You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

SentenceTransformer based on vinai/phobert-base-v2

This is a sentence-transformers model finetuned from vinai/phobert-base-v2 on the wiki-data dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: vinai/phobert-base-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("iambestfeed/phobert-base-v2-wiki-data-filter_0_dot_7_wseg-lr2e-05-1-epochs-bs-48")
# Run inference
sentences = [
    'Hình_ảnh của Sarcoglottis sceptrodes',
    'Tập_tin : Sarcoglottis sceptrodes - Flickr 004.jpg Tập_tin : Sarcoglottis sceptrodes - Flickr 005.jpg',
    'Spinipochira excavata là một loài bọ cánh_cứng trong họ Cerambycidae .( )',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

wiki-data

  • Dataset: wiki-data at 4567021
  • Size: 570,310 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 5 tokens
    • mean: 10.5 tokens
    • max: 26 tokens
    • min: 11 tokens
    • mean: 49.28 tokens
    • max: 256 tokens
  • Samples:
    anchor positive
    Giới_thiệu của Munna parvituberculata Munna parvituberculata là một loài chân đều trong họ Munnidae .Loài này được Kussakin miêu_tả khoa_học năm 1962 .( Schotte , M. ( 2010 ) .Munna parvituberculata Kussakin , 1962B .In :Schotte , M. , Boyko , C.B , Bruce , N.L. , Poore , G.C.B. , Taiti , S. , Wilson , G.D.F. ( Eds ) ( 2010 ) .World_Marine , Freshwater and Terrestrial_Isopod_Crustaceans database .Gebaseerd op informatie uit het Cơ_sở_dữ_liệu sinh_vật biển , te vinden op http://www.marinespecies.org/aphia.php?p=taxdetails&id=256237)
    Giới_thiệu của Goniophlebium tweedieanum Goniophlebium tweedieanum là một loài dương_xỉ trong họ Polypodiaceae .Loài này được J.Sm. mô_tả khoa_học đầu_tiên năm 1841 .( ) Danh_pháp khoa_học của loài này chưa được làm sáng_tỏ .
    Giới_thiệu của Acanthorrhynchium grosso-papillatum Acanthorrhynchium grosso-papillatum là một loài Rêu trong họ Sematophyllaceae .Loài này được ( Broth . ) M. Fleisch . mô_tả khoa_học đầu_tiên năm 1923 .( )
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 48
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • save_safetensors: False
  • fp16: True
  • push_to_hub: True
  • hub_model_id: iambestfeed/phobert-base-v2-wiki-data-filter_0_dot_7_wseg-lr2e-05-1-epochs-bs-48
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 48
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: False
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: iambestfeed/phobert-base-v2-wiki-data-filter_0_dot_7_wseg-lr2e-05-1-epochs-bs-48
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss
0.0017 10 3.7921
0.0034 20 3.6038
0.0051 30 3.1217
0.0067 40 2.7701
0.0084 50 2.4196
0.0101 60 2.0527
0.0118 70 1.6274
0.0135 80 1.0704
0.0152 90 0.5303
0.0168 100 0.2232
0.0185 110 0.1123
0.0202 120 0.0535
0.0219 130 0.0244
0.0236 140 0.0135
0.0253 150 0.0115
