SentenceTransformer based on vinai/phobert-base-v2
This is a sentence-transformers model finetuned from vinai/phobert-base-v2 on the wiki-data dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: vinai/phobert-base-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("iambestfeed/phobert-base-v2-wiki-data-filter_0_dot_7_wseg-lr2e-05-1-epochs-bs-48")
# Run inference
sentences = [
'Hình_ảnh của Sarcoglottis sceptrodes',
'Tập_tin : Sarcoglottis sceptrodes - Flickr 004.jpg Tập_tin : Sarcoglottis sceptrodes - Flickr 005.jpg',
'Spinipochira excavata là một loài bọ cánh_cứng trong họ Cerambycidae .( )',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
wiki-data
- Dataset: wiki-data at 4567021
- Size: 570,310 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 5 tokens
- mean: 10.5 tokens
- max: 26 tokens
- min: 11 tokens
- mean: 49.28 tokens
- max: 256 tokens
- Samples:
anchor positive Giới_thiệu của Munna parvituberculataMunna parvituberculata là một loài chân đều trong họ Munnidae .Loài này được Kussakin miêu_tả khoa_học năm 1962 .( Schotte , M. ( 2010 ) .Munna parvituberculata Kussakin , 1962B .In :Schotte , M. , Boyko , C.B , Bruce , N.L. , Poore , G.C.B. , Taiti , S. , Wilson , G.D.F. ( Eds ) ( 2010 ) .World_Marine , Freshwater and Terrestrial_Isopod_Crustaceans database .Gebaseerd op informatie uit het Cơ_sở_dữ_liệu sinh_vật biển , te vinden op http://www.marinespecies.org/aphia.php?p=taxdetails&id=256237)Giới_thiệu của Goniophlebium tweedieanumGoniophlebium tweedieanum là một loài dương_xỉ trong họ Polypodiaceae .Loài này được J.Sm. mô_tả khoa_học đầu_tiên năm 1841 .( ) Danh_pháp khoa_học của loài này chưa được làm sáng_tỏ .Giới_thiệu của Acanthorrhynchium grosso-papillatumAcanthorrhynchium grosso-papillatum là một loài Rêu trong họ Sematophyllaceae .Loài này được ( Broth . ) M. Fleisch . mô_tả khoa_học đầu_tiên năm 1923 .( ) - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 48learning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1save_safetensors: Falsefp16: Truepush_to_hub: Truehub_model_id: iambestfeed/phobert-base-v2-wiki-data-filter_0_dot_7_wseg-lr2e-05-1-epochs-bs-48batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 48per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Falsesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Truedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Trueresume_from_checkpoint: Nonehub_model_id: iambestfeed/phobert-base-v2-wiki-data-filter_0_dot_7_wseg-lr2e-05-1-epochs-bs-48hub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0017 | 10 | 3.7921 |
