Dataset Viewer
Auto-converted to Parquet Duplicate
complexity
int64
noise
float64
frequency
float64
sample_rate
int64
center_region_training
bool
dynamic_obstacles
bool
avoidance_training
bool
dataset_id
string
7
2.5
1.8
100
true
true
true
wave_bender_training_params
 _    _    __  _  _  ____  ____  ____  _  _  ____  ____  ____ 
( \/\/ )  /__\( \/ )( ___)(  _ \( ___)( \( )(  _ \( ___)(  _ \
 )    (  /(__)\\  /  )__)  ) _ < )__)  )  (  )(_) ))__)  )   /
(__/\__)(__)(__)\/  (____)(____/(____)(_)\_)(____/(____)(_)\_)

OVERVIEW

UNDER DEVELOPMENT

This dataset was generated using the WAVEBENDER app by webXOS, located in the /generator/ folder of this repo.

Generated synthetic dataset for drone autonomy ML training, including telemetry signals (acceleration, gyro, altitude, velocity, battery, GPS), SLAM (obstacle detection/mapping), and avoidance maneuvers in simulated 3D environments with configurable parameters (complexity, noise, frequency, dynamic obstacles). Synthetic drone datasets are generally used to overcome real-world data limitations for unmanned aerial vehicles (UAVs).

DETAILS

Structure & Content: Tiny tabular/text dataset (219 Bytes downloaded, ~4 KB in Parquet format) with 1 row and 8 columns:

complexity: int64 (value: 7)

noise: float64 (value: 2.5)

frequency: float64 (value: 1.8)

sample_rate: int64 (value: 100)

center_region_training: bool (value: true)

dynamic_obstacles: bool (value: true)

avoidance_training: bool (value: true)

dataset_id: string (value: "wave_bender_training_params")

USAGE

Load via Python libraries (e.g., from datasets import load_dataset; ds = load_dataset("webxos/wavebender_dataset") or pandas/parquet readers). Download the training app "WAVEBENDER" by webXOS in the /generator/ folder for configuring/training WaveBender— for a simulation involving waves, noise, frequency modulation, and obstacle avoidance (e.g., in physics, audio, or AI pathfinding).

DEVELOPER

webXOS

webxos.netlify.app

huggingface.co/webxos

2026

Downloads last month
25