DenseMarks
A PyTorch implementation for dense UVW coordinate prediction from human head images using DINOv3 backbone with DPT head architecture.
Overview
DenseMarks predicts per-pixel positions in canonical space (cube [0, 1]³) from human head images.
Input: RGB images of size 512×512 pixels
Output: UVW coordinates tensor (B, 3, 512, 512) with values in [0, 1]
Prerequisites
- Python 3.8+
- PyTorch 1.12+
- CUDA (optional, for GPU acceleration)
Installation
Clone the repository:
git clone https://github.com/diddone/densemarks.git cd densemarksInstall DINOv3 submodule:
git clone https://github.com/facebookresearch/dinov3 third_party_dinov3Modify DINOv3 for compatibility:
# For Linux (GNU sed): sed -i '/dinov3\.hub\.segmentors/s/^/#/; /dinov3\.hub\.classifiers/s/^/#/; /dinov3\.hub\.detectors/s/^/#/; /dinov3\.hub\.dinotxt/s/^/#/; /dinov3\.hub\.depthers/s/^/#/' third_party_dinov3/hubconf.py # For macOS (BSD sed): sed -i '' '/dinov3\.hub\.segmentors/s/^/#/; /dinov3\.hub\.classifiers/s/^/#/; /dinov3\.hub\.detectors/s/^/#/; /dinov3\.hub\.dinotxt/s/^/#/; /dinov3\.hub\.depthers/s/^/#/' third_party_dinov3/hubconf.pyInstall dependencies:
pip install torch transformers numpyDownload model weights from Hugging Face:
from dense_marks_model import DenseMarksModel, read_image from huggingface_hub import hf_hub_download model = DenseMarksModel(hf_hub_download("diddone/densemarks", "model.safetensors")) images = read_image("assets/00000.png") # rgb, 512x512 uvw = model(images) # Predict UVW coordinates
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support