reverseadd_lr1e-4_batch128_train1-16_eval17
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1280
- Accuracy: 0.107
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 512
- seed: 23452399
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| No log | 0 | 0 | 2.6682 | 0.0 |
| 2.3359 | 0.0064 | 100 | 2.3656 | 0.0 |
| 2.2868 | 0.0128 | 200 | 2.3412 | 0.0 |
| 2.2138 | 0.0192 | 300 | 2.2918 | 0.0 |
| 2.1582 | 0.0256 | 400 | 2.2917 | 0.0 |
| 2.0935 | 0.032 | 500 | 2.1919 | 0.0 |
| 2.0757 | 0.0384 | 600 | 2.1568 | 0.0 |
| 2.0098 | 0.0448 | 700 | 2.1660 | 0.0 |
| 2.0166 | 0.0512 | 800 | 2.0921 | 0.0 |
| 1.926 | 0.0576 | 900 | 2.0767 | 0.0 |
| 1.7313 | 0.064 | 1000 | 1.9919 | 0.0 |
| 1.4688 | 0.0704 | 1100 | 1.8548 | 0.0 |
| 1.4481 | 0.0768 | 1200 | 1.6762 | 0.0 |
| 1.4877 | 0.0832 | 1300 | 1.4172 | 0.0001 |
| 1.493 | 0.0896 | 1400 | 1.5796 | 0.0 |
| 1.358 | 0.096 | 1500 | 1.3337 | 0.0001 |
| 1.2952 | 0.1024 | 1600 | 1.3426 | 0.0001 |
| 1.2833 | 0.1088 | 1700 | 1.4156 | 0.0004 |
| 1.3881 | 0.1152 | 1800 | 1.3613 | 0.0001 |
| 1.1462 | 0.1216 | 1900 | 1.2197 | 0.0022 |
| 1.0414 | 0.128 | 2000 | 1.2328 | 0.0009 |
| 1.159 | 0.1344 | 2100 | 1.2630 | 0.0038 |
| 1.1957 | 0.1408 | 2200 | 1.4112 | 0.0001 |
| 1.0623 | 0.1472 | 2300 | 1.2015 | 0.0014 |
| 1.2183 | 0.1536 | 2400 | 1.2994 | 0.0031 |
| 1.1091 | 0.16 | 2500 | 1.2172 | 0.0032 |
| 1.0794 | 0.1664 | 2600 | 1.1990 | 0.0031 |
| 1.1878 | 0.1728 | 2700 | 1.1868 | 0.0044 |
| 1.0383 | 0.1792 | 2800 | 1.2424 | 0.0016 |
| 1.1583 | 0.1856 | 2900 | 1.2259 | 0.0012 |
| 1.1483 | 0.192 | 3000 | 1.1921 | 0.0005 |
| 1.1862 | 0.1984 | 3100 | 1.3775 | 0.0 |
| 1.0534 | 0.2048 | 3200 | 1.1641 | 0.0038 |
| 1.2234 | 0.2112 | 3300 | 1.2925 | 0.0055 |
| 1.0774 | 0.2176 | 3400 | 1.1630 | 0.0067 |
| 1.0162 | 0.224 | 3500 | 1.1927 | 0.0065 |
| 1.1462 | 0.2304 | 3600 | 1.1937 | 0.0069 |
| 1.1284 | 0.2368 | 3700 | 1.1765 | 0.0042 |
| 1.1398 | 0.2432 | 3800 | 1.2241 | 0.0042 |
| 1.0029 | 0.2496 | 3900 | 1.1395 | 0.0055 |
| 1.0174 | 0.256 | 4000 | 1.2322 | 0.0034 |
| 1.1028 | 0.2624 | 4100 | 1.1530 | 0.0045 |
| 1.0234 | 0.2688 | 4200 | 1.1233 | 0.0058 |
| 1.074 | 0.2752 | 4300 | 1.4093 | 0.0001 |
| 0.9228 | 0.2816 | 4400 | 1.1855 | 0.0046 |
| 0.9644 | 0.288 | 4500 | 1.1320 | 0.0059 |
| 0.8961 | 0.2944 | 4600 | 1.0892 | 0.0036 |
| 0.9817 | 0.3008 | 4700 | 0.9410 | 0.0126 |
| 0.5356 | 0.3072 | 4800 | 0.8129 | 0.0156 |
| 0.4438 | 0.3136 | 4900 | 0.8581 | 0.0157 |
