AI & ML interests

None defined yet.

Recent Activity

Nymbo 
posted an update 8 days ago
view post
Post
1433
Two new tools added to the Nymbo/Tools MCP server, File_System and Shell_Exec. You can theoretically do basically anything with these two tools, and it should enable support for many Claude Skills.

GPT-5-Codex proves that for many cases, shell commands really are all you need, and Claude Skills seem to lean into this. The thing is, nothing about the design of Claude Skills actually restricts them to proprietary models!

# File_System

There's a new directory inside the repo called Filesystem, that's the agent's "root". It can perform the following actions : list, read, write, append, mkdir, move, copy, delete, info, help. It's able to keep this all within the scope of one tool call by making the Action field required and all other fields optional. Using a filesystem shouldn't require 15 different tools.

Files created in the public HF space live in the space's running container, and gets cleared when the space is restarted. When running the server locally, files are actually stored on disk.

# Shell_Exec

What good is a filesystem if you can't execute commands in that filesystem? This tool automatically detects if the server is running on Windows or Linux, and suggests using the appropriate shell (PowerShell/Bash). Both of these new tools require that the agent uses relative paths, rather than absolute paths. I could be convinced to back pedal on this.

# Closing Thoughts

The File_System and Shell_Exec tools aren't super polished yet, I'll continue to improve the agent's instructions and UX of using the new tools. Most of my testing was done with gpt-oss-20b and if it messes up, it gets the gist after one failed tool call. It should work perfectly fine for the GPU poor.
  • 1 reply
·
Nymbo 
posted an update 13 days ago
view post
Post
1638
I've made some improvements to my custom Deep_Research tool in the Nymbo/Tools MCP server. I've added a second LLM process and it still takes less than 1 minute to complete!

The original version of my Deep_Research tool would basically dump up to 50 fetched webpages onto the Researcher model (Qwen3-235B), with only a little bit of context shown from each page.

# New "Filterer" Process

The new process includes another LLM call before the researcher process. The Filterer (also Qwen3-235B) gets the query summary and the original 50 pages with low context, and decides which pages are most relevant to the research topic. The Filterer then outputs the URLs to the relevant pages, which are then re-fetched (with more context) and sent to the Researcher.

# Researcher Context

The Researcher now gets only the relevant webpages, then begins writing the report. When testing with 50 initial results, the researcher would often end up with 10-20 results of relevant context.

It still takes less than a minute to accomplish everything, thanks entirely to Cerebras inference. It now takes about 35-45 seconds to complete once the tool is run.

It's also worth noting that both the Filterer and Researcher now are provided the current time/date before they see the content, reducing hallucinations caused by knowledge cutoffs.
Nymbo 
posted an update 23 days ago
view post
Post
605
I have a few Sora-2 invites - 15509N
  • 1 reply
·
Nymbo 
posted an update about 1 month ago
view post
Post
1044
There's now a custom Deep_Research tool in my Nymbo/Tools MCP server! TL;DR: The agent using the tools writes a summary of your requests and up to five DuckDuckGo searches (up to 50 results). Each of the webpages found in the searches are then fetched and given to our researcher (Qwen3-235B-A22B-Thinking-2507). The researcher sees the summary, searched queries, and fetched links, then writes a thorough research report. The agent using the tool provides the user with a summary of the report and a link to download research_report.txt. The researcher's instructions are similar to some leaked Perplexity sys prompts.

# Deep_Research Tool

It accomplishes everything in under a minute so it doesn't hit MCP's 60 second timeout, mostly thanks to Cerebras. The only thing required to make this work is a HF_READ_TOKEN for inference.

The Deep_Research tool could certainly be improved. It still needs some sort of mechanism for sorting URLs based on importance (I've got some ideas but I don't want it to be the responsibility of the agent using the tool). I'll probably add a second researcher to filter out the bad sources before inferencing the big researcher. I'm hellbent on keeping this all within the scope of one tool call.

# More Fetch/Web Search Improvements

The Search_DuckDuckGo tool has been further enhanced. It now allows the agent to browse through all pages of results. The results also now include published date (if detected). It also now supports every DDG search types! Default DDG search is called text, but it can also now search by news, images, videos, and books.

