videomae-tiny-ssv2-binary-finetuned-xd-violence
This model is a fine-tuned version of MCG-NJU/videomae-base-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6274
- Accuracy: 0.6535
- Precision: 0.72
- Recall: 0.5575
- F1: 0.6284
- Tp: 126
- Tn: 155
- Fp: 49
- Fn: 100
- Specificity: 0.7598
- Unsafe Precision At Default Threshold: 0.5561
- Unsafe Recall At Default Threshold: 0.9425
- Unsafe F1 At Default Threshold: 0.6995
- Unsafe Precision At Best Threshold: 0.5561
- Unsafe Recall At Best Threshold: 0.9425
- Unsafe Fbeta At Best Threshold: 0.8275
- Best Threshold: 0.25
- Roc Auc: 0.7261
- Average Precision: 0.7410
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Tp | Tn | Fp | Fn | Specificity | Unsafe Precision At Default Threshold | Unsafe Recall At Default Threshold | Unsafe F1 At Default Threshold | Unsafe Precision At Best Threshold | Unsafe Recall At Best Threshold | Unsafe Fbeta At Best Threshold | Best Threshold | Roc Auc | Average Precision |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.715 | 1.0 | 422 | 0.7038 | 0.5349 | 0.5428 | 0.7301 | 0.6226 | 165 | 65 | 139 | 61 | 0.3186 | 0.5293 | 1.0 | 0.6922 | 0.5293 | 1.0 | 0.8490 | 0.25 | 0.5644 | 0.5972 |
| 0.6737 | 2.0 | 844 | 0.6732 | 0.5860 | 0.6333 | 0.5044 | 0.5616 | 114 | 138 | 66 | 112 | 0.6765 | 0.5293 | 1.0 | 0.6922 | 0.5398 | 0.9912 | 0.8491 | 0.3 | 0.6353 | 0.6177 |
| 0.6639 | 3.0 | 1266 | 0.6413 | 0.6256 | 0.6923 | 0.5177 | 0.5924 | 117 | 152 | 52 | 109 | 0.7451 | 0.5396 | 0.9956 | 0.6998 | 0.5396 | 0.9956 | 0.8516 | 0.25 | 0.7109 | 0.7115 |
| 0.7136 | 4.0 | 1688 | 0.6424 | 0.6581 | 0.7283 | 0.5575 | 0.6316 | 126 | 157 | 47 | 100 | 0.7696 | 0.5305 | 1.0 | 0.6933 | 0.5437 | 0.9912 | 0.8511 | 0.3 | 0.7135 | 0.7143 |
| 0.6542 | 5.0 | 2110 | 0.6289 | 0.6767 | 0.6605 | 0.7920 | 0.7203 | 179 | 112 | 92 | 47 | 0.5490 | 0.5280 | 1.0 | 0.6911 | 0.5383 | 0.9956 | 0.8510 | 0.325 | 0.7326 | 0.7281 |
| 0.64 | 6.0 | 2532 | 0.6257 | 0.6605 | 0.7326 | 0.5575 | 0.6332 | 126 | 158 | 46 | 100 | 0.7745 | 0.5463 | 0.9912 | 0.7044 | 0.5463 | 0.9912 | 0.8524 | 0.25 | 0.7230 | 0.7415 |
| 0.5858 | 7.0 | 2954 | 0.6348 | 0.6581 | 0.7687 | 0.5 | 0.6059 | 113 | 170 | 34 | 113 | 0.8333 | 0.6109 | 0.8894 | 0.7243 | 0.6109 | 0.8894 | 0.8151 | 0.25 | 0.7312 | 0.7420 |
| 0.6228 | 8.0 | 3376 | 0.6220 | 0.6698 | 0.7234 | 0.6018 | 0.6570 | 136 | 152 | 52 | 90 | 0.7451 | 0.5606 | 0.9823 | 0.7138 | 0.5606 | 0.9823 | 0.8538 | 0.25 | 0.7356 | 0.7342 |
