AI & ML interests

LLM

mrmannaย 
posted an update 25 days ago
view post
Post
236
The AI coding assistant economy operates on a fundamental misalignment:

Models are rewarded for appearing productive rather than being correct, users lack time to verify outputs, and economic incentives favor speed over quality.

This article examines how training incentives, verification costs, and market dynamics create patterns that often lead to low-quality code. Based on direct observation of model behavior patterns in conversations.

Open Link: https://ai.gopubby.com/the-verification-tax-56834b846337?sk=84ab8b0315bfe8d82d627d3c2c5f2c19
  • 1 reply
ยท
mrmannaย 
posted an update about 1 month ago
view post
Post
236
๐——๐——๐—ฆ๐—˜ ๐—™๐—ผ๐˜‚๐—ป๐—ฑ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฝ๐˜‚๐—ฏ๐—น๐—ถ๐˜€๐—ต๐—ฒ๐˜€ ๐—–๐—˜๐—™ โ€” ๐—ฎ๐—ป ๐—ข๐—ฅ๐—  ๐—ณ๐—ผ๐—ฟ ๐—–๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—ถ๐—ป ๐—Ÿ๐—Ÿ๐—  ๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ๐˜€
Just as Hibernate abstracts databases for transactions, CEF abstracts knowledge stores for Context Engineering. Build, test, and benchmark intelligent context models in minutes, without the complexity of enterprise graph infrastructure.

https://github.com/ddse-foundation/cef
https://ddse-foundation.github.io/cef/
mrmannaย 
posted an update about 2 months ago
view post
Post
225
https://www.youtube.com/watch?v=voF6x1aV_z4

Deterministic AI Design with Capability OS: Save from the AI Bubble - Live demo of Omni Agent

Everyone is piloting agents, copilots and AI platforms. Very few are asking a harder question: which of these systems will still be trusted when the AI bubble bursts?
In this session I'll share my 1.5-year journey from raw LLM experiments and messy AI-generated code to a deterministic, decision-first architecture for agentic systems.
I will demo Omni Agentโ€Š-โ€Ša Capability OS for Enterprise AIโ€Š-โ€Šand then walk through how it is designed and built using Decision-Driven Software Engineering (DDSE) and the Agentic Contract Model (ACM) so that execution stays bounded, auditable and aligned to your decisions, not the model's mood.
What you'll see
ย โ€ข End-to-end walkthrough of Omni Agent: goals, plans, tasks, ledgers, telemetry
ย โ€ข A real scenario on a codebase (e.g. an Angular chat app)โ€Š-โ€Šfrom "investigate this" to concrete actions and tracked outcomes
ย โ€ข How decisions, capabilities, contracts and context are modeled in DDSE & ACM
ย โ€ข Architecture view of Omni Agent as a "Capability OS": planner, executor, context layers and extensibility
ย โ€ข Honest trade-offs: what is still weak, what's missing, and where this approach may or may not fit your environment
Who this is for
ย โ€ข Engineering leaders and architects evaluating agentic platforms
ย โ€ข Developers who want more than "prompt + tools" and care about system design
ย โ€ข Anyone worried about the AI bubble and looking for deterministic, governable AI systems
Format
ย โ€ข ~40 minutes of platform demo + design walkthrough (via YouTube Premiere)
ย โ€ข I'll be present live in the chat
ย โ€ข Follow-up Q&A thread on LinkedIn for deeper questions
mrmannaย 
posted an update about 2 months ago
view post
Post
1371
๐—”๐—ฟ๐—ฒ ๐—ฌ๐—ผ๐˜‚ ๐—•๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐—ฎ ๐—ง๐—ฟ๐˜‚๐—ฒ ๐—ž๐—ป๐—ผ๐˜„๐—น๐—ฒ๐—ฑ๐—ด๐—ฒ ๐—•๐—ฎ๐˜€๐—ฒ ๐—ผ๐—ฟ ๐—๐˜‚๐˜€๐˜ ๐—ฎ ๐—ฆ๐—บ๐—ฎ๐—ฟ๐˜ ๐—ฆ๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ?
๐˜ž๐˜ฉ๐˜บ ๐˜ข ๐˜ด๐˜ช๐˜ฎ๐˜ฑ๐˜ญ๐˜ฆ ๐˜ฅ๐˜ฐ๐˜ฎ๐˜ข๐˜ช๐˜ฏ ๐˜ฎ๐˜ฐ๐˜ฅ๐˜ฆ๐˜ญ ๐˜ฅ๐˜ฐ๐˜ฆ๐˜ด ๐˜ฎ๐˜ฐ๐˜ณ๐˜ฆ ๐˜ง๐˜ฐ๐˜ณ ๐˜ต๐˜ณ๐˜ถ๐˜ต๐˜ฉ ๐˜ต๐˜ฉ๐˜ข๐˜ฏ ๐˜ข๐˜ฏ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ณ๐˜ฐ๐˜ถ๐˜ฏ๐˜ฅ ๐˜ฐ๐˜ง ๐˜ต๐˜ฐ๐˜ฑ-๐˜ฌ ๐˜ต๐˜ถ๐˜ฏ๐˜ช๐˜ฏ๐˜จ
แด˜แดœส™สŸษช๊œฑสœแด‡แด… แดษด แดแด‡แด…ษชแดœแด ษชษด AI Advances ย | ษดแดแด  22