| 0.0034 | 20 | 3.6038 |
| 0.0051 | 30 | 3.1217 |
| 0.0067 | 40 | 2.7701 |
| 0.0084 | 50 | 2.4196 |
| 0.0101 | 60 | 2.0527 |
| 0.0118 | 70 | 1.6274 |
| 0.0135 | 80 | 1.0704 |
| 0.0152 | 90 | 0.5303 |
| 0.0168 | 100 | 0.2232 |
| 0.0185 | 110 | 0.1123 |
| 0.0202 | 120 | 0.0535 |
| 0.0219 | 130 | 0.0244 |
| 0.0236 | 140 | 0.0135 |
| 0.0253 | 150 | 0.0115 |
| 0.0269 | 160 | 0.0119 |
| 0.0286 | 170 | 0.0098 |
| 0.0303 | 180 | 0.0069 |
| 0.0320 | 190 | 0.0036 |
| 0.0337 | 200 | 0.0054 |
| 0.0354 | 210 | 0.0029 |
| 0.0370 | 220 | 0.0066 |
| 0.0387 | 230 | 0.0042 |
| 0.0404 | 240 | 0.009 |
| 0.0421 | 250 | 0.0033 |
| 0.0438 | 260 | 0.0034 |
| 0.0455 | 270 | 0.0055 |
| 0.0471 | 280 | 0.0038 |
| 0.0488 | 290 | 0.0037 |
| 0.0505 | 300 | 0.0027 |
| 0.0522 | 310 | 0.0024 |
| 0.0539 | 320 | 0.0034 |
| 0.0556 | 330 | 0.0027 |
| 0.0572 | 340 | 0.0021 |
| 0.0589 | 350 | 0.0046 |
| 0.0606 | 360 | 0.002 |
| 0.0623 | 370 | 0.0014 |
| 0.0640 | 380 | 0.0012 |
| 0.0657 | 390 | 0.0024 |
| 0.0673 | 400 | 0.0019 |
| 0.0690 | 410 | 0.0034 |
| 0.0707 | 420 | 0.002 |
| 0.0724 | 430 | 0.0017 |
| 0.0741 | 440 | 0.0013 |
| 0.0758 | 450 | 0.001 |
| 0.0774 | 460 | 0.0009 |
| 0.0791 | 470 | 0.001 |
| 0.0808 | 480 | 0.0021 |
| 0.0825 | 490 | 0.0008 |
| 0.0842 | 500 | 0.0021 |
| 0.0859 | 510 | 0.001 |
| 0.0875 | 520 | 0.0028 |
| 0.0892 | 530 | 0.0008 |
| 0.0909 | 540 | 0.0008 |
| 0.0926 | 550 | 0.0007 |
| 0.0943 | 560 | 0.0013 |
| 0.0960 | 570 | 0.0009 |
| 0.0976 | 580 | 0.002 |
| 0.0993 | 590 | 0.0007 |
| 0.1010 | 600 | 0.0037 |
| 0.1027 | 610 | 0.0024 |
| 0.1044 | 620 | 0.0011 |
| 0.1061 | 630 | 0.001 |
| 0.1077 | 640 | 0.001 |
| 0.1094 | 650 | 0.001 |
| 0.1111 | 660 | 0.0005 |
| 0.1128 | 670 | 0.0005 |
| 0.1145 | 680 | 0.0033 |
| 0.1162 | 690 | 0.0014 |
| 0.1178 | 700 | 0.001 |
| 0.1195 | 710 | 0.0008 |
| 0.1212 | 720 | 0.0005 |
| 0.1229 | 730 | 0.0005 |
| 0.1246 | 740 | 0.001 |
| 0.1263 | 750 | 0.0005 |
| 0.1279 | 760 | 0.0018 |
| 0.1296 | 770 | 0.0005 |
| 0.1313 | 780 | 0.0006 |
| 0.1330 | 790 | 0.0004 |
| 0.1347 | 800 | 0.0005 |
| 0.1364 | 810 | 0.0003 |
| 0.1380 | 820 | 0.0003 |
| 0.1397 | 830 | 0.0015 |
