Job - Job matching BAAI/bge-small-en-v1.5
	
Top performing model on TalentCLEF 2025 Task A.  Use it for multilingual job title matching
	
		
	
	
		Model Details
	
	
		
	
	
		Model Description
	
- Model Type: Sentence Transformer
 
- Base model: BAAI/bge-small-en-v1.5 
 
- Maximum Sequence Length: 512 tokens
 
- Output Dimensionality: 384 dimensions
 
- Similarity Function: Cosine Similarity
 
- Training Datasets:
- full_en
 
- full_de
 
- full_es
 
- full_zh
 
- mix
 
 
	
		
	
	
		Model Sources
	
	
		
	
	
		Full Model Architecture
	
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
	
		
	
	
		Usage
	
	
		
	
	
		Direct Usage (Sentence Transformers)
	
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id")
sentences = [
    'Volksvertreter',
    'Parlamentarier',
    'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
	
		
	
	
		Evaluation
	
	
		
	
	
		Metrics
	
	
		
	
	
		Information Retrieval
	
	
		
| Metric | 
full_en | 
full_es | 
full_de | 
full_zh | 
mix_es | 
mix_de | 
mix_zh | 
		
| cosine_accuracy@1 | 
0.6571 | 
0.1243 | 
0.2956 | 
0.3495 | 
0.4113 | 
0.2943 | 
0.0971 | 
| cosine_accuracy@20 | 
0.9905 | 
1.0 | 
0.9212 | 
0.7379 | 
0.7613 | 
0.65 | 
0.3586 | 
| cosine_accuracy@50 | 
0.9905 | 
1.0 | 
0.9655 | 
0.8252 | 
0.8523 | 
0.7608 | 
0.4901 | 
| cosine_accuracy@100 | 
0.9905 | 
1.0 | 
0.9754 | 
0.8544 | 
0.9121 | 
0.8508 | 
0.6002 | 
| cosine_accuracy@150 | 
0.9905 | 
1.0 | 
0.9852 | 
0.9029 | 
0.9418 | 
0.8898 | 
0.6613 | 
| cosine_accuracy@200 | 
0.9905 | 
1.0 | 
0.9852 | 
0.9417 | 
0.9548 | 
0.9204 | 
0.7062 | 
| cosine_precision@1 | 
0.6571 | 
0.1243 | 
0.2956 | 
0.3495 | 
0.4113 | 
0.2943 | 
0.0971 | 
| cosine_precision@20 | 
0.5024 | 
0.4897 | 
0.4246 | 
0.1733 | 
0.0892 | 
0.0731 | 
0.0314 | 
| cosine_precision@50 | 
0.308 | 
0.3179 | 
0.2814 | 
0.0944 | 
0.0418 | 
0.0361 | 
0.0185 | 
| cosine_precision@100 | 
0.1863 | 
0.1986 | 
0.1801 | 
0.0589 | 
0.0229 | 
0.0206 | 
0.0116 | 
| cosine_precision@150 | 
0.1322 | 
0.1469 | 
0.1362 | 
0.0458 | 
0.0159 | 
0.0147 | 
0.0087 | 
| cosine_precision@200 | 
0.103 | 
0.1179 | 
0.1105 | 
0.0385 | 
0.0122 | 
0.0116 | 
0.0071 | 
| cosine_recall@1 | 
0.068 | 
0.0031 | 
0.0111 | 
0.0273 | 
0.1565 | 
0.1109 | 
0.0329 | 
| cosine_recall@20 | 
0.5385 | 
0.3221 | 
0.2614 | 
0.1766 | 
0.6594 | 
0.5344 | 
0.2091 | 
| cosine_recall@50 | 
0.726 | 
0.4638 | 
0.3835 | 
0.2393 | 
0.7705 | 
0.6585 | 
0.3054 | 
