SentenceTransformer based on nomic-ai/modernbert-embed-base
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("lwoollett/modernbert-embed-base-distil-Qwen3-Embedding-8B")
# Run inference
sentences = [
'A black dog is drinking next to a brown and white dog that is looking at an orange ball in the lake, whilst a horse and rider passes behind.',
'There are two people running around a track in lane three and the one wearing a blue shirt with a green thing over the eyes is just barely ahead of the guy wearing an orange shirt and sunglasses.',
'the guy is dead',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-devandsts-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | sts-dev | sts-test |
|---|---|---|
| pearson_cosine | 0.6624 | 0.6269 |
| spearman_cosine | 0.7486 | 0.676 |
Knowledge Distillation
- Evaluated with
MSEEvaluator
| Metric | Value |
|---|---|
| negative_mse | -0.2543 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 200,000 training samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 5 tokens
- mean: 12.4 tokens
- max: 51 tokens
- size: 768 elements
- Samples:
sentence label A person on a horse jumps over a broken down airplane.[0.3302140235900879, -0.02130773290991783, 0.05419710651040077, 0.12100276350975037, -0.14585798978805542, ...]Children smiling and waving at camera[0.3626566529273987, 0.2275032103061676, -0.14372394979000092, 0.03454351797699928, -0.014532167464494705, ...]A boy is jumping on skateboard in the middle of a red bridge.[0.4492494761943817, -0.1381049007177353, 0.008771419525146484, 0.2715308666229248, -0.06128649413585663, ...] - Loss:
MSELoss
Evaluation Dataset
Unnamed Dataset
- Size: 10,000 evaluation samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 5 tokens
- mean: 13.39 tokens
- max: 59 tokens
- size: 768 elements
- Samples:
sentence label Two women are embracing while holding to go packages.[-0.3709914982318878, 0.31239694356918335, 0.1190473660826683, -0.24948586523532867, 0.06646662950515747, ...]Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.[-0.37941688299179077, 0.15482138097286224, 0.25172391533851624, 0.2346819043159485, 0.10080990940332413, ...]A man selling donuts to a customer during a world exhibition event held in the city of Angeles[-0.3051159083843231, -0.18790726363658905, 0.09711893647909164, -0.12258093804121017, 0.03466830775141716, ...] - Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 640per_device_eval_batch_size: 640learning_rate: 0.0001num_train_epochs: 4warmup_ratio: 0.1bf16: Trueload_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 640per_device_eval_batch_size: 640per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 0.0001weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | negative_mse | sts-test_spearman_cosine |
|---|---|---|---|---|---|---|
| 0.3195 | 100 | 0.0015 | - | - | - | - |
| 0.6390 | 200 | 0.0008 | - | - | - | - |
| 0.9585 | 300 | 0.0006 | - | - | - | - |
| 1.2780 | 400 | 0.0005 | - | - | - | - |
| 1.5974 | 500 | 0.0005 | 0.0025 | 0.7395 | -0.2542 | - |
| 1.9169 | 600 | 0.0004 | - | - | - | - |
| 2.2364 | 700 | 0.0004 | - | - | - | - |
| 2.5559 | 800 | 0.0004 | - | - | - | - |
| 2.8754 | 900 | 0.0004 | - | - | - | - |
| 3.1949 | 1000 | 0.0004 | 0.0025 | 0.7486 | -0.2543 | - |
| 3.5144 | 1100 | 0.0004 | - | - | - | - |
| 3.8339 | 1200 | 0.0004 | - | - | - | - |
| -1 | -1 | - | - | - | - | 0.6760 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
- Downloads last month
- -
Model tree for lwoollett/modernbert-embed-base-distil-Qwen3-Embedding-8B
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Evaluation results
- Pearson Cosine on sts devself-reported0.662
- Spearman Cosine on sts devself-reported0.749
- Negative Mse on Unknownself-reported-0.254
- Pearson Cosine on sts testself-reported0.627
- Spearman Cosine on sts testself-reported0.676