| 0.1414 | 840 | 0.0027 |
| 0.1431 | 850 | 0.0019 |
| 0.1448 | 860 | 0.0005 |
| 0.1465 | 870 | 0.0008 |
| 0.1481 | 880 | 0.001 |
| 0.1498 | 890 | 0.0005 |
| 0.1515 | 900 | 0.0004 |
| 0.1532 | 910 | 0.0005 |
| 0.1549 | 920 | 0.0008 |
| 0.1566 | 930 | 0.0005 |
| 0.1582 | 940 | 0.0003 |
| 0.1599 | 950 | 0.0009 |
| 0.1616 | 960 | 0.0008 |
| 0.1633 | 970 | 0.0004 |
| 0.1650 | 980 | 0.0008 |
| 0.1667 | 990 | 0.001 |
| 0.1684 | 1000 | 0.0009 |
| 0.1700 | 1010 | 0.0011 |
| 0.1717 | 1020 | 0.0005 |
| 0.1734 | 1030 | 0.0017 |
| 0.1751 | 1040 | 0.0006 |
| 0.1768 | 1050 | 0.0005 |
| 0.1785 | 1060 | 0.0004 |
| 0.1801 | 1070 | 0.0006 |
| 0.1818 | 1080 | 0.0003 |
| 0.1835 | 1090 | 0.0005 |
| 0.1852 | 1100 | 0.0005 |
| 0.1869 | 1110 | 0.0004 |
| 0.1886 | 1120 | 0.0004 |
| 0.1902 | 1130 | 0.0006 |
| 0.1919 | 1140 | 0.0005 |
| 0.1936 | 1150 | 0.0003 |
| 0.1953 | 1160 | 0.0003 |
| 0.1970 | 1170 | 0.0014 |
| 0.1987 | 1180 | 0.0003 |
| 0.2003 | 1190 | 0.0009 |
| 0.2020 | 1200 | 0.0016 |
| 0.2037 | 1210 | 0.0004 |
| 0.2054 | 1220 | 0.0005 |
| 0.2071 | 1230 | 0.0003 |
| 0.2088 | 1240 | 0.0003 |
| 0.2104 | 1250 | 0.0002 |
| 0.2121 | 1260 | 0.0003 |
| 0.2138 | 1270 | 0.0006 |
| 0.2155 | 1280 | 0.0002 |
| 0.2172 | 1290 | 0.0002 |
| 0.2189 | 1300 | 0.0003 |
| 0.2205 | 1310 | 0.0002 |
| 0.2222 | 1320 | 0.0002 |
| 0.2239 | 1330 | 0.0007 |
| 0.2256 | 1340 | 0.0004 |
| 0.2273 | 1350 | 0.0004 |
| 0.2290 | 1360 | 0.0004 |
| 0.2306 | 1370 | 0.0003 |
| 0.2323 | 1380 | 0.0005 |
| 0.2340 | 1390 | 0.0004 |
| 0.2357 | 1400 | 0.0046 |
| 0.2374 | 1410 | 0.0007 |
| 0.2391 | 1420 | 0.0005 |
| 0.2407 | 1430 | 0.0004 |
| 0.2424 | 1440 | 0.001 |
| 0.2441 | 1450 | 0.0004 |
| 0.2458 | 1460 | 0.0006 |
| 0.2475 | 1470 | 0.0004 |
| 0.2492 | 1480 | 0.0002 |
| 0.2508 | 1490 | 0.0002 |
| 0.2525 | 1500 | 0.0003 |
| 0.2542 | 1510 | 0.0003 |
| 0.2559 | 1520 | 0.0003 |
| 0.2576 | 1530 | 0.0011 |
| 0.2593 | 1540 | 0.0012 |
| 0.2609 | 1550 | 0.0004 |
| 0.2626 | 1560 | 0.0004 |
| 0.2643 | 1570 | 0.0004 |
| 0.2660 | 1580 | 0.0002 |
| 0.2677 | 1590 | 0.0002 |
| 0.2694 | 1600 | 0.0004 |
| 0.2710 | 1610 | 0.0006 |
| 0.2727 | 1620 | 0.0002 |
| 0.2744 | 1630 | 0.0003 |
| 0.2761 | 1640 | 0.0003 |
| 0.2778 | 1650 | 0.0003 |
| 0.2795 | 1660 | 0.0003 |
| 0.2811 | 1670 | 0.0008 |
| 0.2828 | 1680 | 0.0011 |
| 0.2845 | 1690 | 0.0008 |
| 0.2862 | 1700 | 0.0003 |
