pj-mathematician commited on
Commit
442d38f
·
verified ·
1 Parent(s): d490730

Add files using upload-large-folder tool

Browse files
Files changed (50) hide show
  1. README.md +1420 -3
  2. checkpoint-1600/README.md +1412 -0
  3. checkpoint-1600/config.json +30 -0
  4. checkpoint-1600/modules.json +20 -0
  5. checkpoint-1600/tokenizer_config.json +58 -0
  6. checkpoint-1600/vocab.txt +0 -0
  7. checkpoint-1800/1_Pooling/config.json +10 -0
  8. checkpoint-1800/config.json +30 -0
  9. checkpoint-1800/modules.json +20 -0
  10. checkpoint-1800/rng_state.pth +3 -0
  11. checkpoint-1800/scheduler.pt +3 -0
  12. checkpoint-1800/tokenizer.json +0 -0
  13. checkpoint-1800/tokenizer_config.json +58 -0
  14. checkpoint-1800/trainer_state.json +0 -0
  15. checkpoint-1800/training_args.bin +3 -0
  16. checkpoint-1800/vocab.txt +0 -0
  17. checkpoint-2000/1_Pooling/config.json +10 -0
  18. checkpoint-2000/README.md +1416 -0
  19. checkpoint-2000/config.json +30 -0
  20. checkpoint-2000/config_sentence_transformers.json +10 -0
  21. checkpoint-2000/modules.json +20 -0
  22. checkpoint-2000/rng_state.pth +3 -0
  23. checkpoint-2000/scaler.pt +3 -0
  24. checkpoint-2000/scheduler.pt +3 -0
  25. checkpoint-2000/sentence_bert_config.json +4 -0
  26. checkpoint-2000/special_tokens_map.json +37 -0
  27. checkpoint-2000/tokenizer.json +0 -0
  28. checkpoint-2000/tokenizer_config.json +58 -0
  29. checkpoint-2000/trainer_state.json +0 -0
  30. checkpoint-2000/training_args.bin +3 -0
  31. checkpoint-2000/vocab.txt +0 -0
  32. checkpoint-2200/tokenizer_config.json +58 -0
  33. checkpoint-2200/vocab.txt +0 -0
  34. checkpoint-2400/1_Pooling/config.json +10 -0
  35. checkpoint-2400/README.md +1420 -0
  36. checkpoint-2400/config.json +30 -0
  37. checkpoint-2400/config_sentence_transformers.json +10 -0
  38. checkpoint-2400/modules.json +20 -0
  39. checkpoint-2400/sentence_bert_config.json +4 -0
  40. checkpoint-2400/special_tokens_map.json +37 -0
  41. checkpoint-2400/tokenizer.json +0 -0
  42. checkpoint-2400/tokenizer_config.json +58 -0
  43. checkpoint-2400/trainer_state.json +0 -0
  44. eval/Information-Retrieval_evaluation_full_de_results.csv +13 -0
  45. eval/Information-Retrieval_evaluation_full_en_results.csv +13 -0
  46. eval/Information-Retrieval_evaluation_full_es_results.csv +13 -0
  47. eval/Information-Retrieval_evaluation_full_zh_results.csv +13 -0
  48. eval/Information-Retrieval_evaluation_mix_de_results.csv +13 -0
  49. eval/Information-Retrieval_evaluation_mix_es_results.csv +13 -0
  50. eval/Information-Retrieval_evaluation_mix_zh_results.csv +13 -0
README.md CHANGED
@@ -1,3 +1,1420 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:124788
8
+ - loss:GISTEmbedLoss
9
+ base_model: BAAI/bge-small-en-v1.5
10
+ widget:
11
+ - source_sentence: 其他机械、设备和有形货物租赁服务代表
12
+ sentences:
13
+ - 其他机械和设备租赁服务工作人员
14
+ - 电子和电信设备及零部件物流经理
15
+ - 工业主厨
16
+ - source_sentence: 公交车司机
17
+ sentences:
18
+ - 表演灯光设计师
19
+ - 乙烯基地板安装工
20
+ - 国际巴士司机
21
+ - source_sentence: online communication manager
22
+ sentences:
23
+ - trades union official
24
+ - social media manager
25
+ - budget manager
26
+ - source_sentence: Projektmanagerin
27
+ sentences:
28
+ - Projektmanager/Projektmanagerin
29
+ - Category-Manager
30
+ - Infanterist
31
+ - source_sentence: Volksvertreter
32
+ sentences:
33
+ - Parlamentarier
34
+ - Oberbürgermeister
35
+ - Konsul
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - cosine_accuracy@1
40
+ - cosine_accuracy@20
41
+ - cosine_accuracy@50
42
+ - cosine_accuracy@100
43
+ - cosine_accuracy@150
44
+ - cosine_accuracy@200
45
+ - cosine_precision@1
46
+ - cosine_precision@20
47
+ - cosine_precision@50
48
+ - cosine_precision@100
49
+ - cosine_precision@150
50
+ - cosine_precision@200
51
