lightx2v's picture
Update README.md
541d0c3 verified
---
license: apache-2.0
tags:
- diffusion-single-file
- comfyui
- distillation
- LoRA
- video
- video genration
base_model:
- Wan-AI/Wan2.2-I2V-A14B
pipeline_tags:
- image-to-video
- text-to-video
library_name: diffusers
---
# 🎬 Wan2.2 Distilled Models
### ⚑ High-Performance Video Generation with 4-Step Inference
*Distillation-accelerated version of Wan2.2 - Dramatically faster speed with excellent quality*
![img_lightx2v](https://cdn-uploads.huggingface.co/production/uploads/680de13385293771bc57400b/tTnp8-ARpj3wGxfo5P55c.png)
---
[![πŸ€— HuggingFace](https://img.shields.io/badge/πŸ€—-HuggingFace-yellow)](https://huggingface.co/lightx2v/Wan2.2-Distill-Models)
[![GitHub](https://img.shields.io/badge/GitHub-LightX2V-blue?logo=github)](https://github.com/ModelTC/LightX2V)
[![License](https://img.shields.io/badge/License-Apache%202.0-green.svg)](LICENSE)
---
## 🌟 What's Special?
<table>
<tr>
<td width="50%">
### ⚑ Ultra-Fast Generation
- **4-step inference** (vs traditional 50+ steps)
- Approximately **2x faster** using LightX2V than ComfyUI
- Near real-time video generation capability
</td>
<td width="50%">
### 🎯 Flexible Options
- **Dual noise control**: High/Low noise variants
- Multiple precision formats (BF16/FP8/INT8)
- Full 14B parameter models
</td>
</tr>
<tr>
<td width="50%">
### πŸ’Ύ Memory Efficient
- FP8/INT8: **~50% size reduction**
- CPU offload support
- Optimized for consumer GPUs
</td>
<td width="50%">
### πŸ”§ Easy Integration
- Compatible with LightX2V framework
- ComfyUI support
- Simple configuration files
</td>
</tr>
</table>
---
## πŸ“¦ Model Catalog
### πŸŽ₯ Model Types
<table>
<tr>
<td align="center" width="50%">
#### πŸ–ΌοΈ **Image-to-Video (I2V) - 14B Parameters**
Transform static images into dynamic videos with advanced quality control
- 🎨 **High Noise**: More creative, diverse outputs
- 🎯 **Low Noise**: More faithful to input, stable outputs
</td>
<td align="center" width="50%">
#### πŸ“ **Text-to-Video (T2V) - 14B Parameters**
Generate videos from text descriptions
- 🎨 **High Noise**: More creative, diverse outputs
- 🎯 **Low Noise**: More stable and controllable outputs
- πŸš€ Full 14B parameter model
</td>
</tr>
</table>
### 🎯 Precision Versions
| Precision | Model Identifier | Model Size | Framework | Quality vs Speed |
|:---------:|:-----------------|:----------:|:---------:|:-----------------|
| πŸ† **BF16** | `lightx2v_4step` | ~28.6 GB | LightX2V | ⭐⭐⭐⭐⭐ Highest Quality |
| ⚑ **FP8** | `scaled_fp8_e4m3_lightx2v_4step` | ~15 GB | LightX2V | ⭐⭐⭐⭐ Excellent Balance |
| 🎯 **INT8** | `int8_lightx2v_4step` | ~15 GB | LightX2V | ⭐⭐⭐⭐ Fast & Efficient |
| πŸ”· **FP8 ComfyUI** | `scaled_fp8_e4m3_lightx2v_4step_comfyui` | ~15 GB | ComfyUI | ⭐⭐⭐ ComfyUI Ready |
### πŸ“ Naming Convention
```bash
# Format: wan2.2_{task}_A14b_{noise_level}_{precision}_lightx2v_4step.safetensors
# I2V Examples:
wan2.2_i2v_A14b_high_noise_lightx2v_4step.safetensors # I2V High Noise - BF16
wan2.2_i2v_A14b_high_noise_scaled_fp8_e4m3_lightx2v_4step.safetensors # I2V High Noise - FP8
wan2.2_i2v_A14b_low_noise_int8_lightx2v_4step.safetensors # I2V Low Noise - INT8
wan2.2_i2v_A14b_low_noise_scaled_fp8_e4m3_lightx2v_4step_comfyui.safetensors # I2V Low Noise - FP8 ComfyUI
```
> πŸ’‘ **Browse All Models**: [View Full Model Collection β†’](https://huggingface.co/lightx2v/Wan2.2-Distill-Models/tree/main)
---