Most โ€œKnowledge basesโ€ today are just vector indexes with a chat UI.
Without the LLM, they know nothing. With the LLM, every answer re-rents the same knowledge in tokens.

๐—ž๐—ฒ๐˜† ๐˜๐—ฎ๐—ธ๐—ฒ๐—ฎ๐˜„๐—ฎ๐˜†๐˜€:
- A vector store isnโ€™t a knowledge base; itโ€™s a smart memory. The โ€œknowledgeโ€ lives in the model you keep paying to re-read your own documents.

- Without a model (entities + relationships), you lock in two long-term costs: high tokens per question and shallow answers per question.

- A lightweight knowledge model lets you store facts once, query them cheaply, and use the LLM only for judgment and languageโ€Šโ€”โ€Šnot for rediscovering the same truths forever.

๐—™๐˜‚๐—น๐—น ๐—ฎ๐—ฟ๐˜๐—ถ๐—ฐ๐—น๐—ฒ ๐Ÿ‘‰
https://ai.gopubby.com/are-you-building-a-true-knowledge-base-or-just-a-smart-search-engine-549922e29359?sk=b755b4c54ca77ab7b6b83189be81b689
mrmannaย 
posted an update about 2 months ago
view post
Post
135
๐—ช๐—ต๐—ฒ๐—ป ๐—˜๐˜ƒ๐—ฒ๐—ฟ๐˜†๐—ผ๐—ป๐—ฒ ๐—œ๐˜€ ๐—ฎ๐—ป ๐—”๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜
๐˜๐˜ฐ๐˜ธ ๐˜ž๐˜ฆ ๐˜š๐˜ค๐˜ข๐˜ญ๐˜ฆ ๐˜œ๐˜ฑ ๐˜๐˜จ๐˜ฏ๐˜ฐ๐˜ณ๐˜ข๐˜ฏ๐˜ค๐˜ฆ ๐˜ช๐˜ฏ ๐˜š๐˜ฐ๐˜ง๐˜ต๐˜ธ๐˜ข๐˜ณ๐˜ฆ
Published on Medium in AI Advances Publication| Nov 20

This one is for teams where everyone suddenly carries the hashtag#architect label and every deck has an LLM box in the middle. My new piece, โ€œWhen Everyone Is an Architect,โ€ is a small reality check on how we build software and AI platforms now: more diagrams than foundations, more confidence than discipline. If that sounds uncomfortably familiar, you might enjoy it.

