videomae-tiny-ssv2-binary-finetuned-xd-violence

This model is a fine-tuned version of MCG-NJU/videomae-base-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6274
  • Accuracy: 0.6535
  • Precision: 0.72
  • Recall: 0.5575
  • F1: 0.6284
  • Tp: 126
  • Tn: 155
  • Fp: 49
  • Fn: 100
  • Specificity: 0.7598
  • Unsafe Precision At Default Threshold: 0.5561
  • Unsafe Recall At Default Threshold: 0.9425
  • Unsafe F1 At Default Threshold: 0.6995
  • Unsafe Precision At Best Threshold: 0.5561
  • Unsafe Recall At Best Threshold: 0.9425
  • Unsafe Fbeta At Best Threshold: 0.8275
  • Best Threshold: 0.25
  • Roc Auc: 0.7261
  • Average Precision: 0.7410

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Tp Tn Fp Fn Specificity Unsafe Precision At Default Threshold Unsafe Recall At Default Threshold Unsafe F1 At Default Threshold Unsafe Precision At Best Threshold Unsafe Recall At Best Threshold Unsafe Fbeta At Best Threshold Best Threshold Roc Auc Average Precision
0.715 1.0 422 0.7038 0.5349 0.5428 0.7301 0.6226 165 65 139 61 0.3186 0.5293 1.0 0.6922 0.5293 1.0 0.8490 0.25 0.5644 0.5972
0.6737 2.0 844 0.6732 0.5860 0.6333 0.5044 0.5616 114 138 66 112 0.6765 0.5293 1.0 0.6922 0.5398 0.9912 0.8491 0.3 0.6353 0.6177
0.6639 3.0 1266 0.6413 0.6256 0.6923 0.5177 0.5924 117 152 52 109 0.7451 0.5396 0.9956 0.6998 0.5396 0.9956 0.8516 0.25 0.7109 0.7115
0.7136 4.0 1688 0.6424 0.6581 0.7283 0.5575 0.6316 126 157 47 100 0.7696 0.5305 1.0 0.6933 0.5437 0.9912 0.8511 0.3 0.7135 0.7143
0.6542 5.0 2110 0.6289 0.6767 0.6605 0.7920 0.7203 179 112 92 47 0.5490 0.5280 1.0 0.6911 0.5383 0.9956 0.8510 0.325 0.7326 0.7281
0.64 6.0 2532 0.6257 0.6605 0.7326 0.5575 0.6332 126 158 46 100 0.7745 0.5463 0.9912 0.7044 0.5463 0.9912 0.8524 0.25 0.7230 0.7415
0.5858 7.0 2954 0.6348 0.6581 0.7687 0.5 0.6059 113 170 34 113 0.8333 0.6109 0.8894 0.7243 0.6109 0.8894 0.8151 0.25 0.7312 0.7420
0.6228 8.0 3376 0.6220 0.6698 0.7234 0.6018 0.6570 136 152 52 90 0.7451 0.5606 0.9823 0.7138 0.5606 0.9823 0.8538 0.25 0.7356 0.7342
0.6999 9.0 3798 0.6204 0.6698 0.6944 0.6637 0.6787 150 138 66 76 0.6765 0.5343 1.0 0.6965 0.5450 0.9912 0.8517 0.3 0.7298 0.7371
0.6338 10.0 4220 0.6270 0.6791 0.6803 0.7345 0.7064 166 126 78 60 0.6176 0.5319 0.9956 0.6934 0.5493 0.9867 0.8511 0.325 0.7254 0.7254
0.6303 11.0 4642 0.6278 0.6744 0.6886 0.6947 0.6916 157 133 71 69 0.6520 0.5493 0.9867 0.7057 0.5493 0.9867 0.8511 0.25 0.7191 0.7243
0.5972 12.0 5064 0.6289 0.6442 0.6834 0.6018 0.64 136 141 63 90 0.6912 0.5479 0.9867 0.7046 0.5479 0.9867 0.8505 0.25 0.7192 0.7258
0.6028 13.0 5486 0.6168 0.6605 0.7128 0.5929 0.6473 134 150 54 92 0.7353 0.5461 0.9690 0.6986 0.5662 0.9646 0.8456 0.275 0.7372 0.7486
0.6118 14.0 5908 0.6310 0.6349 0.7197 0.5 0.5901 113 160 44 113 0.7843 0.5646 0.9469 0.7074 0.5646 0.9469 0.8340 0.25 0.7263 0.7392
0.6541 15.0 6330 0.6237 0.6419 0.7022 0.5531 0.6188 125 151 53 101 0.7402 0.5473 0.9735 0.7006 0.5651 0.9602 0.8424 0.275 0.7271 0.7365
0.5885 16.0 6752 0.6265 0.6628 0.7396 0.5531 0.6329 125 160 44 101 0.7843 0.5556 0.9735 0.7074 0.5556 0.9735 0.8462 0.25 0.7241 0.7418
0.5378 17.0 7174 0.6252 0.6512 0.7135 0.5619 0.6287 127 153 51 99 0.75 0.5561 0.9646 0.7055 0.5561 0.9646 0.8410 0.25 0.7244 0.7396
0.6367 18.0 7596 0.6248 0.6581 0.7135 0.5841 0.6423 132 151 53 94 0.7402 0.5553 0.9558 0.7024 0.5553 0.9558 0.8353 0.25 0.7268 0.7411
0.6296 19.0 8018 0.6264 0.6535 0.72 0.5575 0.6284 126 155 49 100 0.7598 0.5573 0.9469 0.7016 0.5573 0.9469 0.8307 0.25 0.7266 0.7412
0.6629 20.0 8440 0.6274 0.6535 0.72 0.5575 0.6284 126 155 49 100 0.7598 0.5561 0.9425 0.6995 0.5561 0.9425 0.8275 0.25 0.7261 0.7410

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.1.0+cu118
  • Datasets 3.6.0
  • Tokenizers 0.21.4
Downloads last month
33
Safetensors
Model size
5.63M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for mitegvg/videomae-tiny-ssv2-binary-finetuned-xd-violence

Finetuned
(270)
this model