Summary
Distilled with Distily library using teacher model gpt2 on dataset wikimedia/wikipedia.
Model Architecture:
- Architecture: GPT2LMHeadModel
- Total Parameters: 124,439,808
- Data Type (dtype): torch.bfloat16
- Model Size: 0.24 GB
Benchmark Metrics Comparison
| Metric | attn_layer_mapper=all, attn_loss_fn=cos, attn_projector=orthogonal, attn_weight=5 | attn_layer_mapper=layer-2, attn_loss_fn=raw_mse, attn_projector=orthogonal, attn_weight=25.0 | teacher | 
|---|---|---|---|
| ai2_arc (acc) | 0.313 | 0.305 | 0.354 | 
| ai2_arc (acc_norm) | 0.31 | 0.302 | 0.339 | 
| arc_challenge (acc) | 0.181 | 0.173 | 0.188 | 
| arc_challenge (acc_norm) | 0.224 | 0.223 | 0.222 | 
| arc_easy (acc) | 0.378 | 0.37 | 0.436 | 
| arc_easy (acc_norm) | 0.353 | 0.34 | 0.396 | 
| boolq (acc) | 0.49 | 0.387 | 0.51 | 
| cola (mcc) | -0.041 | 0.044 | 0.01 | 
| glue (acc) | 0.396 | 0.412 | 0.403 | 
| glue (f1) | 0.516 | 0.451 | 0.529 | 
| glue (mcc) | -0.041 | 0.044 | 0.01 | 
| hellaswag (acc) | 0.32 | 0.315 | 0.343 | 
| hellaswag (acc_norm) | 0.348 | 0.344 | 0.393 | 
| mnli (acc) | 0.336 | 0.338 | 0.338 | 
| mnli_mismatch (acc) | 0.343 | 0.351 | 0.346 | 
| mrpc (acc) | 0.444 | 0.353 | 0.515 | 
| mrpc (f1) | 0.478 | 0.143 | 0.631 | 
| qnli (acc) | 0.488 | 0.497 | 0.491 | 
| qqp (acc) | 0.356 | 0.406 | 0.367 | 
| qqp (f1) | 0.522 | 0.501 | 0.512 | 
| rte (acc) | 0.56 | 0.549 | 0.516 | 
| sst2 (acc) | 0.498 | 0.545 | 0.511 | 
| wikitext (bits_per_byte) | 1.118 | 1.127 | 0.98 | 
| wikitext (byte_perplexity) | 2.17 | 2.184 | 1.973 | 
| wikitext (word_perplexity) | 63.05 | 65.25 | 37.82 | 
| wnli (acc) | 0.408 | 0.451 | 0.451 | 
Resource Usage Comparison
- VRAM Use: 8.2855 GB
Distillation (Teacher -> Student) Architecture Difference:
- Architecture: GPT2LMHeadModel->GPT2LMHeadModel
- Total Parameters: 124,439,808 -> 124,439,808
- Data Type (dtype): torch.bfloat16 -> torch.bfloat16
- Model Size: 0.24 GB -> 0.24 GB
Module Diff Details
Train Dataset
Trained on 145,724,804 tokens from the wikimedia/wikipedia dataset.
- Num Samples: 247,500
- Subset: 20231101.en
- Split: train
Training Objective
DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=5, loss_fn=cos, layer_mapper=all))
Hyperparameters
The following hyperparameters were used during training:
Expand
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_min_lr
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 1.0
- distillation_objective: DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=5, loss_fn=cos, layer_mapper=all))
- train_embeddings: True
- lr_scheduler: <torch.optim.lr_scheduler.LambdaLR object at 0x7f05c40e2050>
- student_model_name_or_path: None
- student_config_name_or_path: None
- student_model_config: None
- reinitialize_weights: None
- copy_teacher_modules: [('lm_head', False)]
- student_model_as_bitnet: True
- student_model_compile: False
- dropout: None
- teacher_model_name_or_path: gpt2
- teacher_load_in_8bit: False
- teacher_load_in_4bit: False
- teacher_model_compile: False
- dataset_uri: wikimedia/wikipedia
- dataset_subset: 20231101.en
- dataset_split: train
- dataset_column_name: text
- dataset_sample_size: 250000
- dataset_test_size: 0.01
- gradient_accumulation_steps: 1
- weight_decay: 0.0
- max_grad_norm: 1.0
- warmup_ratio: 0.5
- warmup_steps: 0
- gradient_checkpointing: True
Framework Versions
- Distily 0.3.0
- Transformers 4.44.0
- Pytorch 2.3.0
- Datasets 2.21.0
- Downloads last month
- 5
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	🙋
			
		Ask for provider support
Model tree for distily/distily_multi_attn_experiment_ortho
Base model
openai-community/gpt2