| 0.6999 | 9.0 | 3798 | 0.6204 | 0.6698 | 0.6944 | 0.6637 | 0.6787 | 150 | 138 | 66 | 76 | 0.6765 | 0.5343 | 1.0 | 0.6965 | 0.5450 | 0.9912 | 0.8517 | 0.3 | 0.7298 | 0.7371 |
| 0.6338 | 10.0 | 4220 | 0.6270 | 0.6791 | 0.6803 | 0.7345 | 0.7064 | 166 | 126 | 78 | 60 | 0.6176 | 0.5319 | 0.9956 | 0.6934 | 0.5493 | 0.9867 | 0.8511 | 0.325 | 0.7254 | 0.7254 |
| 0.6303 | 11.0 | 4642 | 0.6278 | 0.6744 | 0.6886 | 0.6947 | 0.6916 | 157 | 133 | 71 | 69 | 0.6520 | 0.5493 | 0.9867 | 0.7057 | 0.5493 | 0.9867 | 0.8511 | 0.25 | 0.7191 | 0.7243 |
| 0.5972 | 12.0 | 5064 | 0.6289 | 0.6442 | 0.6834 | 0.6018 | 0.64 | 136 | 141 | 63 | 90 | 0.6912 | 0.5479 | 0.9867 | 0.7046 | 0.5479 | 0.9867 | 0.8505 | 0.25 | 0.7192 | 0.7258 |
| 0.6028 | 13.0 | 5486 | 0.6168 | 0.6605 | 0.7128 | 0.5929 | 0.6473 | 134 | 150 | 54 | 92 | 0.7353 | 0.5461 | 0.9690 | 0.6986 | 0.5662 | 0.9646 | 0.8456 | 0.275 | 0.7372 | 0.7486 |
| 0.6118 | 14.0 | 5908 | 0.6310 | 0.6349 | 0.7197 | 0.5 | 0.5901 | 113 | 160 | 44 | 113 | 0.7843 | 0.5646 | 0.9469 | 0.7074 | 0.5646 | 0.9469 | 0.8340 | 0.25 | 0.7263 | 0.7392 |
| 0.6541 | 15.0 | 6330 | 0.6237 | 0.6419 | 0.7022 | 0.5531 | 0.6188 | 125 | 151 | 53 | 101 | 0.7402 | 0.5473 | 0.9735 | 0.7006 | 0.5651 | 0.9602 | 0.8424 | 0.275 | 0.7271 | 0.7365 |
| 0.5885 | 16.0 | 6752 | 0.6265 | 0.6628 | 0.7396 | 0.5531 | 0.6329 | 125 | 160 | 44 | 101 | 0.7843 | 0.5556 | 0.9735 | 0.7074 | 0.5556 | 0.9735 | 0.8462 | 0.25 | 0.7241 | 0.7418 |
| 0.5378 | 17.0 | 7174 | 0.6252 | 0.6512 | 0.7135 | 0.5619 | 0.6287 | 127 | 153 | 51 | 99 | 0.75 | 0.5561 | 0.9646 | 0.7055 | 0.5561 | 0.9646 | 0.8410 | 0.25 | 0.7244 | 0.7396 |
| 0.6367 | 18.0 | 7596 | 0.6248 | 0.6581 | 0.7135 | 0.5841 | 0.6423 | 132 | 151 | 53 | 94 | 0.7402 | 0.5553 | 0.9558 | 0.7024 | 0.5553 | 0.9558 | 0.8353 | 0.25 | 0.7268 | 0.7411 |
| 0.6296 | 19.0 | 8018 | 0.6264 | 0.6535 | 0.72 | 0.5575 | 0.6284 | 126 | 155 | 49 | 100 | 0.7598 | 0.5573 | 0.9469 | 0.7016 | 0.5573 | 0.9469 | 0.8307 | 0.25 | 0.7266 | 0.7412 |
| 0.6629 | 20.0 | 8440 | 0.6274 | 0.6535 | 0.72 | 0.5575 | 0.6284 | 126 | 155 | 49 | 100 | 0.7598 | 0.5561 | 0.9425 | 0.6995 | 0.5561 | 0.9425 | 0.8275 | 0.25 | 0.7261 | 0.7410 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.1.0+cu118
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 33
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for mitegvg/videomae-tiny-ssv2-binary-finetuned-xd-violence
Base model
MCG-NJU/videomae-base-finetuned-kinetics