0.0269 160 0.0119
0.0286 170 0.0098
0.0303 180 0.0069
0.0320 190 0.0036
0.0337 200 0.0054
0.0354 210 0.0029
0.0370 220 0.0066
0.0387 230 0.0042
0.0404 240 0.009
0.0421 250 0.0033
0.0438 260 0.0034
0.0455 270 0.0055
0.0471 280 0.0038
0.0488 290 0.0037
0.0505 300 0.0027
0.0522 310 0.0024
0.0539 320 0.0034
0.0556 330 0.0027
0.0572 340 0.0021
0.0589 350 0.0046
0.0606 360 0.002
0.0623 370 0.0014
0.0640 380 0.0012
0.0657 390 0.0024
0.0673 400 0.0019
0.0690 410 0.0034
0.0707 420 0.002
0.0724 430 0.0017
0.0741 440 0.0013
0.0758 450 0.001
0.0774 460 0.0009
0.0791 470 0.001
0.0808 480 0.0021
0.0825 490 0.0008
0.0842 500 0.0021
0.0859 510 0.001
0.0875 520 0.0028
0.0892 530 0.0008
0.0909 540 0.0008
0.0926 550 0.0007
0.0943 560 0.0013
0.0960 570 0.0009
0.0976 580 0.002
0.0993 590 0.0007
0.1010 600 0.0037
0.1027 610 0.0024
0.1044 620 0.0011
0.1061 630 0.001
0.1077 640 0.001
0.1094 650 0.001
0.1111 660 0.0005
0.1128 670 0.0005
0.1145 680 0.0033
0.1162 690 0.0014
0.1178 700 0.001
0.1195 710 0.0008
0.1212 720 0.0005
0.1229 730 0.0005
0.1246 740 0.001
0.1263 750 0.0005
0.1279 760 0.0018
0.1296 770 0.0005
0.1313 780 0.0006
0.1330 790 0.0004
0.1347 800 0.0005
0.1364 810 0.0003
0.1380 820 0.0003
0.1397 830 0.0015
0.1414 840 0.0027
0.1431 850 0.0019
0.1448 860 0.0005
0.1465 870 0.0008
0.1481 880 0.001
0.1498 890 0.0005
0.1515 900 0.0004
0.1532 910 0.0005
0.1549 920 0.0008
0.1566 930 0.0005
0.1582 940 0.0003
0.1599 950 0.0009
0.1616 960 0.0008
0.1633 970 0.0004
0.1650 980 0.0008
0.1667 990 0.001
0.1684 1000 0.0009
0.1700 1010 0.0011
0.1717 1020 0.0005
0.1734 1030 0.0017
0.1751 1040 0.0006
0.1768 1050 0.0005
0.1785 1060 0.0004
0.1801 1070 0.0006
0.1818 1080 0.0003
0.1835 1090 0.0005
0.1852 1100 0.0005
0.1869 1110 0.0004
0.1886 1120 0.0004
0.1902 1130 0.0006
0.1919 1140 0.0005
0.1936 1150 0.0003
0.1953 1160 0.0003
0.1970 1170 0.0014
0.1987 1180 0.0003
0.2003 1190 0.0009
0.2020 1200 0.0016
0.2037 1210 0.0004
0.2054 1220 0.0005
0.2071 1230 0.0003
0.2088 1240 0.0003
0.2104 1250 0.0002
0.2121 1260 0.0003
0.2138 1270 0.0006
0.2155 1280 0.0002
0.2172 1290 0.0002
0.2189 1300 0.0003
0.2205 1310 0.0002
0.2222 1320 0.0002
0.2239 1330 0.0007
0.2256 1340 0.0004
0.2273 1350 0.0004
0.2290 1360 0.0004
0.2306 1370 0.0003
0.2323 1380 0.0005
0.2340 1390 0.0004
0.2357 1400 0.0046
0.2374 1410 0.0007
0.2391 1420 0.0005
0.2407 1430 0.0004
0.2424 1440 0.001
0.2441 1450 0.0004
0.2458 1460 0.0006
0.2475 1470 0.0004
0.2492 1480 0.0002
0.2508 1490 0.0002
0.2525 1500 0.0003
0.2542 1510 0.0003
0.2559 1520 0.0003
0.2576 1530 0.0011
0.2593 1540 0.0012
0.2609 1550 0.0004
0.2626 1560 0.0004
0.2643 1570 0.0004
0.2660 1580 0.0002
0.2677 1590 0.0002
0.2694 1600 0.0004
0.2710 1610 0.0006
0.2727 1620 0.0002
0.2744 1630 0.0003
0.2761 1640 0.0003
0.2778 1650 0.0003
0.2795 1660 0.0003
0.2811 1670 0.0008
0.2828 1680 0.0011
0.2845 1690 0.0008
