPET_PETCT_404f8c732f | 
	BDMAP_00000001 | 
| 
	TCIA-Pancreas-CT_PANCREAS_0039 | 
	BDMAP_00000002 | 
| 
	TotalSegmentator_s0543 | 
	BDMAP_00000003 | 
| 
	MSD-Colon_colon_195 | 
	BDMAP_00000004 | 
| 
	TCIAColon_TCIAColon_0256_0_1 | 
	BDMAP_00000005 | 
| 
	autoPET_PETCT_63464433c8 | 
	BDMAP_00000006 | 
| 
	MSD-HepaticVessel_hepaticvessel_447 | 
	BDMAP_00000007 | 
| 
	KiTS19-21_prediction_00280 | 
	BDMAP_00000008 | 
| 
	WORD_word_0086 | 
	BDMAP_00000009 | 
| 
	autoPET_PETCT_f637b5930b | 
	BDMAP_00000010 | 
| 
	autoPET_PETCT_49479d6e64 | 
	BDMAP_00000011 | 
| 
	TCIAColon_TCIAColon_0300_0_1 | 
	BDMAP_00000012 | 
| 
	MSD-HepaticVessel_hepaticvessel_200 | 
	BDMAP_00000013 | 
| 
	TotalSegmentator_s0904 | 
	BDMAP_00000014 | 
| 
	MSD-HepaticVessel_hepaticvessel_406 | 
	BDMAP_00000015 | 
| 
	TCIA-LDCT_LDCT-L277_0_1 | 
	BDMAP_00000016 | 
| 
	FLARE23Val_FLARE23_Ts_0084_0000 | 
	BDMAP_00000017 | 
| 
	TotalSegmentator_s1089 | 
	BDMAP_00000018 | 
| 
	TCIAColon_TCIAColon_0233_0_4 | 
	BDMAP_00000019 | 
| 
	BTCV_img0034 | 
	BDMAP_00000020 | 
| 
	TotalSegmentator_s0369 | 
	BDMAP_00000021 | 
| 
	TCIAColon_TCIAColon_0249_0_2 | 
	BDMAP_00000022 | 
| 
	KiTS21_img0228 | 
	BDMAP_00000023 | 
| 
	MSD-Pancreas_pancreas_476 | 
	BDMAP_00000024 | 
| 
	MSD-Hepatic_hepaticvessel_343 | 
	BDMAP_00000025 | 
| 
	NIH-Lymph_NIH-LYMPH-ABD-041_0_0 | 
	BDMAP_00000026 | 
| 
	MSD-Colon_colon_188 | 
	BDMAP_00000027 | 
| 
	AbdomenCT-1K_Case_01035_0000 | 
	BDMAP_00000028 | 
| 
	MSD-Hepatic_hepaticvessel_334 | 
	BDMAP_00000029 | 
| 
	MSD-Colon_colon_139 | 
	BDMAP_00000030 | 
| 
	autoPET_PETCT_b53ba7c6bf | 
	BDMAP_00000031 | 
| 
	autoPET_PETCT_5d553bf6b4 | 
	BDMAP_00000032 | 
| 
	autoPET_PETCT_ba81e4b04b | 
	BDMAP_00000033 | 
| 
	KiTS21_img0268 | 
	BDMAP_00000034 | 
| 
	Decathlon_hepaticvessel_325 | 
	BDMAP_00000035 | 
| 
	KiTS23_case_00401 | 
	BDMAP_00000036 | 
| 
	MSD-Hepatic_hepaticvessel_036 | 
	BDMAP_00000037 | 
| 
	Decathlon_hepaticvessel_199 | 
	BDMAP_00000038 | 
| 
	KiTS21_img0066 | 
	BDMAP_00000039 | 
| 
	TCIAColon_TCIAColon_0262_0_3 | 
	BDMAP_00000040 | 
| 
	autoPET_PETCT_f5c2c09846 | 
	BDMAP_00000041 | 
| 
	TotalSegmentator_s0250 | 
	BDMAP_00000042 | 
| 
	KiTS21_img0298 | 
	BDMAP_00000043 | 
| 
	KiTS23_case_00512 | 
	BDMAP_00000044 | 
| 
	MSD-Colon_colon_128 | 
	BDMAP_00000045 | 
| 
	TCIA-CPTAC-PDA_CPTAC-PDA-C3N-02010_0_1 | 
	BDMAP_00000046 | 
| 
	AbdomenCT-1K_Case_00056_0000 | 
	BDMAP_00000047 | 
| 
	TCIAColon_TCIAColon_0188_0_1 | 
	BDMAP_00000048 | 
| 
	AbdomenCT-1K_Case_00535_0000 | 
	BDMAP_00000049 | 
| 
	AMOS_amos_0059 | 
	BDMAP_00000050 | 
| 
	TotalSegmentator_s1374 | 
	BDMAP_00000051 | 
| 
	AbdomenCT-1K_Case_00162_0000 | 
	BDMAP_00000052 | 
| 
	autoPET_PETCT_2ce074c2ea | 