The Fetch_Webpage tool now specifies how much of the page has been truncated, and cursor index, allowing it to pickup where it left off without re-consuming tokens. The model can now also choose to strip CSS selectors to remove excess noise, and there's a new URL Scraper mode that only returns URLs found on the full page.

More to come soon ~
Nymbo 
posted an update about 2 months ago
view post
Post
1013
I have a few updates to my MCP server I wanna share: New Memory tool, improvements to web search & speech generation.

# Memory_Manager Tool

We now have a Memory_Manager tool. Ask ChatGPT to write all its memories verbatim, then tell gpt-oss-20b to save each one using the tool, then take them anywhere! It stores memories in a memories.json file in the repo, no external database required.

The Memory_Manager tool is currently hidden from the HF space because it's intended for local use. It's enabled by providing a HF_READ_TOKEN in the env secrets, although it doesn't actually use the key for anything. There's probably a cleaner way of ensuring memory is only used locally, I'll come back to this.

# Fetch & Websearch

The Fetch_Webpage tool has been simplified a lot. It now converts the page to Markdown and returns the page with three length settings (Brief, Standard, Full). This is a lot more reliable than the old custom extraction method.

The Search_DuckDuckGo tool has a few small improvements. The input is easier for small models to get right, and the output is more readable.

# Speech Generation

I've added the remaining voices for Kokoro-82M, it now supports all 54 voices with all accents/languages.

I also removed the 30 second cap by making sure it computes all chunks in sequence, not just the first. I've tested it on outputs that are ~10 minutes long. Do note that when used as an MCP server, the tool will timeout after 1 minute, nothing I can do about that for right now.

# Other Thoughts

Lots of MCP use cases involve manipulating media (image editing, ASR, etc.). I've avoided adding tools like this so far for two reasons:

1. Most of these solutions would require assigning it a ZeroGPU slot.
2. The current process of uploading files like images to a Gradio space is still a bit rough. It's doable but requires additional tools.

Both of these points make it a bit painful for local usage. I'm open to suggestions for other tools that rely on text.
louisbrulenaudet 
posted an update about 2 months ago
view post
Post
6080
Supercharge Apple’s Shortcuts using Cloudflare Workers and Gemini within minutes (and for free, up to 1,500 requests per day) ☁️✨

Hello everyone, last week, while experimenting for fun, I created an API that allows you to easily access AI models (in this case, Google's) from the Shortcut app in order to analyze data from my apps and make the most of it thanks to the generative capabilities of advanced models.

It costs me nothing, and I think it might be good to share it so that others can build on it.

In README.md, you will find everything you need to get started and put your own microservice into production, which you can call from the app’s HTTP request features.

You will simply be asked to have a free Cloudflare account and an API key obtained from Google's AI Studio.

Feel free to take a look and get back to me if you encounter any problems during deployment.

Here is the GitHub repo where you can find all the source code and run it on your own: https://github.com/louisbrulenaudet/genai-api
louisbrulenaudet 
posted an update about 2 months ago
view post
Post
578
Although more and more code editors are aligning themselves with the AGENTS.md file standard, some still use specific nomenclatures that can make it difficult to maintain different configuration files when several people are working on the same project with different agents.

Bodyboard addresses this by generating canonical instructions for code helpers from a single AGENTS.md file, thereby streamlining the production of adapter outputs for Gemini CLI, Copilot, Cline, Claude, Rules, Windsurf, and OpenAI Codex integrations.

You just have to:
npm install -g bodyboard

Then run, at the root of your project:
bodyboard all

Link to npm: https://www.npmjs.com/package/bodyboard
Link to the GitHub repo: https://github.com/louisbrulenaudet/bodyboard

It's a very simple project, but it addresses certain issues I've encountered, so why not make it available to everyone...

If you have other ideas for adapters to create, feel free to open a PR on the GitHub repo.
Nymbo 
posted an update 2 months ago
view post
Post
1002
I built a general use MCP space ~ Fetch webpages, DuckDuckGo search, Python code execution, Kokoro TTS, Image Gen, Video Gen.

