SentenceTransformer

This is a sentence-transformers model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'C C C =C C C C Branch1 #Branch2 C Branch1 C C Branch1 C C C O C C Ring1 O Branch1 C C C Branch1 C C C Ring1 P',
    ':0pentane Branch :2prop1ene Ring1 :2propane Ring2 :2isobutane Branch O pop pop Ring2 C Branch C pop Ring2 Ring1 Ring1 Ring1 =C pop pop pop',
    'CH0+1 C Branch O pop :1ethanol Ring1 C C Branch C pop :2ethanol Ring2 C Branch O pop Branch C Branch C pop Branch :1methanol Ring1 C Branch O pop Ring2 Ring1 Ring1 C Branch :1methanol pop Ring2 Ring1 C pop pop Ring1 P pop Ring1 #Branch pop pop',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 3,988 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string float
    details
    • min: 24 tokens
    • mean: 112.44 tokens
    • max: 397 tokens
    • min: 16 tokens
    • mean: 98.41 tokens
    • max: 316 tokens
    • min: 0.5
    • mean: 0.84
    • max: 1.0
  • Samples:
    sentence1 sentence2 label
    C C =C Branch1 C Br C =C Branch2 Ring1 =Branch2 C@@H1 Branch1 #Branch1 C C =Branch1 C =O O N C =Branch1 C =O O C C =C C =C C =C Ring1 =Branch1 C =C Ring2 Ring1 #Branch1 :0propane Ring1 =C Branch Br pop :2prop1ene Ring2 CH1 Branch :0acetic acid pop :0formamide Ring1 :6phenylmethanol pop pop Ring2 =Ring1 =Branch pop pop 1.0
    C C =C Branch2 Ring2 Ring1 C =Branch1 C =O N C C N Branch2 Ring1 Ring2 C@@H1 Branch1 C C C =Branch1 C =O N C =Branch1 C =O N C C C Ring1 Ring1 C C Ring1 P O C =N Ring2 Ring1 Branch2 :0ethanamine C :=1methanol Ring1 C Branch C =Branch =O pop :5piperazine Branch CH1 Branch C pop :1formamide Ring1 :4Ncyclopropylformamide pop pop pop =Ring1 Branch pop pop 1.0
    C C C Branch1 C N C C =C C Branch1 =C O C C C =Branch1 C =O N C C C Ring1 Ring1 =C C =C Ring1 #C :0propan2amine Branch :0fluoromethane pop Ring1 :1prop1ene Ring1 :1ethene Ring1 C Branch O :1propionamide Ring2 :0cyclopropane pop pop =Ring1 =Branch pop pop pop 0.9597855227882037
  • Loss: AnglELoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_angle_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 3,988 evaluation samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string float
    details
    • min: 24 tokens
    • mean: 112.44 tokens
    • max: 397 tokens
    • min: 16 tokens
    • mean: 98.41 tokens
    • max: 316 tokens
    • min: 0.5
    • mean: 0.84
    • max: 1.0
  • Samples:
    sentence1 sentence2 label
    C C =C Branch1 C Br C =C Branch2 Ring1 =Branch2 C@@H1 Branch1 #Branch1 C C =Branch1 C =O O N C =Branch1 C =O O C C =C C =C C =C Ring1 =Branch1 C =C Ring2 Ring1 #Branch1 :0propane Ring1 =C Branch Br pop :2prop1ene Ring2 CH1 Branch :0acetic acid pop :0formamide Ring1 :6phenylmethanol pop pop Ring2 =Ring1 =Branch pop pop 1.0
    C C =C Branch2 Ring2 Ring1 C =Branch1 C =O N C C N Branch2 Ring1 Ring2 C@@H1 Branch1 C C C =Branch1 C =O N C =Branch1 C =O N C C C Ring1 Ring1 C C Ring1 P O C =N Ring2 Ring1 Branch2 :0ethanamine C :=1methanol Ring1 C Branch C =Branch =O pop :5piperazine Branch CH1 Branch C pop :1formamide Ring1 :4Ncyclopropylformamide pop pop pop =Ring1 Branch pop pop 1.0
    C C C Branch1 C N C C =C C Branch1 =C O C C C =Branch1 C =O N C C C Ring1 Ring1 =C C =C Ring1 #C :0propan2amine Branch :0fluoromethane pop Ring1 :1prop1ene Ring1 :1ethene Ring1 C Branch O :1propionamide Ring2 :0cyclopropane pop pop =Ring1 =Branch pop pop pop 0.9597855227882037
  • Loss: AnglELoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_angle_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 4
  • eval_accumulation_steps: 4
  • learning_rate: 3e-05
  • weight_decay: 0.01
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • save_safetensors: False
  • fp16: True
  • dataloader_drop_last: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 4
  • eval_accumulation_steps: 4
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: False
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Validation Loss
0.9960 62 3.7611

Framework Versions

  • Python: 3.13.2
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.7.0+cu126
  • Accelerate: 1.6.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

AnglELoss

@misc{li2023angleoptimized,
    title={AnglE-optimized Text Embeddings},
    author={Xianming Li and Jing Li},
    year={2023},
    eprint={2309.12871},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
17
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support