+ - cosine_recall@1
52
+ - cosine_recall@20
53
+ - cosine_recall@50
54
+ - cosine_recall@100
55
+ - cosine_recall@150
56
+ - cosine_recall@200
57
+ - cosine_ndcg@1
58
+ - cosine_ndcg@20
59
+ - cosine_ndcg@50
60
+ - cosine_ndcg@100
61
+ - cosine_ndcg@150
62
+ - cosine_ndcg@200
63
+ - cosine_mrr@1
64
+ - cosine_mrr@20
65
+ - cosine_mrr@50
66
+ - cosine_mrr@100
67
+ - cosine_mrr@150
68
+ - cosine_mrr@200
69
+ - cosine_map@1
70
+ - cosine_map@20
71
+ - cosine_map@50
72
+ - cosine_map@100
73
+ - cosine_map@150
74
+ - cosine_map@200
75
+ - cosine_map@500
76
+ model-index:
77
+ - name: SentenceTransformer based on BAAI/bge-small-en-v1.5
78
+ results:
79
+ - task:
80
+ type: information-retrieval
81
+ name: Information Retrieval
82
+ dataset:
83
+ name: full en
84
+ type: full_en
85
+ metrics:
86
+ - type: cosine_accuracy@1
87
+ value: 0.6571428571428571
88
+ name: Cosine Accuracy@1
89
+ - type: cosine_accuracy@20
90
+ value: 0.9904761904761905
91
+ name: Cosine Accuracy@20
92
+ - type: cosine_accuracy@50
93
+ value: 0.9904761904761905
94
+ name: Cosine Accuracy@50
95
+ - type: cosine_accuracy@100
96
+ value: 0.9904761904761905
97
+ name: Cosine Accuracy@100
98
+ - type: cosine_accuracy@150
99
+ value: 0.9904761904761905
100
+ name: Cosine Accuracy@150
101
+ - type: cosine_accuracy@200
102
+ value: 0.9904761904761905
103
+ name: Cosine Accuracy@200
104
+ - type: cosine_precision@1
105
+ value: 0.6571428571428571
106
+ name: Cosine Precision@1
107
+ - type: cosine_precision@20
108
+ value: 0.5023809523809524
109
+ name: Cosine Precision@20
110
+ - type: cosine_precision@50
111
+ value: 0.30800000000000005
112
+ name: Cosine Precision@50
113
+ - type: cosine_precision@100
114
+ value: 0.18628571428571428
115
+ name: Cosine Precision@100
116
+ - type: cosine_precision@150
117
+ value: 0.1321904761904762
118
+ name: Cosine Precision@150
119
+ - type: cosine_precision@200
120
+ value: 0.10295238095238096
121
+ name: Cosine Precision@200
122
+ - type: cosine_recall@1
123
+ value: 0.0680237860830842
124
+ name: Cosine Recall@1
125
+ - type: cosine_recall@20
126
+ value: 0.5384852963395483
127
+ name: Cosine Recall@20
128
+ - type: cosine_recall@50
129
+ value: 0.7260449077992874
130
+ name: Cosine Recall@50
131
+ - type: cosine_recall@100
132
+ value: 0.8328530702930984
133
+ name: Cosine Recall@100
134
+ - type: cosine_recall@150
135
+ value: 0.8745262490032277
136
+ name: Cosine Recall@150
137
+ - type: cosine_recall@200
138
+ value: 0.9056960100263424
139
+ name: Cosine Recall@200
140
+ - type: cosine_ndcg@1
141
+ value: 0.6571428571428571
142
+ name: Cosine Ndcg@1
143
+ - type: cosine_ndcg@20
144
+ value: 0.6845256340390302
145
+ name: Cosine Ndcg@20
146
+ - type: cosine_ndcg@50
147
+ value: 0.7040452093638513
148
+ name: Cosine Ndcg@50
149
+ - type: cosine_ndcg@100
150
+ value: 0.758935932285001
151
+ name: Cosine Ndcg@100
152
+ - type: cosine_ndcg@150
153
+ value: 0.7774414598948007
154
+ name: Cosine Ndcg@150
155
+ - type: cosine_ndcg@200
156
+ value: 0.7892946240668293
157
+ name: Cosine Ndcg@200
158
+ - type: cosine_mrr@1
159
+ value: 0.6571428571428571
160
+ name: Cosine Mrr@1
161
+ - type: cosine_mrr@20
162
+ value: 0.8103174603174604
163
+ name: Cosine Mrr@20
164
+ - type: cosine_mrr@50
165
+ value: 0.8103174603174604
166
+ name: Cosine Mrr@50
167
+ - type: cosine_mrr@100
168
+ value: 0.8103174603174604
169
+ name: Cosine Mrr@100
170
+ - type: cosine_mrr@150
171
+ value: 0.8103174603174604
172
+ name: Cosine Mrr@150
173
+ - type: cosine_mrr@200
174
+ value: 0.8103174603174604
175
+ name: Cosine Mrr@200
176
+ - type: cosine_map@1
177
+ value: 0.6571428571428571
178
+ name: Cosine Map@1
179
+ - type: cosine_map@20
180
+ value: 0.5418235787800474
181
+ name: Cosine Map@20
182
+ - type: cosine_map@50