| 0.2879 | 1710 | 0.0006 |
| 0.2896 | 1720 | 0.0003 |
| 0.2912 | 1730 | 0.0003 |
| 0.2929 | 1740 | 0.0026 |
| 0.2946 | 1750 | 0.0006 |
| 0.2963 | 1760 | 0.0004 |
| 0.2980 | 1770 | 0.0007 |
| 0.2997 | 1780 | 0.0002 |
| 0.3013 | 1790 | 0.0005 |
| 0.3030 | 1800 | 0.0003 |
| 0.3047 | 1810 | 0.0003 |
| 0.3064 | 1820 | 0.0004 |
| 0.3081 | 1830 | 0.0002 |
| 0.3098 | 1840 | 0.0002 |
| 0.3114 | 1850 | 0.0003 |
| 0.3131 | 1860 | 0.0013 |
| 0.3148 | 1870 | 0.0002 |
| 0.3165 | 1880 | 0.0003 |
| 0.3182 | 1890 | 0.0003 |
| 0.3199 | 1900 | 0.0015 |
| 0.3215 | 1910 | 0.0005 |
| 0.3232 | 1920 | 0.0003 |
| 0.3249 | 1930 | 0.0005 |
| 0.3266 | 1940 | 0.0003 |
| 0.3283 | 1950 | 0.0003 |
| 0.3300 | 1960 | 0.0012 |
| 0.3316 | 1970 | 0.0006 |
| 0.3333 | 1980 | 0.001 |
| 0.3350 | 1990 | 0.0005 |
| 0.3367 | 2000 | 0.0002 |
| 0.3384 | 2010 | 0.0003 |
| 0.3401 | 2020 | 0.0003 |
| 0.3418 | 2030 | 0.0002 |
| 0.3434 | 2040 | 0.0003 |
| 0.3451 | 2050 | 0.0003 |
| 0.3468 | 2060 | 0.0002 |
| 0.3485 | 2070 | 0.0002 |
| 0.3502 | 2080 | 0.0003 |
| 0.3519 | 2090 | 0.0002 |
| 0.3535 | 2100 | 0.0002 |
| 0.3552 | 2110 | 0.0007 |
| 0.3569 | 2120 | 0.0003 |
| 0.3586 | 2130 | 0.0002 |
| 0.3603 | 2140 | 0.0002 |
| 0.3620 | 2150 | 0.0003 |
| 0.3636 | 2160 | 0.0001 |
| 0.3653 | 2170 | 0.0002 |
| 0.3670 | 2180 | 0.001 |
| 0.3687 | 2190 | 0.0008 |
| 0.3704 | 2200 | 0.001 |
| 0.3721 | 2210 | 0.0005 |
| 0.3737 | 2220 | 0.0006 |
| 0.3754 | 2230 | 0.0005 |
| 0.3771 | 2240 | 0.0002 |
| 0.3788 | 2250 | 0.0003 |
| 0.3805 | 2260 | 0.0003 |
| 0.3822 | 2270 | 0.0002 |
| 0.3838 | 2280 | 0.0002 |
| 0.3855 | 2290 | 0.0002 |
| 0.3872 | 2300 | 0.0004 |
| 0.3889 | 2310 | 0.0002 |
| 0.3906 | 2320 | 0.0002 |
| 0.3923 | 2330 | 0.0003 |
| 0.3939 | 2340 | 0.0002 |
| 0.3956 | 2350 | 0.0004 |
| 0.3973 | 2360 | 0.0016 |
| 0.3990 | 2370 | 0.0003 |
| 0.4007 | 2380 | 0.0004 |
| 0.4024 | 2390 | 0.0005 |
| 0.4040 | 2400 | 0.0003 |
| 0.4057 | 2410 | 0.0005 |
| 0.4074 | 2420 | 0.0012 |
| 0.4091 | 2430 | 0.0004 |
| 0.4108 | 2440 | 0.0004 |
| 0.4125 | 2450 | 0.0012 |
| 0.4141 | 2460 | 0.0005 |
| 0.4158 | 2470 | 0.0004 |
| 0.4175 | 2480 | 0.0004 |
| 0.4192 | 2490 | 0.0003 |
| 0.4209 | 2500 | 0.0005 |
| 0.4226 | 2510 | 0.0002 |
| 0.4242 | 2520 | 0.0003 |
| 0.4259 | 2530 | 0.0003 |
| 0.4276 | 2540 | 0.0006 |
| 0.4293 | 2550 | 0.0003 |
| 0.4310 | 2560 | 0.0017 |
| 0.4327 | 2570 | 0.0009 |