0.2862 1700 0.0003
0.2879 1710 0.0006
0.2896 1720 0.0003
0.2912 1730 0.0003
0.2929 1740 0.0026
0.2946 1750 0.0006
0.2963 1760 0.0004
0.2980 1770 0.0007
0.2997 1780 0.0002
0.3013 1790 0.0005
0.3030 1800 0.0003
0.3047 1810 0.0003
0.3064 1820 0.0004
0.3081 1830 0.0002
0.3098 1840 0.0002
0.3114 1850 0.0003
0.3131 1860 0.0013
0.3148 1870 0.0002
0.3165 1880 0.0003
0.3182 1890 0.0003
0.3199 1900 0.0015
0.3215 1910 0.0005
0.3232 1920 0.0003
0.3249 1930 0.0005
0.3266 1940 0.0003
0.3283 1950 0.0003
0.3300 1960 0.0012
0.3316 1970 0.0006
0.3333 1980 0.001
0.3350 1990 0.0005
0.3367 2000 0.0002
0.3384 2010 0.0003
0.3401 2020 0.0003
0.3418 2030 0.0002
0.3434 2040 0.0003
0.3451 2050 0.0003
0.3468 2060 0.0002
0.3485 2070 0.0002
0.3502 2080 0.0003
0.3519 2090 0.0002
0.3535 2100 0.0002
0.3552 2110 0.0007
0.3569 2120 0.0003
0.3586 2130 0.0002
0.3603 2140 0.0002
0.3620 2150 0.0003
0.3636 2160 0.0001
0.3653 2170 0.0002
0.3670 2180 0.001
0.3687 2190 0.0008
0.3704 2200 0.001
0.3721 2210 0.0005
0.3737 2220 0.0006
0.3754 2230 0.0005
0.3771 2240 0.0002
0.3788 2250 0.0003
0.3805 2260 0.0003
0.3822 2270 0.0002
0.3838 2280 0.0002
0.3855 2290 0.0002
0.3872 2300 0.0004
0.3889 2310 0.0002
0.3906 2320 0.0002
0.3923 2330 0.0003
0.3939 2340 0.0002
0.3956 2350 0.0004
0.3973 2360 0.0016
0.3990 2370 0.0003
0.4007 2380 0.0004
0.4024 2390 0.0005
0.4040 2400 0.0003
0.4057 2410 0.0005
0.4074 2420 0.0012
0.4091 2430 0.0004
0.4108 2440 0.0004
0.4125 2450 0.0012
0.4141 2460 0.0005
0.4158 2470 0.0004
0.4175 2480 0.0004
0.4192 2490 0.0003
0.4209 2500 0.0005
0.4226 2510 0.0002
0.4242 2520 0.0003
0.4259 2530 0.0003
0.4276 2540 0.0006
0.4293 2550 0.0003
0.4310 2560 0.0017
0.4327 2570 0.0009
0.4343 2580 0.0003
0.4360 2590 0.0005
0.4377 2600 0.0003
0.4394 2610 0.0005
0.4411 2620 0.0005
0.4428 2630 0.0003
0.4444 2640 0.0009
0.4461 2650 0.0027
0.4478 2660 0.0004
0.4495 2670 0.0002
0.4512 2680 0.0002
0.4529 2690 0.0004
0.4545 2700 0.0003
0.4562 2710 0.0002
0.4579 2720 0.0003
0.4596 2730 0.0004
0.4613 2740 0.0002
0.4630 2750 0.0003
0.4646 2760 0.0002
0.4663 2770 0.0003
0.4680 2780 0.0002
0.4697 2790 0.0003
0.4714 2800 0.0001
0.4731 2810 0.0004
0.4747 2820 0.0002
0.4764 2830 0.0002
0.4781 2840 0.0002
0.4798 2850 0.0002
0.4815 2860 0.0001
0.4832 2870 0.0001
0.4848 2880 0.0004
0.4865 2890 0.0001
0.4882 2900 0.0005
0.4899 2910 0.0003
0.4916 2920 0.0001
0.4933 2930 0.0003
0.4949 2940 0.0008
0.4966 2950 0.0007
0.4983 2960 0.0007
0.5 2970 0.0005
0.5017 2980 0.0002
0.5034 2990 0.0002
0.5051 3000 0.0002
0.5067 3010 0.0004
0.5084 3020 0.0002
0.5101 3030 0.0002
0.5118 3040 0.0026
0.5135 3050 0.0003
0.5152 3060 0.0003
0.5168 3070 0.0002
0.5185 3080 0.0011
0.5202 3090 0.0003
0.5219 3100 0.0004
0.5236 3110 0.0004
0.5253 3120 0.0002
0.5269 3130 0.0004
0.5286 3140 0.0002
0.5303 3150 0.0003
0.5320 3160 0.0003
0.5337 3170 0.0004
0.5354 3180 0.0004
0.5370 3190 0.0002