183
+ value: 0.5327215779103721
184
+ name: Cosine Map@50
185
+ - type: cosine_map@100
186
+ value: 0.565706253334091
187
+ name: Cosine Map@100
188
+ - type: cosine_map@150
189
+ value: 0.5733951147399983
190
+ name: Cosine Map@150
191
+ - type: cosine_map@200
192
+ value: 0.5771587776237981
193
+ name: Cosine Map@200
194
+ - type: cosine_map@500
195
+ value: 0.5813892452974444
196
+ name: Cosine Map@500
197
+ - task:
198
+ type: information-retrieval
199
+ name: Information Retrieval
200
+ dataset:
201
+ name: full es
202
+ type: full_es
203
+ metrics:
204
+ - type: cosine_accuracy@1
205
+ value: 0.12432432432432433
206
+ name: Cosine Accuracy@1
207
+ - type: cosine_accuracy@20
208
+ value: 1.0
209
+ name: Cosine Accuracy@20
210
+ - type: cosine_accuracy@50
211
+ value: 1.0
212
+ name: Cosine Accuracy@50
213
+ - type: cosine_accuracy@100
214
+ value: 1.0
215
+ name: Cosine Accuracy@100
216
+ - type: cosine_accuracy@150
217
+ value: 1.0
218
+ name: Cosine Accuracy@150
219
+ - type: cosine_accuracy@200
220
+ value: 1.0
221
+ name: Cosine Accuracy@200
222
+ - type: cosine_precision@1
223
+ value: 0.12432432432432433
224
+ name: Cosine Precision@1
225
+ - type: cosine_precision@20
226
+ value: 0.4897297297297297
227
+ name: Cosine Precision@20
228
+ - type: cosine_precision@50
229
+ value: 0.31794594594594594
230
+ name: Cosine Precision@50
231
+ - type: cosine_precision@100
232
+ value: 0.19864864864864865
233
+ name: Cosine Precision@100
234
+ - type: cosine_precision@150
235
+ value: 0.14688288288288287
236
+ name: Cosine Precision@150
237
+ - type: cosine_precision@200
238
+ value: 0.11789189189189188
239
+ name: Cosine Precision@200
240
+ - type: cosine_recall@1
241
+ value: 0.003111544931768446
242
+ name: Cosine Recall@1
243
+ - type: cosine_recall@20
244
+ value: 0.32208664960961075
245
+ name: Cosine Recall@20
246
+ - type: cosine_recall@50
247
+ value: 0.46383117404893587
248
+ name: Cosine Recall@50
249
+ - type: cosine_recall@100
250
+ value: 0.5437537828683688
251
+ name: Cosine Recall@100
252
+ - type: cosine_recall@150
253
+ value: 0.5824968655076911
254
+ name: Cosine Recall@150
255
+ - type: cosine_recall@200
256
+ value: 0.6146962508233631
257
+ name: Cosine Recall@200
258
+ - type: cosine_ndcg@1
259
+ value: 0.12432432432432433
260
+ name: Cosine Ndcg@1
261
+ - type: cosine_ndcg@20
262
+ value: 0.5384577730264963
263
+ name: Cosine Ndcg@20
264
+ - type: cosine_ndcg@50
265
+ value: 0.5012455261232941
266
+ name: Cosine Ndcg@50
267
+ - type: cosine_ndcg@100
268
+ value: 0.5147486871284331
269
+ name: Cosine Ndcg@100
270
+ - type: cosine_ndcg@150
271
+ value: 0.5348194013794069
272
+ name: Cosine Ndcg@150
273
+ - type: cosine_ndcg@200
274
+ value: 0.5505397598095297
275
+ name: Cosine Ndcg@200
276
+ - type: cosine_mrr@1
277
+ value: 0.12432432432432433
278
+ name: Cosine Mrr@1
279
+ - type: cosine_mrr@20
280
+ value: 0.5515015015015016
281
+ name: Cosine Mrr@20
282
+ - type: cosine_mrr@50
283
+ value: 0.5515015015015016
284
+ name: Cosine Mrr@50
285
+ - type: cosine_mrr@100
286
+ value: 0.5515015015015016
287
+ name: Cosine Mrr@100
288
+ - type: cosine_mrr@150
289
+ value: 0.5515015015015016
290
+ name: Cosine Mrr@150
291
+ - type: cosine_mrr@200
292
+ value: 0.5515015015015016
293
+ name: Cosine Mrr@200
294
+ - type: cosine_map@1
295
+ value: 0.12432432432432433
296
+ name: Cosine Map@1
297
+ - type: cosine_map@20
298
+ value: 0.40280623036556984
299
+ name: Cosine Map@20
300
+ - type: cosine_map@50
301
+ value: 0.3421710529569103
302
+ name: Cosine Map@50
303
+ - type: cosine_map@100
304
+ value: 0.33947884152876345
305
+ name: Cosine Map@100
306
+ - type: cosine_map@150
307
+ value: 0.34777364049184706
308
+ name: Cosine Map@150
309
+ - type: cosine_map@200
310