| cosine_recall@100 | 
0.8329 | 
0.5438 | 
0.4677 | 
0.2863 | 
0.8472 | 
0.7525 | 
0.3835 | 
| cosine_recall@150 | 
0.8745 | 
0.5825 | 
0.5183 | 
0.3287 | 
0.8825 | 
0.8026 | 
0.4309 | 
| cosine_recall@200 | 
0.9057 | 
0.6147 | 
0.5517 | 
0.3631 | 
0.9051 | 
0.8418 | 
0.4715 | 
| cosine_ndcg@1 | 
0.6571 | 
0.1243 | 
0.2956 | 
0.3495 | 
0.4113 | 
0.2943 | 
0.0971 | 
| cosine_ndcg@20 | 
0.6845 | 
0.5385 | 
0.4601 | 
0.2468 | 
0.5117 | 
0.3919 | 
0.1385 | 
| cosine_ndcg@50 | 
0.704 | 
0.5012 | 
0.4229 | 
0.2394 | 
0.542 | 
0.4256 | 
0.1656 | 
| cosine_ndcg@100 | 
0.7589 | 
0.5147 | 
0.4371 | 
0.2619 | 
0.5588 | 
0.4462 | 
0.1835 | 
| cosine_ndcg@150 | 
0.7774 | 
0.5348 | 
0.4629 | 
0.2787 | 
0.5656 | 
0.4561 | 
0.1931 | 
| cosine_ndcg@200 | 
0.7893 | 
0.5505 | 
0.4797 | 
0.2919 | 
0.5697 | 
0.4632 | 
0.2007 | 
| cosine_mrr@1 | 
0.6571 | 
0.1243 | 
0.2956 | 
0.3495 | 
0.4113 | 
0.2943 | 
0.0971 | 
| cosine_mrr@20 | 
0.8103 | 
0.5515 | 
0.4896 | 
0.4485 | 
0.4979 | 
0.3779 | 
0.1522 | 
| cosine_mrr@50 | 
0.8103 | 
0.5515 | 
0.4909 | 
0.4515 | 
0.501 | 
0.3815 | 
0.1564 | 
| cosine_mrr@100 | 
0.8103 | 
0.5515 | 
0.4911 | 
0.4519 | 
0.5018 | 
0.3827 | 
0.158 | 
| cosine_mrr@150 | 
0.8103 | 
0.5515 | 
0.4912 | 
0.4523 | 
0.5021 | 
0.3831 | 
0.1585 | 
| cosine_mrr@200 | 
0.8103 | 
0.5515 | 
0.4912 | 
0.4525 | 
0.5021 | 
0.3832 | 
0.1588 | 
| cosine_map@1 | 
0.6571 | 
0.1243 | 
0.2956 | 
0.3495 | 
0.4113 | 
0.2943 | 
0.0971 | 
| cosine_map@20 | 
0.5418 | 
0.4028 | 
0.3236 | 
0.147 | 
0.4264 | 
0.3097 | 
0.0875 | 
| cosine_map@50 | 
0.5327 | 
0.3422 | 
0.2644 | 
0.1267 | 
0.4338 | 
0.3174 | 
0.093 | 
| cosine_map@100 | 
0.5657 | 
0.3395 | 
0.2576 | 
0.1326 | 
0.436 | 
0.3199 | 
0.095 | 
| cosine_map@150 | 
0.5734 | 
0.3478 | 
0.2669 | 
0.1352 | 
0.4366 | 
0.3207 | 
0.0957 | 
| cosine_map@200 | 
0.5772 | 
0.3534 | 
0.2722 | 
0.1368 | 
0.4368 | 
0.3212 | 
0.0961 | 
| cosine_map@500 | 
0.5814 | 
0.3631 | 
0.2833 | 
0.1407 | 
0.4373 | 
0.3219 | 
0.0971 | 
	
 
	
		
	
	
		Training Details
	
	
		
	
	
		Training Datasets
	
full_en
	
		
	
	
		full_en
	
- Dataset: full_en
 
- Size: 28,880 training samples
 
- Columns: 
anchor and positive 
- Approximate statistics based on the first 1000 samples:
	
		
 | 
anchor | 
positive | 
		
| type | 
string | 
string | 
| details | 
- min: 3 tokens
 - mean: 5.0 tokens
 - max: 10 tokens
 
  | 
- min: 3 tokens
 - mean: 5.01 tokens
 - max: 13 tokens
 
  | 
	
 
 