# Tools

1. Fetch webpage
2. Web search via DuckDuckGo (very concise, low excess context)
3. Python code executor
4. Kokoro-82M speech generation
5. Image Generation (use any model from HF Inference Providers)
6. Video Generation (use any model from HF Inference Providers)

The first four tools can be used without any API keys whatsoever. DDG search is free and the code execution and speech gen is done on CPU. Having a HF_READ_TOKEN in the env variables will show all tools. If there isn't a key present, The Image/Video Gen tools are hidden.

Nymbo/Tools
  • 1 reply
·
mikonvergence 
posted an update 2 months ago
view post
Post
406
𝐌𝐚𝐣𝐨𝐫 𝐓𝐎𝐌 ➕ 𝐆𝐨𝐨𝐠𝐥𝐞 𝐃𝐞𝐞𝐩𝐌𝐢𝐧𝐝'𝐬 𝐀𝐥𝐩𝐡𝐚𝐄𝐚𝐫𝐭𝐡 𝐄𝐦𝐛𝐞𝐝𝐝𝐢𝐧𝐠𝐬 𝐚𝐫𝐞 𝐧𝐨𝐰 𝐚𝐯𝐚𝐢𝐥𝐚𝐛𝐥𝐞 ‼️

This is a tiny (about 6 TB of data, but only 62,489 grid cells of ~100 sqkm) prototype dataset that allows to instantly connect existing Major TOM data with AlphaEarth embeddings.

Major-TOM/Core-AlphaEarth-Embeddings

I curated it to support several relevant research projects, but I figured it could help more people in the community to experiment and explore new applications of AlphaEarth.

𝐃𝐢𝐫𝐞𝐜𝐭𝐢𝐨𝐧𝐬 𝐟𝐨𝐫 𝐔𝐬𝐞
Each embedding sample comes from the original annual dataset produced by Google DeepMind. It means that, unlike samples from Sentinel-2 or Sentinel-1, it contains aggregated annual information from a particular year and is not linked to one particular observation. The existing Major TOM samples from physical sensors provide information potentially (and likely) contained in the AlphaEarth embedding sample, but they miss the temporal component represented within AEF embedding fields.

For more information, please check the dataset card on HuggingFace.

⚠️ 𝐖𝐀𝐑𝐍𝐈𝐍𝐆: 𝐄𝐦𝐛𝐞𝐝𝐝𝐢𝐧𝐠𝐬 𝐢𝐧 𝐭𝐡𝐢𝐬 𝐝𝐚𝐭𝐚𝐬𝐞𝐭 𝐝𝐨 𝐧𝐨𝐭 𝐫𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭 𝐢𝐧𝐝𝐢𝐯𝐢𝐝𝐮𝐚𝐥 𝐬𝐚𝐦𝐩𝐥𝐞𝐬, 𝐛𝐮𝐭 𝐚 𝐰𝐡𝐨𝐥𝐞 𝐲𝐞𝐚𝐫 𝐨𝐟 𝐦𝐮𝐥𝐭𝐢-𝐦𝐨𝐝𝐚𝐥 𝐨𝐛𝐬𝐞𝐫𝐯𝐚𝐭𝐢𝐨𝐧𝐬. 𝐇𝐚𝐯𝐞 𝐟𝐮𝐧!

🙏 Built on top of fantastic work of
Christopher Brown, Michal Kazmierski, Valerie Pasquarella, Emily Schechter and others at Google DeepMind.
Nymbo 
posted an update 2 months ago
view post
Post
1024
Anyone using Jan-v1-4B for local MCP-based web search, I highly recommend you try out Intelligent-Internet/II-Search-4B

Very impressed with this lil guy and it deserves more downloads. It's based on the original version of Qwen3-4B but find that it questions reality way less often. Jan-v1 seems to think that everything it sees is synthetic data and constantly gaslights me
Wauplin 
posted an update 3 months ago
view post
Post
3131
Say hello to hf: a faster, friendlier Hugging Face CLI ✨

We are glad to announce a long-awaited quality-of-life improvement: the Hugging Face CLI has been officially renamed from huggingface-cli to hf!

