Custom Doc2Vec Embeddings

This model contains custom word embeddings trained using Gensim's Doc2Vec implementation.

Model details

  • Trained using Gensim's Word2Vec
  • Includes custom n-grams as tokens
  • Vector size: 256
  • Context window: 5
  • Training algorithm: Skip-gram

Doc2Vec Model Components

This folder contains all components of the Doc2Vec model:

  • doc2vec_model.model: The complete model that can be loaded with Doc2Vec.load()
  • model_parameters.pkl: Dictionary of all model parameters
  • word_vocabulary.pkl: Dictionary mapping words to indices
  • word_vectors.npy: NumPy array of word vectors
  • word_list.pkl: List of words corresponding to word_vectors.npy
  • doc_vectors.npy: NumPy array of document vectors (if available)
  • doc_tags.pkl: List of document tags corresponding to doc_vectors.npy

To load the model:

from gensim.models.doc2vec import Doc2Vec
model = Doc2Vec.load("doc2vec_model.model")
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support