File size: 2,075 Bytes
f0afbf9 ef5733d 8a037d3 fc74e43 41b0f5e 3470ec3 8a037d3 41b0f5e 3470ec3 f0afbf9 ef5733d 3470ec3 ef5733d 3470ec3 ef5733d 3470ec3 ef5733d bd8e677 ef5733d bd8e677 ef5733d bd8e677 ef5733d bd8e677 ef5733d 3470ec3 ef5733d bd8e677 41b0f5e 8a037d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
language:
- en
license: bsd-3-clause
tags:
- arxiv:2506.23151
- optical-flow-estimation
- optical-flow
pipeline_tag: image-to-image
library_name: pytorch
base_model:
- egorchistov/optical-flow-MEMFOF-Tartan-T-TSKH
---
# MEMFOF-Tartan-T-TSKH-spring
<a href="https://arxiv.org/abs/2506.23151" style="text-decoration: none;">π Paper</a> | <a href="https://msu-video-group.github.io/memfof" style="text-decoration: none;">π Project Page</a> | <a href="https://github.com/msu-video-group/memfof" style="text-decoration: none;">π» Code</a> | <a href="https://colab.research.google.com/github/msu-video-group/memfof/blob/dev/demo.ipynb" style="text-decoration: none;">π Colab</a> | <a href="https://huggingface.co/spaces/egorchistov/optical-flow-MEMFOF" style="text-decoration: none;">π€ Demo</a>
π **MEMFOF** is a **memory-efficient optical flow method** for **Full HD video** that combines **high accuracy** with **low VRAM usage**.
β
**Note:** This particular checkpoint is intended for submission to **Spring benchmark**.
## π οΈ Usage
Install MEMFOF via the package manager:
```shell
pip3 install git+https://github.com/msu-video-group/memfof
```
Then use the following snippet to compute backward and forward optical flow for three consecutive frames:
```python
import torch
from memfof import MEMFOF
device = "cuda" if torch.cuda.is_available() else "cpu"
model = MEMFOF.from_pretrained("egorchistov/optical-flow-MEMFOF-Tartan-T-TSKH-spring").eval().to(device)
with torch.inference_mode():
# [B=1, T=3, C=3, H=1080, W=1920]
example_input = torch.randint(0, 256, [1, 3, 3, 1080, 1920], device=device)
# [B=1, C=2, H=1080, W=1920]
backward_flow, forward_flow = model(example_input)["flow"][-1].unbind(dim=1)
```
## π Citation
```
@article{bargatin2025memfof,
title={MEMFOF: High-Resolution Training for Memory-Efficient Multi-Frame Optical Flow Estimation},
author={Bargatin, Vladislav and Chistov, Egor and Yakovenko, Alexander and Vatolin, Dmitriy},
journal={arXiv preprint arXiv:2506.23151},
year={2025}
}
``` |