YAML Metadata
		Warning:
	empty or missing yaml metadata in repo card
	(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
ehdwns1516/bert-base-uncased_SWAG
- This model has been trained as a SWAG dataset. 
- Sentence Inference Multiple Choice DEMO: Ainize DEMO 
- Sentence Inference Multiple Choice API: Ainize API 
Overview
Language model: bert-base-uncased
Language: English
Training data: SWAG dataset
Code: See Ainize Workspace
Usage
In Transformers
from transformers import AutoTokenizer, AutoModelForMultipleChoice
  
tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/bert-base-uncased_SWAG")
model = AutoModelForMultipleChoice.from_pretrained("ehdwns1516/bert-base-uncased_SWAG")
def run_model(candicates_count, context: str, candicates: list[str]):
    assert len(candicates) == candicates_count, "you need " + candicates_count + " candidates"
    choices_inputs = []
    for c in candicates:
        text_a = ""  # empty context
        text_b = context + " " + c
        inputs = tokenizer(
            text_a,
            text_b,
            add_special_tokens=True,
            max_length=128,
            padding="max_length",
            truncation=True,
            return_overflowing_tokens=True,
        )
        choices_inputs.append(inputs)
    input_ids = torch.LongTensor([x["input_ids"] for x in choices_inputs])
    output = model(input_ids=input_ids)
    return {"result": candicates[torch.argmax(output.logits).item()]}
items = list()
count = 4 # candicates count
context = "your context"
for i in range(int(count)):
    items.append("sentence")
result = run_model(count, context, items)
- Downloads last month
- 2
	Inference Providers
	NEW
	
	
	
	This model isn't deployed by any Inference Provider.
	๐
			
		Ask for provider support