| 0.4343 | 2580 | 0.0003 |
| 0.4360 | 2590 | 0.0005 |
| 0.4377 | 2600 | 0.0003 |
| 0.4394 | 2610 | 0.0005 |
| 0.4411 | 2620 | 0.0005 |
| 0.4428 | 2630 | 0.0003 |
| 0.4444 | 2640 | 0.0009 |
| 0.4461 | 2650 | 0.0027 |
| 0.4478 | 2660 | 0.0004 |
| 0.4495 | 2670 | 0.0002 |
| 0.4512 | 2680 | 0.0002 |
| 0.4529 | 2690 | 0.0004 |
| 0.4545 | 2700 | 0.0003 |
| 0.4562 | 2710 | 0.0002 |
| 0.4579 | 2720 | 0.0003 |
| 0.4596 | 2730 | 0.0004 |
| 0.4613 | 2740 | 0.0002 |
| 0.4630 | 2750 | 0.0003 |
| 0.4646 | 2760 | 0.0002 |
| 0.4663 | 2770 | 0.0003 |
| 0.4680 | 2780 | 0.0002 |
| 0.4697 | 2790 | 0.0003 |
| 0.4714 | 2800 | 0.0001 |
| 0.4731 | 2810 | 0.0004 |
| 0.4747 | 2820 | 0.0002 |
| 0.4764 | 2830 | 0.0002 |
| 0.4781 | 2840 | 0.0002 |
| 0.4798 | 2850 | 0.0002 |
| 0.4815 | 2860 | 0.0001 |
| 0.4832 | 2870 | 0.0001 |
| 0.4848 | 2880 | 0.0004 |
| 0.4865 | 2890 | 0.0001 |
| 0.4882 | 2900 | 0.0005 |
| 0.4899 | 2910 | 0.0003 |
| 0.4916 | 2920 | 0.0001 |
| 0.4933 | 2930 | 0.0003 |
| 0.4949 | 2940 | 0.0008 |
| 0.4966 | 2950 | 0.0007 |
| 0.4983 | 2960 | 0.0007 |
| 0.5 | 2970 | 0.0005 |
| 0.5017 | 2980 | 0.0002 |
| 0.5034 | 2990 | 0.0002 |
| 0.5051 | 3000 | 0.0002 |
| 0.5067 | 3010 | 0.0004 |
| 0.5084 | 3020 | 0.0002 |
| 0.5101 | 3030 | 0.0002 |
| 0.5118 | 3040 | 0.0026 |
| 0.5135 | 3050 | 0.0003 |
| 0.5152 | 3060 | 0.0003 |
| 0.5168 | 3070 | 0.0002 |
| 0.5185 | 3080 | 0.0011 |
| 0.5202 | 3090 | 0.0003 |
| 0.5219 | 3100 | 0.0004 |
| 0.5236 | 3110 | 0.0004 |
| 0.5253 | 3120 | 0.0002 |
| 0.5269 | 3130 | 0.0004 |
| 0.5286 | 3140 | 0.0002 |
| 0.5303 | 3150 | 0.0003 |
| 0.5320 | 3160 | 0.0003 |
| 0.5337 | 3170 | 0.0004 |
| 0.5354 | 3180 | 0.0004 |
| 0.5370 | 3190 | 0.0002 |
| 0.5387 | 3200 | 0.0003 |
| 0.5404 | 3210 | 0.0003 |
| 0.5421 | 3220 | 0.0001 |
| 0.5438 | 3230 | 0.0002 |
| 0.5455 | 3240 | 0.0002 |
| 0.5471 | 3250 | 0.0009 |
| 0.5488 | 3260 | 0.0001 |
| 0.5505 | 3270 | 0.0004 |
| 0.5522 | 3280 | 0.0005 |
| 0.5539 | 3290 | 0.0003 |
| 0.5556 | 3300 | 0.0002 |
| 0.5572 | 3310 | 0.0002 |
| 0.5589 | 3320 | 0.0004 |
| 0.5606 | 3330 | 0.0002 |
| 0.5623 | 3340 | 0.0003 |
| 0.5640 | 3350 | 0.0002 |
| 0.5657 | 3360 | 0.0006 |
| 0.5673 | 3370 | 0.0004 |
| 0.5690 | 3380 | 0.0002 |
| 0.5707 | 3390 | 0.0002 |
| 0.5724 | 3400 | 0.0002 |
| 0.5741 | 3410 | 0.0002 |
| 0.5758 | 3420 | 0.0004 |
| 0.5774 | 3430 | 0.0002 |
