SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
| Label |
Examples |
| 1 |
- 'Sind die Mahlzeiten für bestimmte Diäten geeignet?'
- 'Kann ich eine einzelne Mahlzeit anpassen?'
- 'Gibt es eine Möglichkeit, meine Bestellungen zu verfolgen?'
|
| 0 |
- 'Mein Essen war kalt und schmeckte nicht frisch.'
- 'Die Lieferung hat viel länger gedauert als angegeben.'
- 'Die Portionen sind viel zu klein für den Preis.'
|
| 2 |
- 'Die Portionen sind genau richtig und sättigend.'
- 'Die Mahlzeiten sind köstlich und perfekt gewürzt!'
- 'Ich bin sehr zufrieden mit der Qualität der Zutaten.'
|
Evaluation
Metrics
| Label |
Accuracy |
| all |
0.4167 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("phamgialinhlx/negative-sentiment-26-02-2025")
preds = model("Es ist schön, verschiedene Essensoptionen zu haben.")
Training Details
Training Set Metrics
| Training set |
Min |
Median |
Max |
| Word count |
4 |
6.9583 |
10 |
| Label |
Training Sample Count |
| 0 |
8 |
| 1 |
8 |
| 2 |
8 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch |
Step |
Training Loss |
Validation Loss |
| 0.0167 |
1 |
0.2407 |
- |
| 0.8333 |
50 |
0.168 |
- |
| 1.6667 |
100 |
0.0251 |
- |
| 2.5 |
150 |
0.0018 |
- |
Framework Versions
- Python: 3.11.11
- SetFit: 1.1.1
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}