100

This model is a fine-tuned version of microsoft/resnet-50 on the cifar100 dataset. It achieves the following results on the evaluation set:

  • Loss: -17.7160
  • Accuracy: 0.0301
  • Dt Accuracy: 0.0301
  • Df Accuracy: 0.0272
  • Unlearn Overall Accuracy: 0
  • Unlearn Time: None

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 256
  • seed: 100
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Overall Accuracy Unlearn Overall Accuracy Time
No log 1.0 40 -0.8119 0.8082 0.3317 0.3317 None
No log 2.0 80 -2.4196 0.5504 0.5564 0.5564 None
-2.1794 3.0 120 -5.4562 0.3046 0 0 None
-2.1794 4.0 160 -8.5760 0.1732 0 0 None
-10.2455 5.0 200 -11.6439 0.0924 0 0 None
-10.2455 6.0 240 -13.4916 0.0646 0 0 None
-10.2455 7.0 280 -14.6529 0.0424 0 0 None
-18.2027 8.0 320 -16.7375 0.031 0 0 None
-18.2027 9.0 360 -18.3103 0.0272 0 0 None
-22.3184 10.0 400 -17.7160 0.0272 0 0 None

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu118
  • Datasets 2.19.0
  • Tokenizers 0.15.2
Downloads last month
13
Safetensors
Model size
23.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jialicheng/unlearn-so_cifar100_resnet-50_neggrad_10_100

Finetuned
(452)
this model

Evaluation results