KannadaSBERT-STS
This is a KannadaSBERT model (l3cube-pune/kannada-sentence-bert-nli) fine-tuned on the STS dataset. 
Released as a part of project MahaNLP : https://github.com/l3cube-pune/MarathiNLP 
A multilingual version of this model supporting major Indic languages and cross-lingual sentence similarity is shared here  indic-sentence-similarity-sbert  
More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2304.11434)
@article{deode2023l3cube,
  title={L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT},
  author={Deode, Samruddhi and Gadre, Janhavi and Kajale, Aditi and Joshi, Ananya and Joshi, Raviraj},
  journal={arXiv preprint arXiv:2304.11434},
  year={2023}
}
@article{joshi2022l3cubemahasbert,
  title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
  author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
  journal={arXiv preprint arXiv:2211.11187},
  year={2022}
}
 monolingual Indic SBERT paper  
 multilingual Indic SBERT paper 
Other Monolingual similarity models are listed below: 
 Marathi Similarity  
 Hindi Similarity  
 Kannada Similarity  
 Telugu Similarity  
 Malayalam Similarity  
 Tamil Similarity  
 Gujarati Similarity  
 Oriya Similarity  
 Bengali Similarity  
 Punjabi Similarity  
 Indic Similarity (multilingual) 
Other Monolingual Indic sentence BERT models are listed below: 
 Marathi SBERT 
 Hindi SBERT 
 Kannada SBERT 
 Telugu SBERT 
 Malayalam SBERT 
 Tamil SBERT 
 Gujarati SBERT 
 Oriya SBERT 
 Bengali SBERT 
 Punjabi SBERT 
 Indic SBERT (multilingual) 
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
- Downloads last month
 - 6