- Samples:
	
		
| anchor | 
positive | 
		
air commodore | 
flight lieutenant | 
command and control officer | 
flight officer | 
air commodore | 
command and control officer | 
	
 
 
- Loss: 
GISTEmbedLoss with these parameters:{'guide': SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
 
 
full_de
	
		
	
	
		full_de
	
- Dataset: full_de
 
- Size: 23,023 training samples
 
- Columns: 
anchor and positive 
- Approximate statistics based on the first 1000 samples:
	
		
 | 
anchor | 
positive | 
		
| type | 
string | 
string | 
| details | 
- min: 3 tokens
 - mean: 11.05 tokens
 - max: 45 tokens
 
  | 
- min: 3 tokens
 - mean: 11.43 tokens
 - max: 45 tokens
 
  | 
	
 
 
- Samples:
	
		
| anchor | 
positive | 
		
Staffelkommandantin | 
Kommodore | 
Luftwaffenoffizierin | 
Luftwaffenoffizier/Luftwaffenoffizierin | 
Staffelkommandantin | 
Luftwaffenoffizierin | 
	
 
 
- Loss: 
GISTEmbedLoss with these parameters:{'guide': SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
 
 
full_es
	
		
	
	
		full_es
	
- Dataset: full_es
 
- Size: 20,724 training samples
 
- Columns: 
anchor and positive 
- Approximate statistics based on the first 1000 samples:
	
		
 | 
anchor | 
positive | 
		
| type | 
string | 
string | 
| details | 
- min: 3 tokens
 - mean: 12.95 tokens
 - max: 50 tokens
 
  | 
- min: 3 tokens
 - mean: 12.57 tokens
 - max: 50 tokens
 
  | 
	
 
 
- Samples:
	
		
| anchor | 
positive | 
		
jefe de escuadrón | 
instructor | 
comandante de aeronave | 
instructor de simulador | 
instructor | 
oficial del Ejército del Aire | 
	
 
 
- Loss: 
GISTEmbedLoss with these parameters:{'guide': SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
 
 
full_zh
	
		
	
	
		full_zh
	
- Dataset: full_zh
 
- Size: 30,401 training samples
 
- Columns: 
anchor and positive 
- Approximate statistics based on the first 1000 samples:
	
		
 | 
anchor | 
positive | 
		
| type | 
string | 
string | 
| details | 
- min: 4 tokens
 - mean: 8.36 tokens
 - max: 20 tokens
 
  | 
- min: 4 tokens
 - mean: 8.95 tokens
 - max: 27 tokens
 
  | 
	
 
 
- Samples:
	
		
| anchor | 
positive | 
		
技术总监 | 
技术和运营总监 | 
技术总监 | 
技术主管 | 
技术总监 | 
技术艺术总监 | 
	
 
 
- Loss: 
GISTEmbedLoss with these parameters:{'guide': SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
 
 
mix
	
		
	
	
		mix
	
- Dataset: mix
 
- Size: 21,760 training samples
 
- Columns: 
anchor and positive 
- Approximate statistics based on the first 1000 samples:
	
		
 | 
anchor | 
positive | 
		
| type | 
string | 
string | 
| details | 
- min: 2 tokens
 - mean: 5.65 tokens
 - max: 14 tokens
 
  | 
- min: 2 tokens
 - mean: 10.08 tokens
 - max: 30 tokens
 
  | 
	
 
 
- Samples:
	
		
| anchor | 
positive | 
		
technical manager | 
Technischer Direktor für Bühne, Film und Fernsehen | 
head of technical | 
directora técnica | 
head of technical department | 
技术艺术总监 | 
	
 
 
- Loss: 
GISTEmbedLoss with these parameters:{'guide': SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
 
 
	
		
	
	
		Training Hyperparameters
	
	
		
	
	
