metadata
pipeline_tag: other
language: en
library_name: pytorch
license: apache-2.0
tags:
- music
- midi
- mir
- deduplication
- caugbert
model-index:
- name: LMD Deduplication - CAugBERT
results:
- task:
type: representation-learning
name: symbolic music representation learning
dataset:
type: midi
name: Lakh MIDI Dataset
metrics:
- type: F1
value: 0.493
LMD Deduplication Supplements
This repository provides the pre-trained CAugBERT model checkpoint used in:
"On the De-duplication of the Lakh MIDI Dataset" (ISMIR 2025)
[Paper] | [GitHub Code]
Usage
You can either integrate this checkpoint into the main repository for inference, or load it directly:
# Option 1: Run inference in the main repo
poetry run python inference.py # make sure yamls/inference.yaml paths are correct
# Option 2: Load checkpoint manually
import torch
from contrastive_musicbert.model.BERT import BERT_Lightning
model = BERT_Lightning(...).to(device) # see .hydra/config.yaml for arguments
checkpoint = torch.load(checkpoint_path, map_location="cpu")
model.load_state_dict(checkpoint['state_dict'])
Note
If you have any questions regarding the checkpoint, please contact: Eunjin Choi ([email protected])