DenseMarks

A PyTorch implementation for dense UVW coordinate prediction from human head images using DINOv3 backbone with DPT head architecture.

Overview

DenseMarks predicts per-pixel positions in canonical space (cube [0, 1]³) from human head images.

Input: RGB images of size 512×512 pixels

Output: UVW coordinates tensor (B, 3, 512, 512) with values in [0, 1]

Prerequisites

  • Python 3.8+
  • PyTorch 1.12+
  • CUDA (optional, for GPU acceleration)

Installation

  1. Clone the repository:

    git clone https://github.com/diddone/densemarks.git
    cd densemarks
    
  2. Install DINOv3 submodule:

    git clone https://github.com/facebookresearch/dinov3 third_party_dinov3
    
  3. Modify DINOv3 for compatibility:

    # For Linux (GNU sed):
    sed -i '/dinov3\.hub\.segmentors/s/^/#/; /dinov3\.hub\.classifiers/s/^/#/; /dinov3\.hub\.detectors/s/^/#/; /dinov3\.hub\.dinotxt/s/^/#/; /dinov3\.hub\.depthers/s/^/#/' third_party_dinov3/hubconf.py
    
    # For macOS (BSD sed):
    sed -i '' '/dinov3\.hub\.segmentors/s/^/#/; /dinov3\.hub\.classifiers/s/^/#/; /dinov3\.hub\.detectors/s/^/#/; /dinov3\.hub\.dinotxt/s/^/#/; /dinov3\.hub\.depthers/s/^/#/' third_party_dinov3/hubconf.py
    
  4. Install dependencies:

    pip install torch transformers numpy
    
  5. Download model weights from Hugging Face:

    from dense_marks_model import DenseMarksModel, read_image
    from huggingface_hub import hf_hub_download
    model = DenseMarksModel(hf_hub_download("diddone/densemarks", "model.safetensors"))
    images = read_image("assets/00000.png") # rgb, 512x512
    uvw = model(images) # Predict UVW coordinates
    
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support