+ value: 0.35339765423089375
311
+ name: Cosine Map@200
312
+ - type: cosine_map@500
313
+ value: 0.3631043007370563
314
+ name: Cosine Map@500
315
+ - task:
316
+ type: information-retrieval
317
+ name: Information Retrieval
318
+ dataset:
319
+ name: full de
320
+ type: full_de
321
+ metrics:
322
+ - type: cosine_accuracy@1
323
+ value: 0.2955665024630542
324
+ name: Cosine Accuracy@1
325
+ - type: cosine_accuracy@20
326
+ value: 0.9211822660098522
327
+ name: Cosine Accuracy@20
328
+ - type: cosine_accuracy@50
329
+ value: 0.9655172413793104
330
+ name: Cosine Accuracy@50
331
+ - type: cosine_accuracy@100
332
+ value: 0.9753694581280788
333
+ name: Cosine Accuracy@100
334
+ - type: cosine_accuracy@150
335
+ value: 0.9852216748768473
336
+ name: Cosine Accuracy@150
337
+ - type: cosine_accuracy@200
338
+ value: 0.9852216748768473
339
+ name: Cosine Accuracy@200
340
+ - type: cosine_precision@1
341
+ value: 0.2955665024630542
342
+ name: Cosine Precision@1
343
+ - type: cosine_precision@20
344
+ value: 0.4246305418719211
345
+ name: Cosine Precision@20
346
+ - type: cosine_precision@50
347
+ value: 0.2813793103448276
348
+ name: Cosine Precision@50
349
+ - type: cosine_precision@100
350
+ value: 0.1800985221674877
351
+ name: Cosine Precision@100
352
+ - type: cosine_precision@150
353
+ value: 0.1362233169129721
354
+ name: Cosine Precision@150
355
+ - type: cosine_precision@200
356
+ value: 0.11054187192118226
357
+ name: Cosine Precision@200
358
+ - type: cosine_recall@1
359
+ value: 0.01108543831680986
360
+ name: Cosine Recall@1
361
+ - type: cosine_recall@20
362
+ value: 0.26139377973111655
363
+ name: Cosine Recall@20
364
+ - type: cosine_recall@50
365
+ value: 0.3835171819041212
366
+ name: Cosine Recall@50
367
+ - type: cosine_recall@100
368
+ value: 0.4676892706124872
369
+ name: Cosine Recall@100
370
+ - type: cosine_recall@150
371
+ value: 0.5183014504752351
372
+ name: Cosine Recall@150
373
+ - type: cosine_recall@200
374
+ value: 0.551717511250073
375
+ name: Cosine Recall@200
376
+ - type: cosine_ndcg@1
377
+ value: 0.2955665024630542
378
+ name: Cosine Ndcg@1
379
+ - type: cosine_ndcg@20
380
+ value: 0.4600580109269636
381
+ name: Cosine Ndcg@20
382
+ - type: cosine_ndcg@50
383
+ value: 0.4229190542750304
384
+ name: Cosine Ndcg@50
385
+ - type: cosine_ndcg@100
386
+ value: 0.4370543021366767
387
+ name: Cosine Ndcg@100
388
+ - type: cosine_ndcg@150
389
+ value: 0.46289045418097646
390
+ name: Cosine Ndcg@150
391
+ - type: cosine_ndcg@200
392
+ value: 0.4796711024513544
393
+ name: Cosine Ndcg@200
394
+ - type: cosine_mrr@1
395
+ value: 0.2955665024630542
396
+ name: Cosine Mrr@1
397
+ - type: cosine_mrr@20
398
+ value: 0.48958320005117995
399
+ name: Cosine Mrr@20
400
+ - type: cosine_mrr@50
401
+ value: 0.49093477998292195
402
+ name: Cosine Mrr@50
403
+ - type: cosine_mrr@100
404
+ value: 0.4910841931964832
405
+ name: Cosine Mrr@100
406
+ - type: cosine_mrr@150
407
+ value: 0.4911623560854821
408
+ name: Cosine Mrr@150
409
+ - type: cosine_mrr@200
410
+ value: 0.4911623560854821
411
+ name: Cosine Mrr@200
412
+ - type: cosine_map@1
413
+ value: 0.2955665024630542
414
+ name: Cosine Map@1
415
+ - type: cosine_map@20
416
+ value: 0.32364842421740225
417
+ name: Cosine Map@20
418
+ - type: cosine_map@50
419
+ value: 0.2643813390551392
420
+ name: Cosine Map@50
421
+ - type: cosine_map@100
422
+ value: 0.2576413544507463
423
+ name: Cosine Map@100
424
+ - type: cosine_map@150
425
+ value: 0.2669126239698539
426
+ name: Cosine Map@150
427
+ - type: cosine_map@200
428
+ value: 0.27215799504041416
429
+ name: Cosine Map@200
430
+ - type: cosine_map@500
431
+ value: 0.28329484592874316
432
+ name: Cosine Map@500
433
+ - task:
434
+ type: information-retrieval
435
+ name: Information Retrieval
