SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'C C C =C C C C Branch1 #Branch2 C Branch1 C C Branch1 C C C O C C Ring1 O Branch1 C C C Branch1 C C C Ring1 P',
':0pentane Branch :2prop1ene Ring1 :2propane Ring2 :2isobutane Branch O pop pop Ring2 C Branch C pop Ring2 Ring1 Ring1 Ring1 =C pop pop pop',
'CH0+1 C Branch O pop :1ethanol Ring1 C C Branch C pop :2ethanol Ring2 C Branch O pop Branch C Branch C pop Branch :1methanol Ring1 C Branch O pop Ring2 Ring1 Ring1 C Branch :1methanol pop Ring2 Ring1 C pop pop Ring1 P pop Ring1 #Branch pop pop',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,988 training samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 24 tokens
- mean: 112.44 tokens
- max: 397 tokens
- min: 16 tokens
- mean: 98.41 tokens
- max: 316 tokens
- min: 0.5
- mean: 0.84
- max: 1.0
- Samples:
sentence1 sentence2 label C C =C Branch1 C Br C =C Branch2 Ring1 =Branch2 C@@H1 Branch1 #Branch1 C C =Branch1 C =O O N C =Branch1 C =O O C C =C C =C C =C Ring1 =Branch1 C =C Ring2 Ring1 #Branch1:0propane Ring1 =C Branch Br pop :2prop1ene Ring2 CH1 Branch :0acetic acid pop :0formamide Ring1 :6phenylmethanol pop pop Ring2 =Ring1 =Branch pop pop1.0C C =C Branch2 Ring2 Ring1 C =Branch1 C =O N C C N Branch2 Ring1 Ring2 C@@H1 Branch1 C C C =Branch1 C =O N C =Branch1 C =O N C C C Ring1 Ring1 C C Ring1 P O C =N Ring2 Ring1 Branch2:0ethanamine C :=1methanol Ring1 C Branch C =Branch =O pop :5piperazine Branch CH1 Branch C pop :1formamide Ring1 :4Ncyclopropylformamide pop pop pop =Ring1 Branch pop pop1.0C C C Branch1 C N C C =C C Branch1 =C O C C C =Branch1 C =O N C C C Ring1 Ring1 =C C =C Ring1 #C:0propan2amine Branch :0fluoromethane pop Ring1 :1prop1ene Ring1 :1ethene Ring1 C Branch O :1propionamide Ring2 :0cyclopropane pop pop =Ring1 =Branch pop pop pop0.9597855227882037 - Loss:
AnglELosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_angle_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 3,988 evaluation samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 24 tokens
- mean: 112.44 tokens
- max: 397 tokens
- min: 16 tokens
- mean: 98.41 tokens
- max: 316 tokens
- min: 0.5
- mean: 0.84
- max: 1.0
- Samples:
sentence1 sentence2 label C C =C Branch1 C Br C =C Branch2 Ring1 =Branch2 C@@H1 Branch1 #Branch1 C C =Branch1 C =O O N C =Branch1 C =O O C C =C C =C C =C Ring1 =Branch1 C =C Ring2 Ring1 #Branch1:0propane Ring1 =C Branch Br pop :2prop1ene Ring2 CH1 Branch :0acetic acid pop :0formamide Ring1 :6phenylmethanol pop pop Ring2 =Ring1 =Branch pop pop1.0C C =C Branch2 Ring2 Ring1 C =Branch1 C =O N C C N Branch2 Ring1 Ring2 C@@H1 Branch1 C C C =Branch1 C =O N C =Branch1 C =O N C C C Ring1 Ring1 C C Ring1 P O C =N Ring2 Ring1 Branch2:0ethanamine C :=1methanol Ring1 C Branch C =Branch =O pop :5piperazine Branch CH1 Branch C pop :1formamide Ring1 :4Ncyclopropylformamide pop pop pop =Ring1 Branch pop pop1.0C C C Branch1 C N C C =C C Branch1 =C O C C C =Branch1 C =O N C C C Ring1 Ring1 =C C =C Ring1 #C:0propan2amine Branch :0fluoromethane pop Ring1 :1prop1ene Ring1 :1ethene Ring1 C Branch O :1propionamide Ring2 :0cyclopropane pop pop =Ring1 =Branch pop pop pop0.9597855227882037 - Loss:
AnglELosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_angle_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 16per_device_eval_batch_size: 16gradient_accumulation_steps: 4eval_accumulation_steps: 4learning_rate: 3e-05weight_decay: 0.01num_train_epochs: 1warmup_ratio: 0.1save_safetensors: Falsefp16: Truedataloader_drop_last: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 4eval_accumulation_steps: 4torch_empty_cache_steps: Nonelearning_rate: 3e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Falsesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Truedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Validation Loss |
|---|---|---|
| 0.9960 | 62 | 3.7611 |
Framework Versions
- Python: 3.13.2
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AnglELoss
@misc{li2023angleoptimized,
title={AnglE-optimized Text Embeddings},
author={Xianming Li and Jing Li},
year={2023},
eprint={2309.12871},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 17