| 0.5791 | 3440 | 0.0009 |
| 0.5808 | 3450 | 0.0003 |
| 0.5825 | 3460 | 0.0003 |
| 0.5842 | 3470 | 0.0002 |
| 0.5859 | 3480 | 0.0002 |
| 0.5875 | 3490 | 0.0002 |
| 0.5892 | 3500 | 0.0002 |
| 0.5909 | 3510 | 0.0002 |
| 0.5926 | 3520 | 0.0002 |
| 0.5943 | 3530 | 0.0003 |
| 0.5960 | 3540 | 0.0003 |
| 0.5976 | 3550 | 0.0001 |
| 0.5993 | 3560 | 0.0002 |
| 0.6010 | 3570 | 0.0002 |
| 0.6027 | 3580 | 0.0002 |
| 0.6044 | 3590 | 0.0002 |
| 0.6061 | 3600 | 0.0002 |
| 0.6077 | 3610 | 0.0002 |
| 0.6094 | 3620 | 0.0002 |
| 0.6111 | 3630 | 0.0002 |
| 0.6128 | 3640 | 0.0001 |
| 0.6145 | 3650 | 0.0002 |
| 0.6162 | 3660 | 0.0003 |
| 0.6178 | 3670 | 0.0002 |
| 0.6195 | 3680 | 0.0002 |
| 0.6212 | 3690 | 0.0001 |
| 0.6229 | 3700 | 0.0001 |
| 0.6246 | 3710 | 0.0001 |
| 0.6263 | 3720 | 0.0002 |
| 0.6279 | 3730 | 0.0001 |
| 0.6296 | 3740 | 0.0001 |
| 0.6313 | 3750 | 0.0005 |
| 0.6330 | 3760 | 0.0002 |
| 0.6347 | 3770 | 0.0003 |
| 0.6364 | 3780 | 0.0001 |
| 0.6380 | 3790 | 0.0001 |
| 0.6397 | 3800 | 0.0003 |
| 0.6414 | 3810 | 0.0008 |
| 0.6431 | 3820 | 0.0002 |
| 0.6448 | 3830 | 0.0002 |
| 0.6465 | 3840 | 0.0002 |
| 0.6481 | 3850 | 0.0002 |
| 0.6498 | 3860 | 0.0002 |
| 0.6515 | 3870 | 0.0001 |
| 0.6532 | 3880 | 0.0002 |
| 0.6549 | 3890 | 0.0002 |
| 0.6566 | 3900 | 0.0001 |
| 0.6582 | 3910 | 0.0003 |
| 0.6599 | 3920 | 0.0011 |
| 0.6616 | 3930 | 0.0002 |
| 0.6633 | 3940 | 0.0002 |
| 0.6650 | 3950 | 0.0001 |
| 0.6667 | 3960 | 0.0002 |
| 0.6684 | 3970 | 0.0001 |
| 0.6700 | 3980 | 0.0002 |
| 0.6717 | 3990 | 0.0002 |
| 0.6734 | 4000 | 0.0001 |
| 0.6751 | 4010 | 0.0002 |
| 0.6768 | 4020 | 0.0001 |
| 0.6785 | 4030 | 0.0001 |
| 0.6801 | 4040 | 0.0002 |
| 0.6818 | 4050 | 0.0002 |
| 0.6835 | 4060 | 0.0001 |
| 0.6852 | 4070 | 0.0003 |
| 0.6869 | 4080 | 0.0003 |
| 0.6886 | 4090 | 0.0005 |
| 0.6902 | 4100 | 0.0002 |
| 0.6919 | 4110 | 0.0004 |
| 0.6936 | 4120 | 0.0005 |
| 0.6953 | 4130 | 0.0002 |
| 0.6970 | 4140 | 0.0002 |
| 0.6987 | 4150 | 0.0002 |
| 0.7003 | 4160 | 0.0003 |
| 0.7020 | 4170 | 0.0008 |
| 0.7037 | 4180 | 0.0002 |
| 0.7054 | 4190 | 0.0003 |
| 0.7071 | 4200 | 0.0002 |
| 0.7088 | 4210 | 0.0003 |
| 0.7104 | 4220 | 0.0002 |
| 0.7121 | 4230 | 0.0002 |
| 0.7138 | 4240 | 0.0002 |
| 0.7155 | 4250 | 0.0001 |
| 0.7172 | 4260 | 0.0003 |
| 0.7189 | 4270 | 0.0004 |
| 0.7205 | 4280 | 0.0002 |
| 0.7222 | 4290 | 0.0002 |
| 0.7239 | 4300 | 0.0002 |