436
+ dataset:
437
+ name: full zh
438
+ type: full_zh
439
+ metrics:
440
+ - type: cosine_accuracy@1
441
+ value: 0.34951456310679613
442
+ name: Cosine Accuracy@1
443
+ - type: cosine_accuracy@20
444
+ value: 0.7378640776699029
445
+ name: Cosine Accuracy@20
446
+ - type: cosine_accuracy@50
447
+ value: 0.8252427184466019
448
+ name: Cosine Accuracy@50
449
+ - type: cosine_accuracy@100
450
+ value: 0.8543689320388349
451
+ name: Cosine Accuracy@100
452
+ - type: cosine_accuracy@150
453
+ value: 0.9029126213592233
454
+ name: Cosine Accuracy@150
455
+ - type: cosine_accuracy@200
456
+ value: 0.941747572815534
457
+ name: Cosine Accuracy@200
458
+ - type: cosine_precision@1
459
+ value: 0.34951456310679613
460
+ name: Cosine Precision@1
461
+ - type: cosine_precision@20
462
+ value: 0.17330097087378643
463
+ name: Cosine Precision@20
464
+ - type: cosine_precision@50
465
+ value: 0.09436893203883494
466
+ name: Cosine Precision@50
467
+ - type: cosine_precision@100
468
+ value: 0.05893203883495146
469
+ name: Cosine Precision@100
470
+ - type: cosine_precision@150
471
+ value: 0.0458252427184466
472
+ name: Cosine Precision@150
473
+ - type: cosine_precision@200
474
+ value: 0.03854368932038834
475
+ name: Cosine Precision@200
476
+ - type: cosine_recall@1
477
+ value: 0.02726635297033844
478
+ name: Cosine Recall@1
479
+ - type: cosine_recall@20
480
+ value: 0.17661061398990294
481
+ name: Cosine Recall@20
482
+ - type: cosine_recall@50
483
+ value: 0.2392861843604663
484
+ name: Cosine Recall@50
485
+ - type: cosine_recall@100
486
+ value: 0.2862639658547104
487
+ name: Cosine Recall@100
488
+ - type: cosine_recall@150
489
+ value: 0.3286954340443375
490
+ name: Cosine Recall@150
491
+ - type: cosine_recall@200
492
+ value: 0.3630829587412431
493
+ name: Cosine Recall@200
494
+ - type: cosine_ndcg@1
495
+ value: 0.34951456310679613
496
+ name: Cosine Ndcg@1
497
+ - type: cosine_ndcg@20
498
+ value: 0.24683538489164747
499
+ name: Cosine Ndcg@20
500
+ - type: cosine_ndcg@50
501
+ value: 0.23936442282824424
502
+ name: Cosine Ndcg@50
503
+ - type: cosine_ndcg@100
504
+ value: 0.2618891246293786
505
+ name: Cosine Ndcg@100
506
+ - type: cosine_ndcg@150
507
+ value: 0.27867525817923894
508
+ name: Cosine Ndcg@150
509
+ - type: cosine_ndcg@200
510
+ value: 0.29190260238165355
511
+ name: Cosine Ndcg@200
512
+ - type: cosine_mrr@1
513
+ value: 0.34951456310679613
514
+ name: Cosine Mrr@1
515
+ - type: cosine_mrr@20
516
+ value: 0.44845699819699636
517
+ name: Cosine Mrr@20
518
+ - type: cosine_mrr@50
519
+ value: 0.4514515915598798
520
+ name: Cosine Mrr@50
521
+ - type: cosine_mrr@100
522
+ value: 0.451864194979824
523
+ name: Cosine Mrr@100
524
+ - type: cosine_mrr@150
525
+ value: 0.4522894025156287
526
+ name: Cosine Mrr@150
527
+ - type: cosine_mrr@200
528
+ value: 0.45250948321580986
529
+ name: Cosine Mrr@200
530
+ - type: cosine_map@1
531
+ value: 0.34951456310679613
532
+ name: Cosine Map@1
533
+ - type: cosine_map@20
534
+ value: 0.1470309927546457
535
+ name: Cosine Map@20
536
+ - type: cosine_map@50
537
+ value: 0.12671489844037503
538
+ name: Cosine Map@50
539
+ - type: cosine_map@100
540
+ value: 0.13257859039926595
541
+ name: Cosine Map@100
542
+ - type: cosine_map@150
543
+ value: 0.13523273342027425
544
+ name: Cosine Map@150
545
+ - type: cosine_map@200
546
+ value: 0.13679857663871084
547
+ name: Cosine Map@200
548
+ - type: cosine_map@500
549
+ value: 0.14069476480399515
550
+ name: Cosine Map@500
551
+ - task:
552
+ type: information-retrieval
553
+ name: Information Retrieval
554
+ dataset:
555
+ name: mix es
556
+ type: mix_es
557
+ metrics:
558
+ - type: cosine_accuracy@1
559
+ value: 0.41133645345813835
560
+ name: Cosine Accuracy@1
561
+ - type: cosine_accuracy@20