| 0.4746 | 0.32 | 5000 | 0.6295 | 0.0245 |
| 0.3079 | 0.3264 | 5100 | 0.4417 | 0.0292 |
| 0.2836 | 0.3328 | 5200 | 0.3822 | 0.0451 |
| 0.2681 | 0.3392 | 5300 | 0.6174 | 0.0139 |
| 0.2755 | 0.3456 | 5400 | 0.7152 | 0.0221 |
| 0.2785 | 0.352 | 5500 | 0.3140 | 0.0506 |
| 0.2682 | 0.3584 | 5600 | 0.3010 | 0.0611 |
| 0.2515 | 0.3648 | 5700 | 0.4408 | 0.0393 |
| 0.233 | 0.3712 | 5800 | 0.2520 | 0.066 |
| 0.4201 | 0.3776 | 5900 | 0.7553 | 0.0283 |
| 0.2626 | 0.384 | 6000 | 0.6408 | 0.0487 |
| 0.2599 | 0.3904 | 6100 | 0.2951 | 0.0455 |
| 0.2555 | 0.3968 | 6200 | 0.2357 | 0.0695 |
| 0.2004 | 0.4032 | 6300 | 0.1587 | 0.0886 |
| 0.2495 | 0.4096 | 6400 | 0.2399 | 0.0611 |
| 0.2088 | 0.416 | 6500 | 0.1781 | 0.0765 |
| 0.2009 | 0.4224 | 6600 | 0.2190 | 0.0715 |
| 0.2969 | 0.4288 | 6700 | 0.3545 | 0.0438 |
| 0.3086 | 0.4352 | 6800 | 0.5599 | 0.0391 |
| 0.3767 | 0.4416 | 6900 | 0.7512 | 0.0524 |
| 0.2494 | 0.448 | 7000 | 0.5420 | 0.0391 |
| 0.2613 | 0.4544 | 7100 | 0.3117 | 0.0467 |
| 0.2347 | 0.4608 | 7200 | 0.1540 | 0.0928 |
| 0.1924 | 0.4672 | 7300 | 0.1483 | 0.0916 |
| 0.1927 | 0.4736 | 7400 | 0.2136 | 0.0735 |
| 0.2034 | 0.48 | 7500 | 0.2979 | 0.0607 |
| 0.2088 | 0.4864 | 7600 | 0.2910 | 0.0669 |
| 0.2448 | 0.4928 | 7700 | 0.1723 | 0.0803 |
| 0.1979 | 0.4992 | 7800 | 0.2343 | 0.0719 |
| 0.1997 | 0.5056 | 7900 | 0.1905 | 0.0833 |
| 0.2112 | 0.512 | 8000 | 0.2181 | 0.0766 |
| 0.2047 | 0.5184 | 8100 | 0.1767 | 0.0844 |
| 0.2175 | 0.5248 | 8200 | 0.3059 | 0.0611 |
| 0.1997 | 0.5312 | 8300 | 0.1954 | 0.0866 |
| 0.2083 | 0.5376 | 8400 | 0.2482 | 0.0613 |
| 0.2081 | 0.544 | 8500 | 0.1976 | 0.0793 |
| 0.2031 | 0.5504 | 8600 | 0.1660 | 0.0837 |
| 0.1929 | 0.5568 | 8700 | 0.1634 | 0.084 |
| 0.1924 | 0.5632 | 8800 | 0.2185 | 0.0885 |
| 0.1802 | 0.5696 | 8900 | 0.1890 | 0.0765 |
| 0.1925 | 0.576 | 9000 | 0.1747 | 0.0839 |
| 0.1885 | 0.5824 | 9100 | 0.1810 | 0.0838 |
| 0.1995 | 0.5888 | 9200 | 0.1993 | 0.0784 |
| 0.1933 | 0.5952 | 9300 | 0.1472 | 0.0907 |
| 0.1889 | 0.6016 | 9400 | 0.2349 | 0.0761 |
| 0.188 | 0.608 | 9500 | 0.1588 | 0.0886 |
| 0.1954 | 0.6144 | 9600 | 0.1416 | 0.0956 |
| 0.1879 | 0.6208 | 9700 | 0.1664 | 0.0894 |
| 0.1961 | 0.6272 | 9800 | 0.1912 | 0.0803 |
| 0.2066 | 0.6336 | 9900 | 0.1531 | 0.0895 |
| 0.2092 | 0.64 | 10000 | 0.1375 | 0.0968 |
| 0.2232 | 0.6464 | 10100 | 0.1890 | 0.081 |
| 0.1966 | 0.6528 | 10200 | 0.1717 | 0.0847 |
| 0.1849 | 0.6592 | 10300 | 0.1864 | 0.0855 |
| 0.1884 | 0.6656 | 10400 | 0.1484 | 0.0906 |
