neutrino-instruct / README.md
neuralcrew's picture
Updated Banner
6b6b057 verified
---
license: apache-2.0
language:
- en
tags:
- conversational
- instruction-following
- chat
- gguf
- llama.cpp
- ollama
- local-llm
- Neutrino
pipeline_tag: text-generation
datasets:
- HuggingFaceFW/finepdfs
- fka/awesome-chatgpt-prompts
metrics:
- accuracy
- bertscore
- bleu
- bleurt
- brier_score
- cer
library_name: adapter-transformers
---
# 🧠 Neutrino-Instruct (7B)
![Alt text](https://ollama.com/assets/fardeen0424/neutrino/742305f0-8c9e-4ae8-acff-a7c2b133d3d8)
Neutrino-Instruct is a **7B parameter instruction-tuned LLM** developed by **Fardeen NB**.
It is designed for **conversational AI**, **multi-step reasoning**, and **instruction-following** tasks, fine-tuned to maintain coherent and contextual dialogue across multiple turns.
## ✨ Model Details
- **Model Name:** Neutrino-Instruct
- **Developer:** Fardeen NB
- **License:** Apache-2.0
- **Language(s):** English
- **Format:** GGUF (optimized for `llama.cpp` and `Ollama`)
- **Base Model:** Neutrino
- **Version:** 2.0
- **Task:** Text Generation (chat, Q&A, instruction-following)
## πŸš€ Quick Start
### Run with [llama.cpp](https://github.com/ggerganov/llama.cpp)
```bash
# Clone and build llama.cpp
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp && make
# Run a single prompt
./main -m ./neutrino-instruct.gguf -p "Hello, who are you?"
# Run in interactive mode
./main -m ./neutrino-instruct.gguf -i -p "Let's chat."
# Control output length
./main -m ./neutrino-instruct.gguf -n 256 -p "Write a poem about stars."
# Change creativity (temperature)
./main -m ./neutrino-instruct.gguf --temp 0.7 -p "Explain quantum computing simply."
# Enable GPU acceleration (if compiled with CUDA/Metal)
./main -m ./neutrino-instruct.gguf --gpu-layers 50 -p "Summarize this article."
```
### Run with [Ollama](https://ollama.com/fardeen0424/neutrino)
```bash
ollama run fardeen0424/neutrino
```
### Run in Python (`llama-cpp-python`)
```python
from llama_cpp import Llama
# Load the Neutrino-Instruct model
llm = Llama(model_path="./neutrino-instruct.gguf")
# Run inference
response = llm("Who are you?")
print(response["choices"][0]["text"])
# Stream output tokens
for token in llm("Tell me a story about Neutrino:", stream=True):
print(token["choices"][0]["text"], end="", flush=True)
```
## πŸ“Š System Requirements
* **CPU-only:** 32–64GB RAM recommended (runs on modern laptops, slower inference).
* **GPU acceleration:**
* 4GB VRAM β†’ 4-bit quantized (Q4) models
* 8GB VRAM β†’ 5-bit/8-bit models
* 12GB+ VRAM β†’ FP16 full precision
## 🧩 Potential Use Cases
* Conversational AI assistants
* Research prototypes
* Instruction-following agents
* Chatbots with identity-awareness
⚠️ **Out of Scope:** Use in critical decision-making, legal, or medical contexts.
## πŸ› οΈ Development Notes
* Model uploaded in **GGUF format** for portability & performance.
* Compatible with **llama.cpp**, **Ollama**, and **llama-cpp-python**.
* Supports quantization levels (Q4, Q5, Q8) for deployment on resource-constrained devices.
## πŸ“– Citation
If you use Neutrino in your research or projects, please cite:
```bibtex
@misc{fardeennb2025neutrino,
title = {Neutrino-Instruct: A 7B Instruction-Tuned Conversational Model},
author = {Fardeen NB},
year = {2025},
howpublished = {Hugging Face},
url = {https://huggingface.co/neuralcrew/neutrino-instruct}
}
```