BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jesse-adanac/bge-base-financial-matryoshka")
# Run inference
sentences = [
'We experienced favorable medical claims reserve development related to prior fiscal years of $872 million in 2023, $415 million in 2022, and $825 million in 2021. The favorable development recognized in 2023 and 2021 primarily resulted from trend factors developing more favorably than originally expected as well as for 2021 completion factors developing faster than expected. The favorable development recognized in 2022 resulted primarily from completion factors remaining largely unchanged, resulting in lower overall development as compared to 2023 and 2021.',
'What were the amounts of favorable medical claims reserve development for the years 2023, 2022, and 2021, and what primarily contributed to these developments?',
'How many network tokens did Visa provision by the end of fiscal year 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768,dim_512,dim_256,dim_128anddim_64 - Evaluated with
InformationRetrievalEvaluator
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|---|---|---|---|---|---|
| cosine_accuracy@1 | 0.7343 | 0.7286 | 0.7286 | 0.71 | 0.6671 |
| cosine_accuracy@3 | 0.8657 | 0.8657 | 0.8643 | 0.8543 | 0.8214 |
| cosine_accuracy@5 | 0.89 | 0.8914 | 0.89 | 0.8757 | 0.8543 |
| cosine_accuracy@10 | 0.9343 | 0.9343 | 0.9257 | 0.9157 | 0.8929 |
| cosine_precision@1 | 0.7343 | 0.7286 | 0.7286 | 0.71 | 0.6671 |
| cosine_precision@3 | 0.2886 | 0.2886 | 0.2881 | 0.2848 | 0.2738 |
| cosine_precision@5 | 0.178 | 0.1783 | 0.178 | 0.1751 | 0.1709 |
| cosine_precision@10 | 0.0934 | 0.0934 | 0.0926 | 0.0916 | 0.0893 |
| cosine_recall@1 | 0.7343 | 0.7286 | 0.7286 | 0.71 | 0.6671 |
| cosine_recall@3 | 0.8657 | 0.8657 | 0.8643 | 0.8543 | 0.8214 |
| cosine_recall@5 | 0.89 | 0.8914 | 0.89 | 0.8757 | 0.8543 |
| cosine_recall@10 | 0.9343 | 0.9343 | 0.9257 | 0.9157 | 0.8929 |
| cosine_ndcg@10 | 0.8386 | 0.8363 | 0.8327 | 0.8181 | 0.7857 |
| cosine_mrr@10 | 0.8076 | 0.8046 | 0.8024 | 0.7864 | 0.7508 |
| cosine_map@100 | 0.8098 | 0.8067 | 0.8051 | 0.7896 | 0.7544 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positiveandanchor - Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 10 tokens
- mean: 46.06 tokens
- max: 289 tokens
- min: 2 tokens
- mean: 20.52 tokens
- max: 43 tokens
- Samples:
positive anchor Nonperforming loans and leases are generally those that have been placed on nonaccrual status, such as when they are 90 days past due or have confirmed cases of fraud or bankruptcy. Additionally, specific types of loans like consumer real estate-secured loans are classified as nonperforming at 90 days past due unless they are fully insured, and commercial loans and leases are classified as nonperforming when past due 90 days or more unless well-secured and in the process of collection.What criteria are used to classify loans and leases as nonperforming according to the described credit policy?Changes in foreign exchange rates impacted cash and cash equivalents positively by $15 and $46 in 2023 and 2021, and negatively by $249 in 2022.How has the change in foreign exchange rates affected cash and cash equivalents in 2023 and 2021?ITEM 8: FINANCIAL STATEMENTS AND SUPPLEMENTARY DATAWhat is Item 8 about in the context of an annual report on Form 10-K? - Loss:
MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_eval_batch_size: 16gradient_accumulation_steps: 8learning_rate: 2e-05num_train_epochs: 4lr_scheduler_type: cosinewarmup_ratio: 0.1bf16: Truetf32: Falseload_best_model_at_end: Trueoptim: adamw_torch_fusedbatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 8eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Falselocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|---|---|---|---|---|---|---|---|
| 0.1015 | 10 | 6.3316 | - | - | - | - | - |
| 0.2030 | 20 | 4.4603 | - | - | - | - | - |
| 0.3046 | 30 | 3.6545 | - | - | - | - | - |
| 0.4061 | 40 | 2.1196 | - | - | - | - | - |
| 0.5076 | 50 | 1.9986 | - | - | - | - | - |
| 0.6091 | 60 | 2.0175 | - | - | - | - | - |
| 0.7107 | 70 | 1.5044 | - | - | - | - | - |
| 0.8122 | 80 | 1.5722 | - | - | - | - | - |
| 0.9137 | 90 | 0.7737 | - | - | - | - | - |
| 1.0 | 99 | - | 0.8277 | 0.8278 | 0.8255 | 0.8086 | 0.7791 |
| 1.0102 | 100 | 1.3297 | - | - | - | - | - |
| 1.1117 | 110 | 1.2026 | - | - | - | - | - |
| 1.2132 | 120 | 1.1166 | - | - | - | - | - |
| 1.3147 | 130 | 0.963 | - | - | - | - | - |
| 1.4162 | 140 | 0.9185 | - | - | - | - | - |
| 1.5178 | 150 | 0.7528 | - | - | - | - | - |
| 1.6193 | 160 | 0.8351 | - | - | - | - | - |
| 1.7208 | 170 | 1.116 | - | - | - | - | - |
| 1.8223 | 180 | 0.5654 | - | - | - | - | - |
| 1.9239 | 190 | 0.6193 | - | - | - | - | - |
| 2.0 | 198 | - | 0.8342 | 0.8350 | 0.8310 | 0.8113 | 0.7805 |
| 2.0203 | 200 | 0.6482 | - | - | - | - | - |
| 2.1218 | 210 | 0.6604 | - | - | - | - | - |
| 2.2234 | 220 | 0.4969 | - | - | - | - | - |
| 2.3249 | 230 | 0.4502 | - | - | - | - | - |
| 2.4264 | 240 | 0.8084 | - | - | - | - | - |
| 2.5279 | 250 | 0.4882 | - | - | - | - | - |
| 2.6294 | 260 | 0.3821 | - | - | - | - | - |
| 2.7310 | 270 | 0.4308 | - | - | - | - | - |
| 2.8325 | 280 | 0.8484 | - | - | - | - | - |
| 2.9340 | 290 | 0.4867 | - | - | - | - | - |
| 3.0 | 297 | - | 0.8367 | 0.8359 | 0.8313 | 0.8166 | 0.7842 |
| 3.0305 | 300 | 0.807 | - | - | - | - | - |
| 3.1320 | 310 | 0.6478 | - | - | - | - | - |
| 3.2335 | 320 | 0.5532 | - | - | - | - | - |
| 3.3350 | 330 | 0.4459 | - | - | - | - | - |
| 3.4365 | 340 | 0.6112 | - | - | - | - | - |
| 3.5381 | 350 | 0.7304 | - | - | - | - | - |
| 3.6396 | 360 | 0.9029 | - | - | - | - | - |
| 3.7411 | 370 | 0.3999 | - | - | - | - | - |
| 3.8426 | 380 | 0.7569 | - | - | - | - | - |
| 3.9442 | 390 | 0.9483 | - | - | - | - | - |
| 3.9645 | 392 | - | 0.8386 | 0.8363 | 0.8327 | 0.8181 | 0.7857 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.7.0+cu126
- Accelerate: 1.6.0
- Datasets: 2.19.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Model tree for jesse-adanac/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.734
- Cosine Accuracy@3 on dim 768self-reported0.866
- Cosine Accuracy@5 on dim 768self-reported0.890
- Cosine Accuracy@10 on dim 768self-reported0.934
- Cosine Precision@1 on dim 768self-reported0.734
- Cosine Precision@3 on dim 768self-reported0.289
- Cosine Precision@5 on dim 768self-reported0.178
- Cosine Precision@10 on dim 768self-reported0.093
- Cosine Recall@1 on dim 768self-reported0.734
- Cosine Recall@3 on dim 768self-reported0.866