Starbucks: Improved Training for 2D Matryoshka Embeddings
Paper
•
2410.13230
•
Published
•
9
This is a sentence-transformers model finetuned from ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
This model was presented in the paper Starbucks: Improved Training for 2D Matryoshka Embeddings.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ielabgroup/Starbucks_STS")
# Run inference
sentences = [
'A dog is in the water.',
'Wet brown dog swims towards camera.',
'The dog is rolling around in the grass.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sts-testEmbeddingSimilarityEvaluator| Metric | Value |
|---|---|
| pearson_cosine | 0.817 |
| spearman_cosine | 0.8274 |
| pearson_manhattan | 0.8085 |
| spearman_manhattan | 0.805 |
| pearson_euclidean | 0.8123 |
| spearman_euclidean | 0.8093 |
| pearson_dot | 0.7658 |
| spearman_dot | 0.7565 |
| pearson_max | 0.817 |
| spearman_max | 0.8274 |
anchor, positive, and negative| anchor | positive | negative | |
|---|---|---|---|
| type | string | string | string |
| details |
|
|
|
| anchor | positive | negative |
|---|---|---|
A person on a horse jumps over a broken down airplane. |
A person is outdoors, on a horse. |
A person is at a diner, ordering an omelette. |
Children smiling and waving at camera |
There are children present |
The kids are frowning |
A boy is jumping on skateboard in the middle of a red bridge. |
The boy does a skateboarding trick. |
The boy skates down the sidewalk. |
starbucks_loss.StarbucksLoss with these parameters:{
"loss": "MatryoshkaLoss",
"n_selections_per_step": -1,
"last_layer_weight": 1.0,
"prior_layers_weight": 1.0,
"kl_div_weight": 1.0,
"kl_temperature": 0.3,
"matryoshka_layers": [
1,
3,
5,
7,
9,
11
],
"matryoshka_dims": [
32,
64,
128,
256,
512,
768
]
}
per_device_train_batch_size: 128per_device_eval_batch_size: 128num_train_epochs: 1warmup_ratio: 0.1fp16: Truegradient_checkpointing: Trueoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Truegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | sts-test_spearman_cosine |
|---|---|---|---|
| 0.0229 | 100 | 16.7727 | - |
| 0.0459 | 200 | 9.653 | - |
| 0.0688 | 300 | 8.3187 | - |
| 0.0918 | 400 | 7.748 | - |
| 0.1147 | 500 | 7.2587 | - |
| 0.1376 | 600 | 6.734 | - |
| 0.1606 | 700 | 6.4463 | - |
| 0.1835 | 800 | 6.299 | - |
| 0.2065 | 900 | 5.9946 | - |
| 0.2294 | 1000 | 5.9348 | - |
| 0.2524 | 1100 | 5.7723 | - |
| 0.2753 | 1200 | 5.5822 | - |
| 0.2982 | 1300 | 5.4233 | - |
| 0.3212 | 1400 | 5.3427 | - |
| 0.3441 | 1500 | 5.3132 | - |
| 0.3671 | 1600 | 5.3149 | - |
| 0.3900 | 1700 | 5.3007 | - |
| 0.4129 | 1800 | 4.9539 | - |
| 0.4359 | 1900 | 4.9308 | - |
| 0.4588 | 2000 | 4.8171 | - |
| 0.4818 | 2100 | 5.0181 | - |
| 0.5047 | 2200 | 4.9631 | - |
| 0.5276 | 2300 | 4.8125 | - |
| 0.5506 | 2400 | 4.7133 | - |
| 0.5735 | 2500 | 4.5809 | - |
| 0.5965 | 2600 | 4.6093 | - |
| 0.6194 | 2700 | 4.6723 | - |
| 0.6423 | 2800 | 4.5526 | - |
| 0.6653 | 2900 | 4.4967 | - |
| 0.6882 | 3000 | 4.4178 | - |
| 0.7112 | 3100 | 4.4333 | - |
| 0.7341 | 3200 | 4.3289 | - |
| 0.7571 | 3300 | 4.5199 | - |
| 0.7800 | 3400 | 4.3389 | - |
| 0.8029 | 3500 | 4.3394 | - |
| 0.8259 | 3600 | 4.2423 | - |
| 0.8488 | 3700 | 4.3219 | - |
| 0.8718 | 3800 | 4.3297 | - |
| 0.8947 | 3900 | 4.3132 | - |
| 0.9176 | 4000 | 4.2616 | - |
| 0.9406 | 4100 | 4.2233 | - |
| 0.9635 | 4200 | 4.1912 | - |
| 0.9865 | 4300 | 4.1838 | - |
| 1.0 | 4359 | - | 0.8274 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Base model
google-bert/bert-base-uncased