Model Card for smolvla
This smolvla policy is a ready-to-use example from the tutorial paper Robot Learning: A Tutorial.
Project Page: https://huggingface.co/spaces/lerobot/robot-learning-tutorial Code: https://github.com/fracapuano/robot-learning-tutorial
SmolVLA is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware.
This policy has been trained and pushed to the Hub using LeRobot. See the full documentation at LeRobot Docs.
How to Get Started with the Model
For a complete walkthrough, see the training guide. Below is the short version on how to train and run inference/eval:
Train from scratch
python -m lerobot.scripts.train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
Writes checkpoints to outputs/train/<desired_policy_repo_id>/checkpoints/.
Evaluate the policy/run inference
python -m lerobot.record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
Prefix the dataset repo with eval_ and supply --policy.path pointing to a local or hub checkpoint.
Model Details
- Model License: apache-2.0
- Related Tutorial Paper: Robot Learning: A Tutorial
- Tutorial Project Page: https://huggingface.co/spaces/lerobot/robot-learning-tutorial
- Tutorial Code: https://github.com/fracapuano/robot-learning-tutorial
- Tutorial Content License: The written content of the tutorial is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Tutorial Code Examples License: Source code examples in the tutorial's
snippets/directory are licensed under the MIT License.
- Downloads last month
- 42
Model tree for fracapuano/smolvla_async
Base model
lerobot/smolvla_base