0.5387 3200 0.0003
0.5404 3210 0.0003
0.5421 3220 0.0001
0.5438 3230 0.0002
0.5455 3240 0.0002
0.5471 3250 0.0009
0.5488 3260 0.0001
0.5505 3270 0.0004
0.5522 3280 0.0005
0.5539 3290 0.0003
0.5556 3300 0.0002
0.5572 3310 0.0002
0.5589 3320 0.0004
0.5606 3330 0.0002
0.5623 3340 0.0003
0.5640 3350 0.0002
0.5657 3360 0.0006
0.5673 3370 0.0004
0.5690 3380 0.0002
0.5707 3390 0.0002
0.5724 3400 0.0002
0.5741 3410 0.0002
0.5758 3420 0.0004
0.5774 3430 0.0002
0.5791 3440 0.0009
0.5808 3450 0.0003
0.5825 3460 0.0003
0.5842 3470 0.0002
0.5859 3480 0.0002
0.5875 3490 0.0002
0.5892 3500 0.0002
0.5909 3510 0.0002
0.5926 3520 0.0002
0.5943 3530 0.0003
0.5960 3540 0.0003
0.5976 3550 0.0001
0.5993 3560 0.0002
0.6010 3570 0.0002
0.6027 3580 0.0002
0.6044 3590 0.0002
0.6061 3600 0.0002
0.6077 3610 0.0002
0.6094 3620 0.0002
0.6111 3630 0.0002
0.6128 3640 0.0001
0.6145 3650 0.0002
0.6162 3660 0.0003
0.6178 3670 0.0002
0.6195 3680 0.0002
0.6212 3690 0.0001
0.6229 3700 0.0001
0.6246 3710 0.0001
0.6263 3720 0.0002
0.6279 3730 0.0001
0.6296 3740 0.0001
0.6313 3750 0.0005
0.6330 3760 0.0002
0.6347 3770 0.0003
0.6364 3780 0.0001
0.6380 3790 0.0001
0.6397 3800 0.0003
0.6414 3810 0.0008
0.6431 3820 0.0002
0.6448 3830 0.0002
0.6465 3840 0.0002
0.6481 3850 0.0002
0.6498 3860 0.0002
0.6515 3870 0.0001
0.6532 3880 0.0002
0.6549 3890 0.0002
0.6566 3900 0.0001
0.6582 3910 0.0003
0.6599 3920 0.0011
0.6616 3930 0.0002
0.6633 3940 0.0002
0.6650 3950 0.0001
0.6667 3960 0.0002
0.6684 3970 0.0001
0.6700 3980 0.0002
0.6717 3990 0.0002
0.6734 4000 0.0001
0.6751 4010 0.0002
0.6768 4020 0.0001
0.6785 4030 0.0001
0.6801 4040 0.0002
0.6818 4050 0.0002
0.6835 4060 0.0001
0.6852 4070 0.0003
0.6869 4080 0.0003
0.6886 4090 0.0005
0.6902 4100 0.0002
0.6919 4110 0.0004
0.6936 4120 0.0005
0.6953 4130 0.0002
0.6970 4140 0.0002
0.6987 4150 0.0002
0.7003 4160 0.0003
0.7020 4170 0.0008
0.7037 4180 0.0002
0.7054 4190 0.0003
0.7071 4200 0.0002
0.7088 4210 0.0003
0.7104 4220 0.0002
0.7121 4230 0.0002
0.7138 4240 0.0002
0.7155 4250 0.0001
0.7172 4260 0.0003
0.7189 4270 0.0004
0.7205 4280 0.0002
0.7222 4290 0.0002
0.7239 4300 0.0002
0.7256 4310 0.0011
0.7273 4320 0.0003
0.7290 4330 0.0003
0.7306 4340 0.0002
0.7323 4350 0.0002
0.7340 4360 0.0002
0.7357 4370 0.0003
0.7374 4380 0.0001
0.7391 4390 0.0004
0.7407 4400 0.0002
0.7424 4410 0.0002
0.7441 4420 0.0002
0.7458 4430 0.0001
0.7475 4440 0.0001
0.7492 4450 0.0001
0.7508 4460 0.0002
0.7525 4470 0.0004
0.7542 4480 0.0003
0.7559 4490 0.0002
0.7576 4500 0.0001
0.7593 4510 0.0005
0.7609 4520 0.0002
0.7626 4530 0.0002
0.7643 4540 0.0002
0.7660 4550 0.0001
0.7677 4560 0.0002
0.7694 4570 0.0001
0.7710 4580 0.0002
0.7727 4590 0.0008
0.7744 4600 0.0002
0.7761 4610 0.0002
0.7778 4620 0.0002
0.7795 4630 0.0002
0.7811 4640 0.0002
0.7828 4650 0.0013
0.7845 4660 0.0001
0.7862 4670 0.0002
0.7879 4680 0.0022
