See axolotl config
axolotl version: 0.5.0
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
model_type: AutoModelForCausalLM
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_glu_activation: true
liger_rms_norm: true
liger_layer_norm: true
load_in_4bit: true
adapter: qlora
lora_r: 32
lora_alpha: 64
lora_target_modules:
- self_attn.q_proj
- self_attn.k_proj
- self_attn.v_proj
- self_attn.o_proj
- shared_expert.gate_proj
- shared_expert.up_proj
- shared_expert.down_proj
# - experts.gate_projs.[0-9]+$ # optionally train the moe experts
# - experts.up_projs.[0-9]+$
# - experts.down_projs.[0-9]+$
lora_modules_to_save:
- lm_head # needed if modifying vocabulary
- embed_tokens
lora_mlp_kernel: true
lora_qkv_kernel: true
lora_o_kernel: true
chat_template: chatml
datasets:
- path: mlabonne/FineTome-100k
type: chat_template
split: train[:20%]
field_messages: conversations
message_field_role: from
message_field_content: value
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./outputs/out
sequence_len: 4096 # up to 8k will work on a single H100
sample_packing: true
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-4
bf16: true
tf32: true
torch_compile: true
flex_attention: true
flex_attn_compile_kwargs:
dynamic: false
mode: max-autotune-no-cudagraphs
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
logging_steps: 1
warmup_ratio: 0.1
evals_per_epoch: 1
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
pad_token: <|finetune_right_pad|>
eos_token: <|eot|>
# save_first_step: true # uncomment this to validate checkpoint saving works with your config
outputs/out
This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v1.0 on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 353
- num_epochs: 1
Training results
Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.3
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ilyadorosh/love
Base model
TinyLlama/TinyLlama-1.1B-Chat-v1.0