		Non-Default Hyperparameters
	
eval_strategy: steps 
per_device_train_batch_size: 128 
per_device_eval_batch_size: 128 
gradient_accumulation_steps: 2 
num_train_epochs: 5 
warmup_ratio: 0.05 
log_on_each_node: False 
fp16: True 
dataloader_num_workers: 4 
ddp_find_unused_parameters: True 
batch_sampler: no_duplicates 
	
		
	
	
		All Hyperparameters
	
Click to expand
overwrite_output_dir: False 
do_predict: False 
eval_strategy: steps 
prediction_loss_only: True 
per_device_train_batch_size: 128 
per_device_eval_batch_size: 128 
per_gpu_train_batch_size: None 
per_gpu_eval_batch_size: None 
gradient_accumulation_steps: 2 
eval_accumulation_steps: None 
torch_empty_cache_steps: None 
learning_rate: 5e-05 
weight_decay: 0.0 
adam_beta1: 0.9 
adam_beta2: 0.999 
adam_epsilon: 1e-08 
max_grad_norm: 1.0 
num_train_epochs: 5 
max_steps: -1 
lr_scheduler_type: linear 
lr_scheduler_kwargs: {} 
warmup_ratio: 0.05 
warmup_steps: 0 
log_level: passive 
log_level_replica: warning 
log_on_each_node: False 
logging_nan_inf_filter: True 
save_safetensors: True 
save_on_each_node: False 
save_only_model: False 
restore_callback_states_from_checkpoint: False 
no_cuda: False 
use_cpu: False 
use_mps_device: False 
seed: 42 
data_seed: None 
jit_mode_eval: False 
use_ipex: False 
bf16: False 
fp16: True 
fp16_opt_level: O1 
half_precision_backend: auto 
bf16_full_eval: False 
fp16_full_eval: False 
tf32: None 
local_rank: 0 
ddp_backend: None 
tpu_num_cores: None 
tpu_metrics_debug: False 
debug: [] 
dataloader_drop_last: True 
dataloader_num_workers: 4 
dataloader_prefetch_factor: None 
past_index: -1 
disable_tqdm: False 
remove_unused_columns: True 
label_names: None 
load_best_model_at_end: False 
ignore_data_skip: False 
fsdp: [] 
fsdp_min_num_params: 0 
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} 
tp_size: 0 
fsdp_transformer_layer_cls_to_wrap: None 
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} 
deepspeed: None 
label_smoothing_factor: 0.0 
optim: adamw_torch 
optim_args: None 
adafactor: False 
group_by_length: False 
length_column_name: length 
ddp_find_unused_parameters: True 
ddp_bucket_cap_mb: None 
ddp_broadcast_buffers: False 
dataloader_pin_memory: True 
dataloader_persistent_workers: False 
skip_memory_metrics: True 
use_legacy_prediction_loop: False 
push_to_hub: False 
resume_from_checkpoint: None 
hub_model_id: None 
hub_strategy: every_save 
hub_private_repo: None 
hub_always_push: False 
gradient_checkpointing: False 
gradient_checkpointing_kwargs: None 
include_inputs_for_metrics: False 
include_for_metrics: [] 
eval_do_concat_batches: True 
fp16_backend: auto 
push_to_hub_model_id: None 
push_to_hub_organization: None 
mp_parameters:  
auto_find_batch_size: False 
full_determinism: False 
torchdynamo: None 
ray_scope: last 
ddp_timeout: 1800 
torch_compile: False 
torch_compile_backend: None 
torch_compile_mode: None 
include_tokens_per_second: False 
include_num_input_tokens_seen: False 
neftune_noise_alpha: None 
optim_target_modules: None 
batch_eval_metrics: False 
eval_on_start: False 
use_liger_kernel: False 
eval_use_gather_object: False 
average_tokens_across_devices: False 
prompts: None 
batch_sampler: no_duplicates 
multi_dataset_batch_sampler: proportional 
 
	
		
	
	