So... why this change?

Typing huggingface-cli constantly gets old fast. More importantly, the CLI’s command structure became messy as new features were added over time (upload, download, cache management, repo management, etc.). Renaming the CLI is a chance to reorganize commands into a clearer, more consistent format.

We decided not to reinvent the wheel and instead follow a well-known CLI pattern: hf <resource> <action>. Isn't hf auth login easier to type and remember?

The full rationale, implementation details, and migration notes are in the blog post: https://huggingface.co/blog/hf-cli

louisbrulenaudet 
posted an update 4 months ago
view post
Post
2845
Because hackathons are often the starting point for many AI projects, I've created a Python-backend template incorporating my feedback to streamline collaboration and urgent deployments 🏎️

Within a year, I had the opportunity to participate in hackathons organized by Mistral, OpenAI, and DeepMind and this GitHub template is structured around several fundamental building blocks and recommendations I offer developers eager to participate in their first hackathon, whether as part of a team or individually. Its emphasis is on rapid setup and deployment through:
- uv as a package manager, simplifying usage via a series of pre-configured make commands.
- FastAPI for API management, structured in a modular architecture designed to minimize branch conflicts during merges to main branches (using minimal health-check and ping routes to verify Docker’s proper execution and backend accessibility on the local network).
- Pydantic for validation and type handling, which simplifies debugging and enhances understanding of data objects.
- A set of custom instructions tailored for agents (Cline and GitHub Copilot), aimed at improving overall comprehension of the application and optimizing the vibe-coding experience.

This template includes unit tests with a 100% success rate and test coverage, as well as a minimal CI file ensuring that the FastAPI application runs correctly. Thus, merging code that breaks the server into production becomes impossible ⛔️

In general, I would reiterate an essential piece of advice: your two main adversaries are branch conflicts—particularly when the same file is modified concurrently within a brief period, especially if your architecture isn’t built for scalability—and deployment issues under urgent circumstances ⏱️

Link to GitHub: https://github.com/louisbrulenaudet/hackathon-backend

Simply issue these commands and you can ship your code at the speed of light:
make init
make dev
Nymbo 
posted an update 4 months ago
view post
Post
2862
Anyone know how to reset Claude web's MCP config? I connected mine when the HF MCP first released with just the default example spaces added. I added lots of other MCP spaces but Claude.ai doesn't update the available tools... "Disconnecting" the HF integration does nothing, deleting it and adding it again does nothing.

Refreshing tools works fine in VS Code because I can manually restart it in mcp.json, but claude.ai has no such option. Anyone got any ideas?
·
louisbrulenaudet 
posted an update 4 months ago
view post
Post
1212
🌐 Clinical Trials Dataset now available on Hugging Face! 🧬

I’ve just released a comprehensive, ML-ready dataset featuring 500,000+ clinical trial records sourced directly from ClinicalTrials.gov for biomedical NLP, healthcare analytics, and clinical research applications 🤗

I wanted to produce the most complete and up-to-date dump with all raw data partially flattened to simplify extraction, self-querying and processing.

Do you have any ideas about what we can do with it? Using descriptions to enhance specialized embedding models?

louisbrulenaudet/clinical-trials
Nymbo 
posted an update 6 months ago
view post
Post
4109
Haven't seen this posted anywhere - Llama-3.3-8B-Instruct is available on the new Llama API. Is this a new model or did someone mislabel Llama-3.1-8B?
  • 1 reply
·
Nymbo 
posted an update 6 months ago
view post
Post
2781
PSA for anyone using Nymbo/Nymbo_Theme or Nymbo/Nymbo_Theme_5 in a Gradio space ~

Both of these themes have been updated to fix some of the long-standing inconsistencies ever since the transition to Gradio v5. Textboxes are no longer bright green and in-line code is readable now! Both themes are now visually identical across versions.

If your space is already using one of these themes, you just need to restart your space to get the latest version. No code changes needed.