0.7896 4690 0.0001
0.7912 4700 0.0003
0.7929 4710 0.0002
0.7946 4720 0.0002
0.7963 4730 0.0004
0.7980 4740 0.0001
0.7997 4750 0.0003
0.8013 4760 0.0001
0.8030 4770 0.0001
0.8047 4780 0.0002
0.8064 4790 0.0001
0.8081 4800 0.0001
0.8098 4810 0.0004
0.8114 4820 0.0001
0.8131 4830 0.0004
0.8148 4840 0.0001
0.8165 4850 0.0001
0.8182 4860 0.0003
0.8199 4870 0.0001
0.8215 4880 0.0003
0.8232 4890 0.0001
0.8249 4900 0.0001
0.8266 4910 0.0002
0.8283 4920 0.0025
0.8300 4930 0.0018
0.8316 4940 0.0011
0.8333 4950 0.0003
0.8350 4960 0.0003
0.8367 4970 0.0004
0.8384 4980 0.0002
0.8401 4990 0.0003
0.8418 5000 0.0002
0.8434 5010 0.0002
0.8451 5020 0.0001
0.8468 5030 0.0002
0.8485 5040 0.0006
0.8502 5050 0.0003
0.8519 5060 0.001
0.8535 5070 0.0001
0.8552 5080 0.0001
0.8569 5090 0.0001
0.8586 5100 0.0001
0.8603 5110 0.0001
0.8620 5120 0.0005
0.8636 5130 0.0004
0.8653 5140 0.0002
0.8670 5150 0.0002
0.8687 5160 0.0001
0.8704 5170 0.0003
0.8721 5180 0.0004
0.8737 5190 0.0002
0.8754 5200 0.0002
0.8771 5210 0.0002
0.8788 5220 0.0001
0.8805 5230 0.0001
0.8822 5240 0.0003
0.8838 5250 0.0001
0.8855 5260 0.0004
0.8872 5270 0.0001
0.8889 5280 0.0002
0.8906 5290 0.0003
0.8923 5300 0.0004
0.8939 5310 0.0001
0.8956 5320 0.0001
0.8973 5330 0.0003
0.8990 5340 0.0001
0.9007 5350 0.0001
0.9024 5360 0.0001
0.9040 5370 0.0001
0.9057 5380 0.0001
0.9074 5390 0.0001
0.9091 5400 0.0001
0.9108 5410 0.0001
0.9125 5420 0.0005
0.9141 5430 0.0006
0.9158 5440 0.0001
0.9175 5450 0.0001
0.9192 5460 0.0001
0.9209 5470 0.0001
0.9226 5480 0.0001
0.9242 5490 0.0001
0.9259 5500 0.0002
0.9276 5510 0.0002
0.9293 5520 0.0002
0.9310 5530 0.0001
0.9327 5540 0.0002
0.9343 5550 0.0001
0.9360 5560 0.0002
0.9377 5570 0.0001
0.9394 5580 0.0002
0.9411 5590 0.0001
0.9428 5600 0.0001
0.9444 5610 0.0001
0.9461 5620 0.0001
0.9478 5630 0.0001
0.9495 5640 0.0002
0.9512 5650 0.0001
0.9529 5660 0.0001
0.9545 5670 0.0001
0.9562 5680 0.0001
0.9579 5690 0.0001
0.9596 5700 0.0002
0.9613 5710 0.0001
0.9630 5720 0.0001
0.9646 5730 0.0002
0.9663 5740 0.0002
0.9680 5750 0.0001
0.9697 5760 0.0001
0.9714 5770 0.0001
0.9731 5780 0.0002
0.9747 5790 0.0004
0.9764 5800 0.0001
0.9781 5810 0.0012
0.9798 5820 0.0003
0.9815 5830 0.0002
0.9832 5840 0.0001
0.9848 5850 0.0001
0.9865 5860 0.0001
0.9882 5870 0.0001
0.9899 5880 0.0001
0.9916 5890 0.0002
0.9933 5900 0.0001
0.9949 5910 0.0003
0.9966 5920 0.0001
0.9983 5930 0.0002
1.0 5940 0.0001

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.0
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.3.1
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
-
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for iambestfeed/phobert-base-v2-wiki-data-filter_0_dot_7_wseg-lr2e-05-1-epochs-bs-48

Finetuned
(292)
this model

Dataset used to train iambestfeed/phobert-base-v2-wiki-data-filter_0_dot_7_wseg-lr2e-05-1-epochs-bs-48