		Training Logs
	
	
		
| Epoch | 
Step | 
Training Loss | 
full_en_cosine_ndcg@200 | 
full_es_cosine_ndcg@200 | 
full_de_cosine_ndcg@200 | 
full_zh_cosine_ndcg@200 | 
mix_es_cosine_ndcg@200 | 
mix_de_cosine_ndcg@200 | 
mix_zh_cosine_ndcg@200 | 
		
| -1 | 
-1 | 
- | 
0.7322 | 
0.4690 | 
0.3853 | 
0.2723 | 
0.3209 | 
0.2244 | 
0.0919 | 
| 0.0021 | 
1 | 
23.8878 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 0.2058 | 
100 | 
7.2098 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 0.4115 | 
200 | 
4.2635 | 
0.7800 | 
0.5132 | 
0.4268 | 
0.2798 | 
0.4372 | 
0.2996 | 
0.1447 | 
| 0.6173 | 
300 | 
4.1931 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 0.8230 | 
400 | 
3.73 | 
0.7863 | 
0.5274 | 
0.4451 | 
0.2805 | 
0.4762 | 
0.3455 | 
0.1648 | 
| 1.0309 | 
500 | 
3.3569 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 1.2366 | 
600 | 
3.6464 | 
0.7868 | 
0.5372 | 
0.4540 | 
0.2813 | 
0.5063 | 
0.3794 | 
0.1755 | 
| 1.4424 | 
700 | 
3.0772 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 1.6481 | 
800 | 
3.114 | 
0.7906 | 
0.5391 | 
0.4576 | 
0.2832 | 
0.5221 | 
0.4047 | 
0.1779 | 
| 1.8539 | 
900 | 
2.9246 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 2.0617 | 
1000 | 
2.7479 | 
0.7873 | 
0.5423 | 
0.4631 | 
0.2871 | 
0.5323 | 
0.4143 | 
0.1843 | 
| 2.2675 | 
1100 | 
3.049 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 2.4733 | 
1200 | 
2.6137 | 
0.7878 | 
0.5418 | 
0.4685 | 
0.2870 | 
0.5470 | 
0.4339 | 
0.1932 | 
| 2.6790 | 
1300 | 
2.8607 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 2.8848 | 
1400 | 
2.7071 | 
0.7889 | 
0.5465 | 
0.4714 | 
0.2891 | 
0.5504 | 
0.4362 | 
0.1944 | 
| 3.0926 | 
1500 | 
2.7012 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 3.2984 | 
1600 | 
2.7423 | 
0.7882 | 
0.5471 | 
0.4748 | 
0.2868 | 
0.5542 | 
0.4454 | 
0.1976 | 
| 3.5041 | 
1700 | 
2.5316 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 3.7099 | 
1800 | 
2.6344 | 
0.7900 | 
0.5498 | 
0.4763 | 
0.2857 | 
0.5639 | 
0.4552 | 
0.1954 | 
| 3.9156 | 
1900 | 
2.4983 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 4.1235 | 
2000 | 
2.5423 | 
0.7894 | 
0.5499 | 
0.4786 | 
0.2870 | 
0.5644 | 
0.4576 | 
0.1974 | 
| 4.3292 | 
2100 | 
2.5674 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 4.5350 | 
2200 | 
2.6237 | 
0.7899 | 
0.5502 | 
0.4802 | 
0.2843 | 
0.5674 | 
0.4607 | 
0.1993 | 
| 4.7407 | 
2300 | 
2.3776 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 4.9465 | 
2400 | 
2.1116 | 
0.7893 | 
0.5505 | 
0.4797 | 
0.2919 | 
0.5697 | 
0.4632 | 
0.2007 | 
	
 
	
		
	
	
		Framework Versions
	
- Python: 3.11.11
 
- Sentence Transformers: 4.1.0
 
- Transformers: 4.51.3
 
- PyTorch: 2.6.0+cu124
 
- Accelerate: 1.6.0
 
- Datasets: 3.5.0
 
- Tokenizers: 0.21.1
 
	
		
	
	
		Citation
	
	
		
	
	
		BibTeX
	
	
		
	
	
		Sentence Transformers
	
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
	
		
	
	
		GISTEmbedLoss
	
@misc{solatorio2024gistembed,
    title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
    author={Aivin V. Solatorio},
    year={2024},
    eprint={2402.16829},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}