NeuralDareBeagle-7B-slerp
NeuralDareBeagle-7B-slerp is a merge of the following models using LazyMergekit:
π§© Configuration
slices:
  - sources:
      - model: mlabonne/NeuralBeagle14-7B
        layer_range: [0, 32]
      - model: mlabonne/DareBeagle-7B-v2
        layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/DareBeagle-7B-v2
parameters:
  t:
    - filter: self_attn
      value: [0.5, 0.7, 0.3, 0.7, 1]
    - filter: mlp
      value: [0.5, 0.3, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "eren23/NeuralDareBeagle-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
| Metric | Value | 
|---|---|
| Avg. | 74.60 | 
| AI2 Reasoning Challenge (25-Shot) | 72.10 | 
| HellaSwag (10-Shot) | 88.20 | 
| MMLU (5-Shot) | 64.99 | 
| TruthfulQA (0-shot) | 69.18 | 
| Winogrande (5-shot) | 82.56 | 
| GSM8k (5-shot) | 70.58 | 
- Downloads last month
- 1
Model tree for eren23/NeuralDareBeagle-7B-slerp
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard72.100
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard88.200
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.990
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard69.180
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard82.560
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard70.580
