SnorkelWestBeagle-DARETIES-7B
SnorkelWestBeagle-DARETIES-7B is a merge of the following models using LazyMergekit:
🧩 Configuration
models:
  - model: mistralai/Mistral-7B-v0.1
    # no parameters necessary for base model
  - model: snorkelai/Snorkel-Mistral-PairRM-DPO
    parameters:
      density: 0.55
      weight: 0.3
  - model: senseable/WestLake-7B-v2
    parameters:
      density: 0.65
      weight: 0.4
  - model: mlabonne/NeuralBeagle14-7B
    parameters:
      density: 0.45
      weight: 0.3
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
  int8_mask: true
dtype: float16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "jsfs11/SnorkelWestBeagle-DARETIES-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
| Metric | Value | 
|---|---|
| Avg. | 73.03 | 
| AI2 Reasoning Challenge (25-Shot) | 71.16 | 
| HellaSwag (10-Shot) | 87.35 | 
| MMLU (5-Shot) | 64.35 | 
| TruthfulQA (0-shot) | 70.05 | 
| Winogrande (5-shot) | 83.19 | 
| GSM8k (5-shot) | 62.09 | 
- Downloads last month
- 1
Model tree for jsfs11/SnorkelWestBeagle-DARETIES-7B
Merge model
	
	
this model
	
							Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard71.160
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard87.350
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.350
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard70.050
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard83.190
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard62.090