## πŸš€ Usage
### Method 1: LightX2V (Recommended ⭐)
**LightX2V is a high-performance inference framework optimized for these models, approximately 2x faster than ComfyUI with better quantization accuracy. Highly recommended!**
#### Quick Start
1. Download model (using I2V FP8 as example)
```bash
huggingface-cli download lightx2v/Wan2.2-Distill-Models \
--local-dir ./models/wan2.2_i2v \
--include "wan2.2_i2v_A14b_high_noise_scaled_fp8_e4m3_lightx2v_4step.safetensors"
```
```bash
huggingface-cli download lightx2v/Wan2.2-Distill-Models \
--local-dir ./models/wan2.2_i2v \
--include "wan2.2_i2v_A14b_low_noise_scaled_fp8_e4m3_lightx2v_4step.safetensors"
```
> πŸ’‘ **Tip**: For T2V models, follow the same steps but replace `i2v` with `t2v` in the filenames
2. Clone LightX2V repository
```bash
git clone https://github.com/ModelTC/LightX2V.git
cd LightX2V
```
3. Install dependencies
```bash
pip install -r requirements.txt
```
Or refer to [Quick Start Documentation](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/getting_started/quickstart.html) to use docker
4. Select and modify configuration file
Choose appropriate configuration based on your GPU memory:
**80GB+ GPUs (A100/H100)**
- I2V: [wan_moe_i2v_distill.json](https://github.com/ModelTC/LightX2V/blob/main/configs/wan22/wan_moe_i2v_distill.json)
**24GB+ GPUs (RTX 4090)**
- I2V: [wan_moe_i2v_distill_4090.json](https://github.com/ModelTC/LightX2V/blob/main/configs/wan22/wan_moe_i2v_distill_4090.json)
5. Run inference (using [I2V]((https://github.com/ModelTC/LightX2V/blob/main/scripts/wan22/run_wan22_moe_i2v_distill.sh)) as example)
```bash
cd scripts
bash wan22/run_wan22_moe_i2v_distill.sh
```
> πŸ“ **Note**: Update model paths in the script to point to your Wan2.2 model. Also refer to [LightX2V Model Structure Documentation](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/getting_started/model_structure.html)
#### LightX2V Documentation
- **Quick Start Guide**: [LightX2V Quick Start](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/getting_started/quickstart.html)
- **Complete Usage Guide**: [LightX2V Model Structure Documentation](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/getting_started/model_structure.html)
- **Configuration File Instructions**: [Configuration Files](https://github.com/ModelTC/LightX2V/tree/main/configs/distill)
- **Quantized Model Usage**: [Quantization Documentation](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/method_tutorials/quantization.html)
- **Parameter Offloading**: [Offload Documentation](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/method_tutorials/offload.html)
---
### Method 2: ComfyUI
Please refer to [workflow](https://huggingface.co/lightx2v/Wan2.2-Distill-Models/blob/main/wan2.2_moe_i2v_scale_fp8_comfyui.json)
## ⚠️ Important Notes
**Other Components**: These models only contain DIT weights. Additional components needed at runtime:
- T5 text encoder
- CLIP vision encoder
- VAE encoder/decoder
- Tokenizer
Please refer to [LightX2V Documentation](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/getting_started/model_structure.html) for instructions on organizing the complete model directory.
## 🀝 Community
- **GitHub Issues**: https://github.com/ModelTC/LightX2V/issues
- **HuggingFace**: https://huggingface.co/lightx2v/Wan2.2-Distill-Models
If you find this project helpful, please give us a ⭐ on [GitHub](https://github.com/ModelTC/LightX2V)
</div>