| 0.7256 | 4310 | 0.0011 |
| 0.7273 | 4320 | 0.0003 |
| 0.7290 | 4330 | 0.0003 |
| 0.7306 | 4340 | 0.0002 |
| 0.7323 | 4350 | 0.0002 |
| 0.7340 | 4360 | 0.0002 |
| 0.7357 | 4370 | 0.0003 |
| 0.7374 | 4380 | 0.0001 |
| 0.7391 | 4390 | 0.0004 |
| 0.7407 | 4400 | 0.0002 |
| 0.7424 | 4410 | 0.0002 |
| 0.7441 | 4420 | 0.0002 |
| 0.7458 | 4430 | 0.0001 |
| 0.7475 | 4440 | 0.0001 |
| 0.7492 | 4450 | 0.0001 |
| 0.7508 | 4460 | 0.0002 |
| 0.7525 | 4470 | 0.0004 |
| 0.7542 | 4480 | 0.0003 |
| 0.7559 | 4490 | 0.0002 |
| 0.7576 | 4500 | 0.0001 |
| 0.7593 | 4510 | 0.0005 |
| 0.7609 | 4520 | 0.0002 |
| 0.7626 | 4530 | 0.0002 |
| 0.7643 | 4540 | 0.0002 |
| 0.7660 | 4550 | 0.0001 |
| 0.7677 | 4560 | 0.0002 |
| 0.7694 | 4570 | 0.0001 |
| 0.7710 | 4580 | 0.0002 |
| 0.7727 | 4590 | 0.0008 |
| 0.7744 | 4600 | 0.0002 |
| 0.7761 | 4610 | 0.0002 |
| 0.7778 | 4620 | 0.0002 |
| 0.7795 | 4630 | 0.0002 |
| 0.7811 | 4640 | 0.0002 |
| 0.7828 | 4650 | 0.0013 |
| 0.7845 | 4660 | 0.0001 |
| 0.7862 | 4670 | 0.0002 |
| 0.7879 | 4680 | 0.0022 |
| 0.7896 | 4690 | 0.0001 |
| 0.7912 | 4700 | 0.0003 |
| 0.7929 | 4710 | 0.0002 |
| 0.7946 | 4720 | 0.0002 |
| 0.7963 | 4730 | 0.0004 |
| 0.7980 | 4740 | 0.0001 |
| 0.7997 | 4750 | 0.0003 |
| 0.8013 | 4760 | 0.0001 |
| 0.8030 | 4770 | 0.0001 |
| 0.8047 | 4780 | 0.0002 |
| 0.8064 | 4790 | 0.0001 |
| 0.8081 | 4800 | 0.0001 |
| 0.8098 | 4810 | 0.0004 |
| 0.8114 | 4820 | 0.0001 |
| 0.8131 | 4830 | 0.0004 |
| 0.8148 | 4840 | 0.0001 |
| 0.8165 | 4850 | 0.0001 |
| 0.8182 | 4860 | 0.0003 |
| 0.8199 | 4870 | 0.0001 |
| 0.8215 | 4880 | 0.0003 |
| 0.8232 | 4890 | 0.0001 |
| 0.8249 | 4900 | 0.0001 |
| 0.8266 | 4910 | 0.0002 |
| 0.8283 | 4920 | 0.0025 |
| 0.8300 | 4930 | 0.0018 |
| 0.8316 | 4940 | 0.0011 |
| 0.8333 | 4950 | 0.0003 |
| 0.8350 | 4960 | 0.0003 |
| 0.8367 | 4970 | 0.0004 |
| 0.8384 | 4980 | 0.0002 |
| 0.8401 | 4990 | 0.0003 |
| 0.8418 | 5000 | 0.0002 |
| 0.8434 | 5010 | 0.0002 |
| 0.8451 | 5020 | 0.0001 |
| 0.8468 | 5030 | 0.0002 |
| 0.8485 | 5040 | 0.0006 |
| 0.8502 | 5050 | 0.0003 |
| 0.8519 | 5060 | 0.001 |
| 0.8535 | 5070 | 0.0001 |
| 0.8552 | 5080 | 0.0001 |
| 0.8569 | 5090 | 0.0001 |
| 0.8586 | 5100 | 0.0001 |
| 0.8603 | 5110 | 0.0001 |
| 0.8620 | 5120 | 0.0005 |
| 0.8636 | 5130 | 0.0004 |
| 0.8653 | 5140 | 0.0002 |
| 0.8670 | 5150 | 0.0002 |
| 0.8687 | 5160 | 0.0001 |
