MedGemma-4B Anatomy v1.3 (Optimized)
Fine-tuned MedGemma-4B for anatomical and clinical reasoning.
Training Details
- Base Model: google/medgemma-4b-it
 - Training Data: 164 samples
 - Validation: 19 samples
 - Method: LoRA (r=16, α=32)
 - Epochs: 3
 - Training Time: 1.42 hours
 - Hardware: Google Colab (14-15GB VRAM)
 
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_name = "krishna195/medgemma-anatomy-v1.3"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
question = "What structures form the boundaries of the femoral triangle?"
prompt = f"<start_of_turn>user\n{question}<end_of_turn>\n<start_of_turn>model\n"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Performance
- Inference Speed: ~30-40 tokens/sec (T4)
 - Memory: 8-9GB (bfloat16), 3-4GB (4-bit)
 - Final Training Loss: 14.2034
 
Focus Areas
- Orthopedic injuries
 - Nerve anatomy
 - Clinical presentations
 - Diagnostic workflows
 - Management protocols
 
License
Apache 2.0
- Downloads last month
 - 5