med_masked_pubmed_articles_biogpt
This model is a fine-tuned version of microsoft/biogpt on a med_masked_pubmed_articles dataset. It achieves the following results on the evaluation set:
- Loss: 3.1952
 - Rouge2 Precision: 0.7072
 - Rouge2 Recall: 0.7001
 - Rouge2 Fmeasure: 0.7025
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
 - train_batch_size: 16
 - eval_batch_size: 16
 - seed: 42
 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 - lr_scheduler_type: linear
 - num_epochs: 10
 - mixed_precision_training: Native AMP
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | 
|---|---|---|---|---|---|---|
| 3.1392 | 1.0 | 7914 | 3.0945 | 0.7075 | 0.7001 | 0.7026 | 
| 2.927 | 2.0 | 15828 | 3.0705 | 0.7074 | 0.7001 | 0.7026 | 
| 2.8558 | 3.0 | 23742 | 3.0877 | 0.7073 | 0.7001 | 0.7025 | 
| 2.7035 | 4.0 | 31656 | 3.1354 | 0.7073 | 0.7001 | 0.7026 | 
| 2.6209 | 5.0 | 39570 | 3.1952 | 0.7072 | 0.7001 | 0.7025 | 
Framework versions
- Transformers 4.26.1
 - Pytorch 1.13.1+cu116
 - Datasets 2.9.0
 - Tokenizers 0.13.2
 
- Downloads last month
 - 2