562
+ value: 0.7613104524180967
563
+ name: Cosine Accuracy@20
564
+ - type: cosine_accuracy@50
565
+ value: 0.8523140925637025
566
+ name: Cosine Accuracy@50
567
+ - type: cosine_accuracy@100
568
+ value: 0.9121164846593863
569
+ name: Cosine Accuracy@100
570
+ - type: cosine_accuracy@150
571
+ value: 0.9417576703068122
572
+ name: Cosine Accuracy@150
573
+ - type: cosine_accuracy@200
574
+ value: 0.9547581903276131
575
+ name: Cosine Accuracy@200
576
+ - type: cosine_precision@1
577
+ value: 0.41133645345813835
578
+ name: Cosine Precision@1
579
+ - type: cosine_precision@20
580
+ value: 0.08920956838273532
581
+ name: Cosine Precision@20
582
+ - type: cosine_precision@50
583
+ value: 0.04175767030681228
584
+ name: Cosine Precision@50
585
+ - type: cosine_precision@100
586
+ value: 0.02291731669266771
587
+ name: Cosine Precision@100
588
+ - type: cosine_precision@150
589
+ value: 0.015905702894782457
590
+ name: Cosine Precision@150
591
+ - type: cosine_precision@200
592
+ value: 0.012243889755590227
593
+ name: Cosine Precision@200
594
+ - type: cosine_recall@1
595
+ value: 0.15653988064284477
596
+ name: Cosine Recall@1
597
+ - type: cosine_recall@20
598
+ value: 0.6593678032835598
599
+ name: Cosine Recall@20
600
+ - type: cosine_recall@50
601
+ value: 0.7704838669737266
602
+ name: Cosine Recall@50
603
+ - type: cosine_recall@100
604
+ value: 0.847169601069757
605
+ name: Cosine Recall@100
606
+ - type: cosine_recall@150
607
+ value: 0.8825483495530297
608
+ name: Cosine Recall@150
609
+ - type: cosine_recall@200
610
+ value: 0.9050999182824455
611
+ name: Cosine Recall@200
612
+ - type: cosine_ndcg@1
613
+ value: 0.41133645345813835
614
+ name: Cosine Ndcg@1
615
+ - type: cosine_ndcg@20
616
+ value: 0.5116672519515115
617
+ name: Cosine Ndcg@20
618
+ - type: cosine_ndcg@50
619
+ value: 0.542000920569141
620
+ name: Cosine Ndcg@50
621
+ - type: cosine_ndcg@100
622
+ value: 0.558759964344595
623
+ name: Cosine Ndcg@100
624
+ - type: cosine_ndcg@150
625
+ value: 0.5655977162199296
626
+ name: Cosine Ndcg@150
627
+ - type: cosine_ndcg@200
628
+ value: 0.5697289878952349
629
+ name: Cosine Ndcg@200
630
+ - type: cosine_mrr@1
631
+ value: 0.41133645345813835
632
+ name: Cosine Mrr@1
633
+ - type: cosine_mrr@20
634
+ value: 0.4978677179556957
635
+ name: Cosine Mrr@20
636
+ - type: cosine_mrr@50
637
+ value: 0.5009543893008301
638
+ name: Cosine Mrr@50
639
+ - type: cosine_mrr@100
640
+ value: 0.5018183607581652
641
+ name: Cosine Mrr@100
642
+ - type: cosine_mrr@150
643
+ value: 0.5020589846475842
644
+ name: Cosine Mrr@150
645
+ - type: cosine_mrr@200
646
+ value: 0.5021321446410069
647
+ name: Cosine Mrr@200
648
+ - type: cosine_map@1
649
+ value: 0.41133645345813835
650
+ name: Cosine Map@1
651
+ - type: cosine_map@20
652
+ value: 0.4263681424556441
653
+ name: Cosine Map@20
654
+ - type: cosine_map@50
655
+ value: 0.4338209025376249
656
+ name: Cosine Map@50
657
+ - type: cosine_map@100
658
+ value: 0.4359939776007631
659
+ name: Cosine Map@100
660
+ - type: cosine_map@150
661
+ value: 0.43656970643226983
662
+ name: Cosine Map@150
663
+ - type: cosine_map@200
664
+ value: 0.4368426702726571
665
+ name: Cosine Map@200
666
+ - type: cosine_map@500
667
+ value: 0.43729529920887905
668
+ name: Cosine Map@500
669
+ - task:
670
+ type: information-retrieval
671
+ name: Information Retrieval
672
+ dataset:
673
+ name: mix de
674
+ type: mix_de
675
+ metrics:
676
+ - type: cosine_accuracy@1
677
+ value: 0.29433177327093085
678
+ name: Cosine Accuracy@1
679
+ - type: cosine_accuracy@20
680
+ value: 0.6500260010400416
681
+ name: Cosine Accuracy@20
682
+ - type: cosine_accuracy@50
683
+ value: 0.7607904316172647
684
+ name: Cosine Accuracy@50
685
+ - type: cosine_accuracy@100