| 0.8704 | 5170 | 0.0003 |
| 0.8721 | 5180 | 0.0004 |
| 0.8737 | 5190 | 0.0002 |
| 0.8754 | 5200 | 0.0002 |
| 0.8771 | 5210 | 0.0002 |
| 0.8788 | 5220 | 0.0001 |
| 0.8805 | 5230 | 0.0001 |
| 0.8822 | 5240 | 0.0003 |
| 0.8838 | 5250 | 0.0001 |
| 0.8855 | 5260 | 0.0004 |
| 0.8872 | 5270 | 0.0001 |
| 0.8889 | 5280 | 0.0002 |
| 0.8906 | 5290 | 0.0003 |
| 0.8923 | 5300 | 0.0004 |
| 0.8939 | 5310 | 0.0001 |
| 0.8956 | 5320 | 0.0001 |
| 0.8973 | 5330 | 0.0003 |
| 0.8990 | 5340 | 0.0001 |
| 0.9007 | 5350 | 0.0001 |
| 0.9024 | 5360 | 0.0001 |
| 0.9040 | 5370 | 0.0001 |
| 0.9057 | 5380 | 0.0001 |
| 0.9074 | 5390 | 0.0001 |
| 0.9091 | 5400 | 0.0001 |
| 0.9108 | 5410 | 0.0001 |
| 0.9125 | 5420 | 0.0005 |
| 0.9141 | 5430 | 0.0006 |
| 0.9158 | 5440 | 0.0001 |
| 0.9175 | 5450 | 0.0001 |
| 0.9192 | 5460 | 0.0001 |
| 0.9209 | 5470 | 0.0001 |
| 0.9226 | 5480 | 0.0001 |
| 0.9242 | 5490 | 0.0001 |
| 0.9259 | 5500 | 0.0002 |
| 0.9276 | 5510 | 0.0002 |
| 0.9293 | 5520 | 0.0002 |
| 0.9310 | 5530 | 0.0001 |
| 0.9327 | 5540 | 0.0002 |
| 0.9343 | 5550 | 0.0001 |
| 0.9360 | 5560 | 0.0002 |
| 0.9377 | 5570 | 0.0001 |
| 0.9394 | 5580 | 0.0002 |
| 0.9411 | 5590 | 0.0001 |
| 0.9428 | 5600 | 0.0001 |
| 0.9444 | 5610 | 0.0001 |
| 0.9461 | 5620 | 0.0001 |
| 0.9478 | 5630 | 0.0001 |
| 0.9495 | 5640 | 0.0002 |
| 0.9512 | 5650 | 0.0001 |
| 0.9529 | 5660 | 0.0001 |
| 0.9545 | 5670 | 0.0001 |
| 0.9562 | 5680 | 0.0001 |
| 0.9579 | 5690 | 0.0001 |
| 0.9596 | 5700 | 0.0002 |
| 0.9613 | 5710 | 0.0001 |
| 0.9630 | 5720 | 0.0001 |
| 0.9646 | 5730 | 0.0002 |
| 0.9663 | 5740 | 0.0002 |
| 0.9680 | 5750 | 0.0001 |
| 0.9697 | 5760 | 0.0001 |
| 0.9714 | 5770 | 0.0001 |
| 0.9731 | 5780 | 0.0002 |
| 0.9747 | 5790 | 0.0004 |
| 0.9764 | 5800 | 0.0001 |
| 0.9781 | 5810 | 0.0012 |
| 0.9798 | 5820 | 0.0003 |
| 0.9815 | 5830 | 0.0002 |
| 0.9832 | 5840 | 0.0001 |
| 0.9848 | 5850 | 0.0001 |
| 0.9865 | 5860 | 0.0001 |
| 0.9882 | 5870 | 0.0001 |
| 0.9899 | 5880 | 0.0001 |
| 0.9916 | 5890 | 0.0002 |
| 0.9933 | 5900 | 0.0001 |
| 0.9949 | 5910 | 0.0003 |
| 0.9966 | 5920 | 0.0001 |
| 0.9983 | 5930 | 0.0002 |
| 1.0 | 5940 | 0.0001 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.3.1
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- -
Model tree for iambestfeed/phobert-base-v2-wiki-data-filter_0_dot_7_wseg-lr2e-05-1-epochs-bs-48
Base model
vinai/phobert-base-v2