SentenceTransformer based on hshashank06/regulatory-policy
This is a sentence-transformers model finetuned from hshashank06/regulatory-policy on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: hshashank06/regulatory-policy
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("hshashank06/final-regulatory-policy")
# Run inference
sentences = [
'FS-13aA, FS-14A, and FS-3aA should be explained in the context of preparing financial statements for external use and consolidating subsidiaries in conformance with GAAP. It is important to ensure that FS-13aA is less than or equal to FS-13aB, FS-14A is less than or equal to FS-14B, and FS-3aA is less than or equal to FS-3aB when following GAAP guidelines for financial reporting and consolidation of subsidiaries. These comparisons are crucial for maintaining accuracy and compliance with accounting standards.',
'How should FS-13aA, FS-14A, FS-3aA be explained',
'Explain how GAAP impacts financial reporting across multiple columns for FR 2320 in detail.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768,dim_512,dim_256,dim_128anddim_64 - Evaluated with
InformationRetrievalEvaluator
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|---|---|---|---|---|---|
| cosine_accuracy@1 | 0.8197 | 0.8306 | 0.8251 | 0.8087 | 0.7705 |
| cosine_accuracy@3 | 0.8852 | 0.8907 | 0.8907 | 0.8852 | 0.8415 |
| cosine_accuracy@5 | 0.9071 | 0.9016 | 0.9016 | 0.8962 | 0.8743 |
| cosine_accuracy@10 | 0.918 | 0.918 | 0.9126 | 0.9071 | 0.9126 |
| cosine_precision@1 | 0.8197 | 0.8306 | 0.8251 | 0.8087 | 0.7705 |
| cosine_precision@3 | 0.2951 | 0.2969 | 0.2969 | 0.2951 | 0.2805 |
| cosine_precision@5 | 0.1814 | 0.1803 | 0.1803 | 0.1792 | 0.1749 |
| cosine_precision@10 | 0.0918 | 0.0918 | 0.0913 | 0.0907 | 0.0913 |
| cosine_recall@1 | 0.8197 | 0.8306 | 0.8251 | 0.8087 | 0.7705 |
| cosine_recall@3 | 0.8852 | 0.8907 | 0.8907 | 0.8852 | 0.8415 |
| cosine_recall@5 | 0.9071 | 0.9016 | 0.9016 | 0.8962 | 0.8743 |
| cosine_recall@10 | 0.918 | 0.918 | 0.9126 | 0.9071 | 0.9126 |
| cosine_ndcg@10 | 0.8711 | 0.8758 | 0.8724 | 0.8623 | 0.8375 |
| cosine_mrr@10 | 0.8557 | 0.8621 | 0.8592 | 0.8474 | 0.8138 |
| cosine_map@100 | 0.8578 | 0.864 | 0.8621 | 0.8504 | 0.8166 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 1,641 training samples
- Columns:
positiveandanchor - Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 16 tokens
- mean: 100.46 tokens
- max: 471 tokens
- min: 13 tokens
- mean: 19.23 tokens
- max: 27 tokens
- Samples:
positive anchor Based on Capital Assessments and Stress Testing in FR, SQ-28 must equal either "1" (yes) or "0" (no) as per the provided context. However, there is no specific information available regarding what SQ-29 must equal in this context.What must SQ-28 and SQ-29 equal based on Capital Assessments and Stress Testing in FRIf a savings and loan holding company fails to follow instructions outlined in the Quarterly Savings and Loan Holding Company Report FR 2320, they may be required to file an amended report if the previously submitted report contains significant errors. Additionally, the Federal Reserve may intervene and request amendments to be filed. It is crucial for savings and loan holding companies to adhere to the instructions provided to ensure accurate reporting.What happens if a savings and loan holding company fails to follow instructions?FS-19cB should not be null and should not be negative.What must remain positive if financial statements comply with GAAP and consolidate subsidiaries? - Loss:
MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 32per_device_eval_batch_size: 16gradient_accumulation_steps: 16learning_rate: 2e-05num_train_epochs: 4lr_scheduler_type: cosinewarmup_ratio: 0.1bf16: Trueload_best_model_at_end: Trueoptim: adamw_torch_fusedbatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 16eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|---|---|---|---|---|---|---|---|
| 1.0 | 4 | - | 0.8711 | 0.8758 | 0.8724 | 0.8623 | 0.8375 |
| 2.0 | 8 | - | 0.8711 | 0.8758 | 0.8724 | 0.8623 | 0.8375 |
| 2.6154 | 10 | 14.9206 | - | - | - | - | - |
| 3.0 | 12 | - | 0.8711 | 0.8758 | 0.8724 | 0.8623 | 0.8375 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.4.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- -
Model tree for hshashank06/final-regulatory-policy
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.820
- Cosine Accuracy@3 on dim 768self-reported0.885
- Cosine Accuracy@5 on dim 768self-reported0.907
- Cosine Accuracy@10 on dim 768self-reported0.918
- Cosine Precision@1 on dim 768self-reported0.820
- Cosine Precision@3 on dim 768self-reported0.295
- Cosine Precision@5 on dim 768self-reported0.181
- Cosine Precision@10 on dim 768self-reported0.092
- Cosine Recall@1 on dim 768self-reported0.820
- Cosine Recall@3 on dim 768self-reported0.885