Update dataset card: Add task categories, language, and populate paper/GitHub links
#2
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,4 +1,8 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
dataset_info:
|
| 3 |
- config_name: attribute_grounding_and_alignment
|
| 4 |
features:
|
|
@@ -90,7 +94,7 @@ configs:
|
|
| 90 |
---
|
| 91 |
|
| 92 |
## π ChartAlignBench
|
| 93 |
-
[**π Paper**]() | [**π» GitHub**]()
|
| 94 |
|
| 95 |
ChartAlignBench is a multi-modal benchmark designed to evaluate vision-language models (VLMs) on dense-level chart grounding and multi-chart alignment to comprehensively assess fine-grained chart understanding in VLMs.
|
| 96 |
|
|
@@ -112,7 +116,7 @@ ChartAlignBench contains 9K+ instances, divided into three evaluation subsets:-
|
|
| 112 |
|
| 113 |
For each subset, the test*.parquet files contain the annotations and image pairs pre-loaded for processing with HF Datasets.
|
| 114 |
|
| 115 |
-
```
|
| 116 |
from datasets import load_dataset
|
| 117 |
|
| 118 |
data_grounding_and_alignment_subset = load_dataset("umd-zhou-lab/ChartAlignBench", "data_grounding_and_alignment")
|
|
@@ -154,5 +158,4 @@ robustness_subset = load_dataset("umd-zhou-lab/ChartAlignBench", "robustness")
|
|
| 154 |
| set_idx | Set index which groups the 5 chart pairs in a robustness set |
|
| 155 |
| set_pair_idx | Pair index within a set (1-5) |
|
| 156 |
|num_cell_difference | Number of data points which differ between the chart pair |
|
| 157 |
-
|attribute_varied | Attribute which varies across the 5 chart pairs |
|
| 158 |
-
|
|
|
|
| 1 |
---
|
| 2 |
+
task_categories:
|
| 3 |
+
- image-text-to-text
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
dataset_info:
|
| 7 |
- config_name: attribute_grounding_and_alignment
|
| 8 |
features:
|
|
|
|
| 94 |
---
|
| 95 |
|
| 96 |
## π ChartAlignBench
|
| 97 |
+
[**π Paper**](https://huggingface.co/papers/2510.26781) | [**π» GitHub**](https://github.com/tianyi-lab/ChartAlignBench)
|
| 98 |
|
| 99 |
ChartAlignBench is a multi-modal benchmark designed to evaluate vision-language models (VLMs) on dense-level chart grounding and multi-chart alignment to comprehensively assess fine-grained chart understanding in VLMs.
|
| 100 |
|
|
|
|
| 116 |
|
| 117 |
For each subset, the test*.parquet files contain the annotations and image pairs pre-loaded for processing with HF Datasets.
|
| 118 |
|
| 119 |
+
```python
|
| 120 |
from datasets import load_dataset
|
| 121 |
|
| 122 |
data_grounding_and_alignment_subset = load_dataset("umd-zhou-lab/ChartAlignBench", "data_grounding_and_alignment")
|
|
|
|
| 158 |
| set_idx | Set index which groups the 5 chart pairs in a robustness set |
|
| 159 |
| set_pair_idx | Pair index within a set (1-5) |
|
| 160 |
|num_cell_difference | Number of data points which differ between the chart pair |
|
| 161 |
+
|attribute_varied | Attribute which varies across the 5 chart pairs |
|
|
|