686
+ value: 0.8507540301612064
687
+ name: Cosine Accuracy@100
688
+ - type: cosine_accuracy@150
689
+ value: 0.889755590223609
690
+ name: Cosine Accuracy@150
691
+ - type: cosine_accuracy@200
692
+ value: 0.9204368174726989
693
+ name: Cosine Accuracy@200
694
+ - type: cosine_precision@1
695
+ value: 0.29433177327093085
696
+ name: Cosine Precision@1
697
+ - type: cosine_precision@20
698
+ value: 0.07308892355694228
699
+ name: Cosine Precision@20
700
+ - type: cosine_precision@50
701
+ value: 0.036141445657826315
702
+ name: Cosine Precision@50
703
+ - type: cosine_precision@100
704
+ value: 0.020634425377015084
705
+ name: Cosine Precision@100
706
+ - type: cosine_precision@150
707
+ value: 0.014681920610157736
708
+ name: Cosine Precision@150
709
+ - type: cosine_precision@200
710
+ value: 0.011552262090483621
711
+ name: Cosine Precision@200
712
+ - type: cosine_recall@1
713
+ value: 0.1109031027907783
714
+ name: Cosine Recall@1
715
+ - type: cosine_recall@20
716
+ value: 0.534356040908303
717
+ name: Cosine Recall@20
718
+ - type: cosine_recall@50
719
+ value: 0.6584676720402148
720
+ name: Cosine Recall@50
721
+ - type: cosine_recall@100
722
+ value: 0.752470098803952
723
+ name: Cosine Recall@100
724
+ - type: cosine_recall@150
725
+ value: 0.8025567689374241
726
+ name: Cosine Recall@150
727
+ - type: cosine_recall@200
728
+ value: 0.8417663373201595
729
+ name: Cosine Recall@200
730
+ - type: cosine_ndcg@1
731
+ value: 0.29433177327093085
732
+ name: Cosine Ndcg@1
733
+ - type: cosine_ndcg@20
734
+ value: 0.3919428679123834
735
+ name: Cosine Ndcg@20
736
+ - type: cosine_ndcg@50
737
+ value: 0.425599899100406
738
+ name: Cosine Ndcg@50
739
+ - type: cosine_ndcg@100
740
+ value: 0.4462421162922913
741
+ name: Cosine Ndcg@100
742
+ - type: cosine_ndcg@150
743
+ value: 0.45606402272845137
744
+ name: Cosine Ndcg@150
745
+ - type: cosine_ndcg@200
746
+ value: 0.4632312746623382
747
+ name: Cosine Ndcg@200
748
+ - type: cosine_mrr@1
749
+ value: 0.29433177327093085
750
+ name: Cosine Mrr@1
751
+ - type: cosine_mrr@20
752
+ value: 0.37785395494554963
753
+ name: Cosine Mrr@20
754
+ - type: cosine_mrr@50
755
+ value: 0.38148321196953044
756
+ name: Cosine Mrr@50
757
+ - type: cosine_mrr@100
758
+ value: 0.38274724688611994
759
+ name: Cosine Mrr@100
760
+ - type: cosine_mrr@150
761
+ value: 0.3830666241433367
762
+ name: Cosine Mrr@150
763
+ - type: cosine_mrr@200
764
+ value: 0.3832429794087988
765
+ name: Cosine Mrr@200
766
+ - type: cosine_map@1
767
+ value: 0.29433177327093085
768
+ name: Cosine Map@1
769
+ - type: cosine_map@20
770
+ value: 0.3096720133634083
771
+ name: Cosine Map@20
772
+ - type: cosine_map@50
773
+ value: 0.31740714963039135
774
+ name: Cosine Map@50
775
+ - type: cosine_map@100
776
+ value: 0.31992557448195186
777
+ name: Cosine Map@100
778
+ - type: cosine_map@150
779
+ value: 0.3207379270967634
780
+ name: Cosine Map@150
781
+ - type: cosine_map@200
782
+ value: 0.3211962807999124
783
+ name: Cosine Map@200
784
+ - type: cosine_map@500
785
+ value: 0.3219246841517722
786
+ name: Cosine Map@500
787
+ - task:
788
+ type: information-retrieval
789
+ name: Information Retrieval
790
+ dataset:
791
+ name: mix zh
792
+ type: mix_zh
793
+ metrics:
794
+ - type: cosine_accuracy@1
795
+ value: 0.09707724425887265
796
+ name: Cosine Accuracy@1
797
+ - type: cosine_accuracy@20
798
+ value: 0.3585594989561587
799
+ name: Cosine Accuracy@20
800
+ - type: cosine_accuracy@50
801
+ value: 0.4900835073068894
802
+ name: Cosine Accuracy@50
803
+ - type: cosine_accuracy@100
804
+ value: 0.6002087682672234
805
+ name: Cosine Accuracy@100
806
+ - type: cosine_accuracy@150
807
+ value: 0.6612734864300627
808
+ name: Cosine Accuracy@150
809
+ - type: cosine_accuracy@200
810
