R-CNN ILSVRC13
| Model | Download | Download (with sample test data) | ONNX version | Opset version |
|---|---|---|---|---|
| R-CNN ILSVRC13 | 32 MB | 231 MB | 1.1 | 3 |
| R-CNN ILSVRC13 | 32 MB | 231 MB | 1.1.2 | 6 |
| R-CNN ILSVRC13 | 32 MB | 231 MB | 1.2 | 7 |
| R-CNN ILSVRC13 | 32 MB | 231 MB | 1.3 | 8 |
| R-CNN ILSVRC13 | 32 MB | 231 MB | 1.4 | 9 |
Description
R-CNN is a convolutional neural network for detection. This model was made by transplanting the R-CNN SVM classifiers into a fc-rcnn classification layer.
Paper
Rich feature hierarchies for accurate object detection and semantic segmentation
Dataset
Source
Caffe BVLC R-CNN ILSVRC13 ==> Caffe2 R-CNN ILSVRC13 ==> ONNX R-CNN ILSVRC13
Model input and output
Input
data_0: float[1, 3, 224, 224]
Output
fc-rcnn_1: float[1, 200]
Pre-processing steps
Post-processing steps
Sample test data
random generated sampe test data:
- test_data_set_0
- test_data_set_1
- test_data_set_2
- test_data_set_3
- test_data_set_4
- test_data_set_5
Results/accuracy on test set
On the 200-class ILSVRC2013 detection dataset, R-CNN’s mAP is 31.4%.
License
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support