๐—–๐—ผ๐—ป๐˜๐—ถ๐—ป๐˜‚๐—ฒ ๐—ฅ๐—ฒ๐—ฎ๐—ฑ๐—ถ๐—ป๐—ด>> https://ai.gopubby.com/when-everyone-is-an-architect-0cb4ca9b1dce?sk=4935de1ac979cdcfa5b992dd627bd95e
mrmannaย 
posted an update 3 months ago
mrmannaย 
posted an update 3 months ago
view post
Post
206
๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ข๐˜„๐—ป ๐—”๐—œ ๐—–๐—ผ๐—ฑ๐—ฒ๐—ฟ ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—ถ๐—ป ๐—›๐—ผ๐˜‚๐—ฟ๐˜€ โ€” ๐˜„๐—ถ๐˜๐—ต ๐—”๐—–๐—  (๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—–๐—ผ๐—ป๐˜๐—ฟ๐—ฎ๐—ฐ๐˜ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น) ๐—™๐—ฟ๐—ฎ๐—บ๐—ฒ๐˜„๐—ผ๐—ฟ๐—ธ ๐˜ƒ๐Ÿฌ.๐Ÿฑ.๐Ÿฌ
๐—Ÿ๐—ถ๐—ป๐—ธ: https://huggingface.co/blog/mrmanna/ai-coder-agent-in-hours-with-acm
---
๐—ช๐—ต๐—ฎ๐˜ ๐˜†๐—ผ๐˜‚โ€™๐—น๐—น ๐—ด๐—ฒ๐˜:
- A terminal UI that shows planner reasoning, a live task board, and a ledger of policy decisions and tool calls.
- Budget governance that checks forecasted and actual spend before each LLM call.
- A workspace context index (files, symbols, deps, tests) so the agent plans with real project knowledge.
- Replay bundles and checkpoints for auditability and recovery.
> ๐˜›๐˜ฉ๐˜ช๐˜ด ๐˜ช๐˜ด ๐˜ข ๐˜ด๐˜ต๐˜ข๐˜ณ๐˜ต๐˜ฆ๐˜ณ ๐˜ฌ๐˜ช๐˜ต, ๐˜ฏ๐˜ฐ๐˜ต ๐˜ข ๐˜ฌ๐˜ช๐˜ต๐˜ค๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ด๐˜ช๐˜ฏ๐˜ฌ. ๐˜ž๐˜ฆ ๐˜ช๐˜ฏ๐˜ต๐˜ฆ๐˜ฏ๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ด๐˜ฉ๐˜ช๐˜ฑ ๐˜ข ๐˜ฎ๐˜ช๐˜ฏ๐˜ช๐˜ฎ๐˜ข๐˜ญ, ๐˜ข๐˜ถ๐˜ฅ๐˜ช๐˜ต๐˜ข๐˜ฃ๐˜ญ๐˜ฆ ๐˜ด๐˜ฆ๐˜ต ๐˜ฐ๐˜ง ๐˜ต๐˜ข๐˜ด๐˜ฌ๐˜ด & ๐˜ต๐˜ฐ๐˜ฐ๐˜ญ๐˜ด ๐˜ด๐˜ฐ ๐˜บ๐˜ฐ๐˜ถ ๐˜ค๐˜ข๐˜ฏ ๐˜ฌ๐˜ฆ๐˜ฆ๐˜ฑ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ถ๐˜ณ๐˜ง๐˜ข๐˜ค๐˜ฆ ๐˜ข๐˜ณ๐˜ฆ๐˜ข ๐˜ด๐˜ฎ๐˜ข๐˜ญ๐˜ญ, ๐˜ต๐˜ฉ๐˜ฆ๐˜ฏ ๐˜จ๐˜ณ๐˜ฐ๐˜ธ ๐˜ค๐˜ข๐˜ฑ๐˜ข๐˜ฃ๐˜ช๐˜ญ๐˜ช๐˜ต๐˜บ ๐˜ธ๐˜ฉ๐˜ฆ๐˜ณ๐˜ฆ ๐˜ช๐˜ต ๐˜ฎ๐˜ข๐˜ต๐˜ต๐˜ฆ๐˜ณ๐˜ด ๐˜ต๐˜ฐ ๐˜บ๐˜ฐ๐˜ถ๐˜ณ ๐˜ด๐˜ต๐˜ข๐˜ค๐˜ฌ.
** ๐—ก๐—ผ๐˜๐—ฒ: ๐—ฉ๐—ถ๐—ฑ๐—ฒ๐—ผ ๐—ต๐—ฎ๐˜€ ๐—ป๐—ผ ๐˜€๐—ผ๐˜‚๐—ป๐—ฑ
mrmannaย 
posted an update 3 months ago
view post
Post
232
๐ŸŽ‰ ๐—ข๐—ฝ๐—ฒ๐—ป ๐—ฆ๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—–๐—ผ๐—ป๐˜๐—ฟ๐—ฎ๐—ฐ๐˜ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐˜ƒ๐Ÿฌ.๐Ÿฑ.๐Ÿฌ
๐—ง๐˜‚๐—ฟ๐—ป ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ต๐—ฎ๐˜ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—ณ๐—ฎ๐—ฐ๐—ฒ ๐—ถ๐—ป๐˜๐—ผ ๐—ฎ ๐—–๐—ฎ๐—ฝ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐—ถ๐—ฒ๐˜€ ๐—ข๐—ฆ ๐˜„๐—ถ๐˜๐—ต ๐—”๐—–๐—  ๐˜ƒ๐Ÿฌ.๐Ÿฑ
-> https://ddse-foundation.github.io/acm/blog/capabilities-os-chat-with-acm