	BDMAP_00000053 | 
| 
	TCIA-CPTAC-PDA_CPTAC-PDA-C3N-03000_0_3 | 
	BDMAP_00000054 | 
| 
	MSD-Pancreas_pancreas_014 | 
	BDMAP_00000055 | 
| 
	Decathlon_spleen_33 | 
	BDMAP_00000056 | 
| 
	TCIAColon_TCIAColon_0166_0_3 | 
	BDMAP_00000057 | 
| 
	TCIA-LDCT_LDCT-L193_0_1 | 
	BDMAP_00000058 | 
| 
	KiTS21_img0286 | 
	BDMAP_00000059 | 
| 
	TCIAColon_TCIAColon_0232_0_2 | 
	BDMAP_00000060 | 
| 
	TotalSegmentator_s1348 | 
	BDMAP_00000061 | 
| 
	KiTS21_img0017 | 
	BDMAP_00000062 | 
| 
	TCIAColon_TCIAColon_0161_0_3 | 
	BDMAP_00000063 | 
| 
	MSD-Liver_liver_148 | 
	BDMAP_00000064 | 
| 
	TCIA-LDCT_LDCT-L219_0_1 | 
	BDMAP_00000065 | 
| 
	KiTS21_img0116 | 
	BDMAP_00000066 | 
| 
	TCIAColon_TCIAColon_0082_0_3 | 
	BDMAP_00000067 | 
| 
	AbdomenCT-1K_Case_00799_0000 | 
	BDMAP_00000068 | 
| 
	MSD-Colon_colon_012 | 
	BDMAP_00000069 | 
| 
	TotalSegmentator_s0429 | 
	BDMAP_00000070 | 
| 
	AMOS_amos_0044 | 
	BDMAP_00000071 | 
| 
	autoPET_PETCT_5de3ac617a | 
	BDMAP_00000072 | 
| 
	autoPET_PETCT_ded50b1e68 | 
	BDMAP_00000073 | 
| 
	Decathlon_lung_016 | 
	BDMAP_00000074 | 
| 
	Decathlon_hepaticvessel_005 | 
	BDMAP_00000075 | 
| 
	AMOS_amos_0159 | 
	BDMAP_00000076 | 
| 
	autoPET_PETCT_6170317f2e | 
	BDMAP_00000077 | 
| 
	Decathlon_lung_003 | 
	BDMAP_00000078 | 
| 
	TotalSegmentator_s0896 | 
	BDMAP_00000079 | 
| 
	TCIAColon_TCIAColon_0286_0_3 | 
	BDMAP_00000080 | 
| 
	autoPET_PETCT_2a78eed085 | 
	BDMAP_00000081 | 
| 
	MSD-Colon_colon_150 | 
	BDMAP_00000082 | 
| 
	autoPET_PETCT_61348439bf | 
	BDMAP_00000083 | 
| 
	Decathlon_liver_59 | 
	BDMAP_00000084 | 
| 
	autoPET_PETCT_b2f82ed4b9 | 
	BDMAP_00000085 | 
| 
	TCGA-BLCA_TCGA-BLCA-4Z-AA86_0_3 | 
	BDMAP_00000086 | 
| 
	Decathlon_pancreas_346 | 
	BDMAP_00000087 | 
| 
	autoPET_PETCT_d3dac0d1cd | 
	BDMAP_00000088 | 
| 
	AMOS_amos_0038 | 
	BDMAP_00000089 | 
| 
	KiTS19-21_case_00147 | 
	BDMAP_00000090 | 
| 
	LiTS_liver_38 | 
	BDMAP_00000091 | 
| 
	FLARE23Val_FLARE23_Ts_0016_0000 | 
	BDMAP_00000092 | 
| 
	Decathlon_pancreas_348 | 
	BDMAP_00000093 | 
| 
	Decathlon_hepaticvessel_431 | 
	BDMAP_00000094 | 
| 
	AbdomenCT-1K_Case_00773_0000 | 
	BDMAP_00000095 | 
| 
	MSD-Colon_colon_084 | 
	BDMAP_00000096 | 
| 
	TCIAColon_TCIAColon_0260_0_2 | 
	BDMAP_00000097 | 
| 
	autoPET_PETCT_90ea6a6aaf | 
	BDMAP_00000098 | 
| 
	TCIAColon_TCIAColon_0154_0_2 | 
	BDMAP_00000099 | 
| 
	LiTS_liver_71 | 
	BDMAP_00000100 | 
π§ Overview
We present DeepTumorVQA, a diagnostic visual question answering (VQA) benchmark targeting abdominal tumors in CT scans. It comprises 9,262 CT volumes (3.7M slices) from 17 public datasets, with 395K expert-level questions spanning four categories: Recognition, Measurement, Visual Reasoning, and Medical Reasoning.