| 0.1913 | 0.672 | 10500 | 0.1361 | 0.0961 |
| 0.2002 | 0.6784 | 10600 | 0.1440 | 0.0931 |
| 0.1899 | 0.6848 | 10700 | 0.1483 | 0.0895 |
| 0.1885 | 0.6912 | 10800 | 0.1495 | 0.0958 |
| 0.2073 | 0.6976 | 10900 | 0.1569 | 0.0871 |
| 0.1987 | 0.704 | 11000 | 0.1429 | 0.0976 |
| 0.1903 | 0.7104 | 11100 | 0.1400 | 0.0947 |
| 0.1912 | 0.7168 | 11200 | 0.1375 | 0.0962 |
| 0.2017 | 0.7232 | 11300 | 0.2160 | 0.0856 |
| 0.1913 | 0.7296 | 11400 | 0.1414 | 0.0985 |
| 0.1996 | 0.736 | 11500 | 0.1604 | 0.0865 |
| 0.2 | 0.7424 | 11600 | 0.1322 | 0.0984 |
| 0.1903 | 0.7488 | 11700 | 0.1435 | 0.0903 |
| 0.1919 | 0.7552 | 11800 | 0.1304 | 0.0992 |
| 0.1857 | 0.7616 | 11900 | 0.1418 | 0.0924 |
| 0.1906 | 0.768 | 12000 | 0.1356 | 0.0958 |
| 0.1921 | 0.7744 | 12100 | 0.1330 | 0.0984 |
| 0.1924 | 0.7808 | 12200 | 0.1286 | 0.1013 |
| 0.1943 | 0.7872 | 12300 | 0.1393 | 0.0946 |
| 0.1958 | 0.7936 | 12400 | 0.1906 | 0.084 |
| 0.1903 | 0.8 | 12500 | 0.1323 | 0.0972 |
| 0.1919 | 0.8064 | 12600 | 0.1324 | 0.0959 |
| 0.1912 | 0.8128 | 12700 | 0.1295 | 0.0985 |
| 0.1865 | 0.8192 | 12800 | 0.1301 | 0.101 |
| 0.1981 | 0.8256 | 12900 | 0.1328 | 0.0995 |
| 0.1934 | 0.832 | 13000 | 0.1325 | 0.1024 |
| 0.2017 | 0.8384 | 13100 | 0.1973 | 0.0855 |
| 0.1944 | 0.8448 | 13200 | 0.1341 | 0.0974 |
| 0.1885 | 0.8512 | 13300 | 0.1315 | 0.1022 |
| 0.1983 | 0.8576 | 13400 | 0.1339 | 0.0943 |
| 0.1965 | 0.864 | 13500 | 0.1300 | 0.0979 |
| 0.1925 | 0.8704 | 13600 | 0.1364 | 0.0974 |
| 0.1976 | 0.8768 | 13700 | 0.1339 | 0.1016 |
| 0.1881 | 0.8832 | 13800 | 0.1323 | 0.0958 |
| 0.1913 | 0.8896 | 13900 | 0.1348 | 0.0984 |
| 0.192 | 0.896 | 14000 | 0.1297 | 0.1033 |
| 0.1824 | 0.9024 | 14100 | 0.1301 | 0.1043 |
| 0.1819 | 0.9088 | 14200 | 0.1285 | 0.0997 |
| 0.188 | 0.9152 | 14300 | 0.1282 | 0.1032 |
| 0.1741 | 0.9216 | 14400 | 0.1287 | 0.1047 |
| 0.1837 | 0.928 | 14500 | 0.1281 | 0.1035 |
| 0.1843 | 0.9344 | 14600 | 0.1281 | 0.1058 |
| 0.1845 | 0.9408 | 14700 | 0.1280 | 0.1053 |
| 0.1876 | 0.9472 | 14800 | 0.1280 | 0.1045 |
| 0.1901 | 0.9536 | 14900 | 0.1280 | 0.1042 |
| 0.1814 | 0.96 | 15000 | 0.1280 | 0.1026 |
| 0.1865 | 0.9664 | 15100 | 0.1280 | 0.1069 |
| 0.189 | 0.9728 | 15200 | 0.1280 | 0.1046 |
| 0.1857 | 0.9792 | 15300 | 0.1280 | 0.1056 |
| 0.2007 | 0.9856 | 15400 | 0.1280 | 0.1063 |
| 0.1945 | 0.992 | 15500 | 0.1280 | 0.1067 |
| 0.1846 | 0.9984 | 15600 | 0.1280 | 0.107 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support