SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1
  • 'Sind die Mahlzeiten für bestimmte Diäten geeignet?'
  • 'Kann ich eine einzelne Mahlzeit anpassen?'
  • 'Gibt es eine Möglichkeit, meine Bestellungen zu verfolgen?'
0
  • 'Mein Essen war kalt und schmeckte nicht frisch.'
  • 'Die Lieferung hat viel länger gedauert als angegeben.'
  • 'Die Portionen sind viel zu klein für den Preis.'
2
  • 'Die Portionen sind genau richtig und sättigend.'
  • 'Die Mahlzeiten sind köstlich und perfekt gewürzt!'
  • 'Ich bin sehr zufrieden mit der Qualität der Zutaten.'

Evaluation

Metrics

Label Accuracy
all 0.4167

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("phamgialinhlx/negative-sentiment-26-02-2025")
# Run inference
preds = model("Es ist schön, verschiedene Essensoptionen zu haben.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 6.9583 10
Label Training Sample Count
0 8
1 8
2 8

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (3, 3)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0167 1 0.2407 -
0.8333 50 0.168 -
1.6667 100 0.0251 -
2.5 150 0.0018 -

Framework Versions

  • Python: 3.11.11
  • SetFit: 1.1.1
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.3
  • PyTorch: 2.5.1+cu124
  • Datasets: 3.3.2
  • Tokenizers: 0.21.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
1
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for phamgialinhlx/negative-sentiment-26-02-2025

Finetuned
(308)
this model

Evaluation results