π§Ύ Dataset CT Volumes Overview
The following public abdominal CT datasets are included in DeepTumorVQA.
Note: The number of volumes may differ from the original publications due to validation splits or removal of duplicates.
| Dataset (Year) [Source] | # of Volumes | # of Centers | Dataset (Year) [Source] | # of Volumes | # of Centers | 
|---|---|---|---|---|---|
| 1. CHAOS (2018) π | 20 | 1 | 2. Pancreas-CT (2015) π | 42 | 1 | 
| 3. BTCV (2015) π | 47 | 1 | 4. LiTS (2019) π | 131 | 7 | 
| 5. CT-ORG (2020) π | 140 | 8 | 6. WORD (2021) π | 120 | 1 | 
| 7. AMOS22 (2022) π | 200 | 2 | 8. KiTS (2020) π | 489 | 1 | 
| 9β14. MSD CT Tasks (2021) π | 945 | 1 | 15. AbdomenCT-1K (2021) π | 1,050 | 12 | 
| 16. FLAREβ23 (2022) π | 4,100 | 30 | 17. Trauma Detect. (2023) π | 4,711 | 23 | 
To facilitate alignment between our VQA dataset and the original CT image sources, we follow the AbdomenAtlas naming rule and provide a mapping file that links each image ID in our dataset to its corresponding source identifier.
You can view the ID mapping CSV here: AbdomenAtlas_ID_mapping.csv
This file ensures traceability and reproducibility when working with external data references and annotations.
You may also email [email protected] for mapped full data and opportunities to collaborate in our future publications!
Each example in Tumor_VQA_dataset_V3.csv contains the following fields:
- question_id: A unique integer identifier for each VQA sample (e.g.,- 0).
- image_id: A string identifier for the corresponding CT volume or slice (e.g.,- BDMAP_00000001).
- spacing: Image voxel spacing (e.g.,- "[0.8222656 0.8222656 2.5 ]"), stored as a string.
- shape: The image dimensions (e.g.,- "(512, 512, 339)"), stored as a string.
- sex: Binary patient sex (- Male,- Female).
- age: Patient age in years, stored as a float64 (e.g.,- 65.0).
- scanner: Type of CT scanner used (e.g.,- siemens.
- contrast: Indicates use of contrast agent (- Non-contrast,- Arterial,- Venous, etc.).
- question: A natural-language question about the image.
- answer: The corresponding expert-level answer to the question.
- multiple_choice_question: Reformulation of the question as a multiple-choice item.
- correct_option: The correct answer among multiple choices (a value from A to D).
- organ: The anatomical structure referenced in the question.
- lesion: The type of lesion involved (- tumor,- cyst, etc.).
- question_type: The general category of the question (- recognition,- measurement,- visual reasoning,- medical reasoning, etc.).
- question_subtype: A more granular subclassification (e.g.,- lesion_counting,- organ_hu_measurement, `lesion_type_classification, etc.).
- split: Designates whether the sample belongs to the- trainor- validationset.
Acknowledgement and Disclosure of Funding
This work was supported by the Lustgarten Foundation for Pancreatic Cancer Research and the Patrick J. McGovern Foundation Award.
Citation
@article{chen2025vision,
  title={Are Vision Language Models Ready for Clinical Diagnosis? A 3D Medical Benchmark for Tumor-centric Visual Question Answering},
  author={Chen, Yixiong and Xiao, Wenjie and Bassi, Pedro RAS and Zhou, Xinze and Er, Sezgin and Hamamci, Ibrahim Ethem and Zhou, Zongwei and Yuille, Alan},
  journal={arXiv preprint arXiv:2505.18915},
  year={2025}
}
- Downloads last month
- 51
