Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task
Paper
β’
1809.08887
β’
Published
β’
2
νκ΅μ΄ μ§λ¬Έμ SQL μΏΌλ¦¬λ‘ λ³ννλ Text-to-SQL λͺ¨λΈμ λλ€. Spider train λ°μ΄ν°μ μ νκ΅μ΄λ‘ λ²μν spider-ko λ°μ΄ν°μ μ νμ©νμ¬ λ―ΈμΈμ‘°μ νμμ΅λλ€.
Spider νκ΅μ΄ κ²μ¦ λ°μ΄ν°μ (1,034κ°) νκ° κ²°κ³Ό:
π‘ μ€ν μ νλκ° μ ν μΌμΉμ¨λ³΄λ€ λμ μ΄μ λ, SQL λ¬Έλ²μ΄ λ€λ₯΄λλΌλ λμΌν κ²°κ³Όλ₯Ό λ°ννλ κ²½μ°κ° λ§κΈ° λλ¬Έμ λλ€.
from unsloth import FastLanguageModel
# λͺ¨λΈ λΆλ¬μ€κΈ°
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="huggingface-KREW/Llama-3.1-8B-Spider-SQL-Ko",
max_seq_length=2048,
dtype=None,
load_in_4bit=True,
)
# νκ΅μ΄ μ§λ¬Έ β SQL λ³ν
question = "κ°μλ λͺ λͺ
μ΄ μλμ?"
schema = """ν
μ΄λΈ: singer
컬λΌ: singer_id, name, country, age"""
prompt = f"""λ°μ΄ν°λ² μ΄μ€ μ€ν€λ§:
{schema}
μ§λ¬Έ: {question}
SQL:"""
# κ²°κ³Ό: SELECT count(*) FROM singer
def generate_sql(question, schema_info):
"""νκ΅μ΄ μ§λ¬Έμ SQLλ‘ λ³ν"""
prompt = f"""λ€μ λ°μ΄ν°λ² μ΄μ€ μ€ν€λ§λ₯Ό μ°Έκ³ νμ¬ μ§λ¬Έμ λν SQL 쿼리λ₯Ό μμ±νμΈμ.
### λ°μ΄ν°λ² μ΄μ€ μ€ν€λ§:
{schema_info}
### μ§λ¬Έ: {question}
### SQL 쿼리:"""
messages = [{"role": "user", "content": prompt}]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(inputs, max_new_tokens=150, temperature=0.1)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response.split("### SQL 쿼리:")[-1].strip()
# μμ 1: μ§κ³ ν¨μ
question = "λΆμμ₯λ€ μ€ 56μΈλ³΄λ€ λμ΄κ° λ§μ μ¬λμ΄ λͺ λͺ
μ
λκΉ?"
# κ²°κ³Ό: SELECT count(*) FROM head WHERE age > 56
# μμ 2: μ‘°μΈ
question = "κ°μ₯ λ§μ λνλ₯Ό κ°μ΅ν λμμ μνλ 무μμΈκ°μ?"
# κ²°κ³Ό: SELECT T1.Status FROM city AS T1 JOIN farm_competition AS T2 ON T1.City_ID = T2.Host_city_ID GROUP BY T2.Host_city_ID ORDER BY COUNT(*) DESC LIMIT 1
# μμ 3: μλΈμΏΌλ¦¬
question = "κΈ°μ
κ°κ° μλ μ¬λλ€μ μ΄λ¦μ 무μμ
λκΉ?"
# κ²°κ³Ό: SELECT Name FROM people WHERE People_ID NOT IN (SELECT People_ID FROM entrepreneur)
training_args = {
"per_device_train_batch_size": 2,
"gradient_accumulation_steps": 4,
"learning_rate": 5e-4,
"num_train_epochs": 1,
"optimizer": "adamw_8bit",
"lr_scheduler_type": "cosine",
"warmup_ratio": 0.05
}
lora_config = {
"r": 16,
"lora_alpha": 32,
"lora_dropout": 0,
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"]
}
@misc{llama31_spider_sql_ko_2025,
title={Llama-3.1-8B-Spider-SQL-Ko: Korean Text-to-SQL Model},
author={[Sohyun Sim, Youngjun Cho, Seongwoo Choi]},
year={2025},
publisher={Hugging Face KREW},
url={https://huggingface.co/huggingface-KREW/Llama-3.1-8B-Spider-SQL-Ko}
}
Base model
meta-llama/Llama-3.1-8B