Dogecoin (DOGE) Price Prediction Models
Trained ML models for predicting Dogecoin (DOGE) cryptocurrency prices.
π Model Performance
| Model | RMSE | MAE | 
|---|---|---|
| Random Forest | 0.0117 | 0.0088 | 
| Gradient Boosting | 0.0090 | 0.0068 | 
| Linear Regression | 0.0018 | 0.0013 | 
| LSTM | 0.0146 | 0.0116 | 
π― Training Details
- Trained on: 2025-10-24 07:45:52
 - Data Source: CoinGecko API
 - Historical Days: 365
 - Features: 23 technical indicators
 - GPU: Accelerated with TensorFlow
 
π¦ Files Included
dogecoin_sklearn_models.pkl: Scikit-learn models (RF, GB, LR)dogecoin_scaler.pkl: Feature scalerdogecoin_lstm_model.h5: LSTM neural networkdogecoin_metadata.json: Training metadata
π Usage
from huggingface_hub import hf_hub_download
import joblib
from tensorflow.keras.models import load_model
# Download models
sklearn_path = hf_hub_download(
    repo_id="YOUR_USERNAME/YOUR_REPO",
    filename="dogecoin_sklearn_models.pkl"
)
scaler_path = hf_hub_download(
    repo_id="YOUR_USERNAME/YOUR_REPO",
    filename="dogecoin_scaler.pkl"
)
lstm_path = hf_hub_download(
    repo_id="YOUR_USERNAME/YOUR_REPO",
    filename="dogecoin_lstm_model.h5"
)
# Load models
models = joblib.load(sklearn_path)
scaler = joblib.load(scaler_path)
lstm = load_model(lstm_path)
# Make predictions
# (prepare your features first)
predictions = models['RandomForest'].predict(scaled_features)
π Features
The models use 23 technical indicators including:
- Moving Averages (SMA 7, 25, 99)
 - Exponential Moving Averages (EMA 12, 26)
 - RSI (Relative Strength Index)
 - MACD & Signal Line
 - Bollinger Bands
 - Stochastic Oscillator
 - Volatility measures
 - Lag features
 
β οΈ Disclaimer
These models are for educational and research purposes only. Cryptocurrency markets are highly volatile and unpredictable. Do not use these predictions for actual trading decisions without proper risk management.
π License
MIT License
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	π
			
		Ask for provider support