+ value: 0.7061586638830898
811
+ name: Cosine Accuracy@200
812
+ - type: cosine_precision@1
813
+ value: 0.09707724425887265
814
+ name: Cosine Precision@1
815
+ - type: cosine_precision@20
816
+ value: 0.03144572025052192
817
+ name: Cosine Precision@20
818
+ - type: cosine_precision@50
819
+ value: 0.018486430062630482
820
+ name: Cosine Precision@50
821
+ - type: cosine_precision@100
822
+ value: 0.011612734864300627
823
+ name: Cosine Precision@100
824
+ - type: cosine_precision@150
825
+ value: 0.008688239387613084
826
+ name: Cosine Precision@150
827
+ - type: cosine_precision@200
828
+ value: 0.007132045929018789
829
+ name: Cosine Precision@200
830
+ - type: cosine_recall@1
831
+ value: 0.032868575405109846
832
+ name: Cosine Recall@1
833
+ - type: cosine_recall@20
834
+ value: 0.20912118500845014
835
+ name: Cosine Recall@20
836
+ - type: cosine_recall@50
837
+ value: 0.305353414852371
838
+ name: Cosine Recall@50
839
+ - type: cosine_recall@100
840
+ value: 0.3834696126188819
841
+ name: Cosine Recall@100
842
+ - type: cosine_recall@150
843
+ value: 0.43087740663419155
844
+ name: Cosine Recall@150
845
+ - type: cosine_recall@200
846
+ value: 0.4714567385757365
847
+ name: Cosine Recall@200
848
+ - type: cosine_ndcg@1
849
+ value: 0.09707724425887265
850
+ name: Cosine Ndcg@1
851
+ - type: cosine_ndcg@20
852
+ value: 0.13847583254619214
853
+ name: Cosine Ndcg@20
854
+ - type: cosine_ndcg@50
855
+ value: 0.16556220177827802
856
+ name: Cosine Ndcg@50
857
+ - type: cosine_ndcg@100
858
+ value: 0.1834871578549362
859
+ name: Cosine Ndcg@100
860
+ - type: cosine_ndcg@150
861
+ value: 0.1930615498205831
862
+ name: Cosine Ndcg@150
863
+ - type: cosine_ndcg@200
864
+ value: 0.20074882110420836
865
+ name: Cosine Ndcg@200
866
+ - type: cosine_mrr@1
867
+ value: 0.09707724425887265
868
+ name: Cosine Mrr@1
869
+ - type: cosine_mrr@20
870
+ value: 0.15220960831749397
871
+ name: Cosine Mrr@20
872
+ - type: cosine_mrr@50
873
+ value: 0.15642354470896513
874
+ name: Cosine Mrr@50
875
+ - type: cosine_mrr@100
876
+ value: 0.1580041495008456
877
+ name: Cosine Mrr@100
878
+ - type: cosine_mrr@150
879
+ value: 0.15850022553236756
880
+ name: Cosine Mrr@150
881
+ - type: cosine_mrr@200
882
+ value: 0.1587557913720219
883
+ name: Cosine Mrr@200
884
+ - type: cosine_map@1
885
+ value: 0.09707724425887265
886
+ name: Cosine Map@1
887
+ - type: cosine_map@20
888
+ value: 0.08751052569766739
889
+ name: Cosine Map@20
890
+ - type: cosine_map@50
891
+ value: 0.09304075210745723
892
+ name: Cosine Map@50
893
+ - type: cosine_map@100
894
+ value: 0.09500635866296525
895
+ name: Cosine Map@100
896
+ - type: cosine_map@150
897
+ value: 0.09570276054684158
898
+ name: Cosine Map@150
899
+ - type: cosine_map@200
900
+ value: 0.09614394028730197
901
+ name: Cosine Map@200
902
+ - type: cosine_map@500
903
+ value: 0.09706713378133278
904
+ name: Cosine Map@500
905
+ ---
906
+
907
+ # Job - Job matching BAAI/bge-small-en-v1.5
908
+
909
+ Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching
910
+
911
+ ## Model Details
912
+
913
+ ### Model Description
914
+ - **Model Type:** Sentence Transformer
915
+ - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
916
+ - **Maximum Sequence Length:** 512 tokens
917
+ - **Output Dimensionality:** 384 dimensions
918
+ - **Similarity Function:** Cosine Similarity
919
+ - **Training Datasets:**
920
+ - full_en
921
+ - full_de
922
+ - full_es
923
+ - full_zh
924
+ - mix
925
+ <!-- - **Language:** Unknown -->
926
+ <!-- - **License:** Unknown -->
927
+
928
+ ### Model Sources
929
+
930
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
931
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
932
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
933
+
934
+ ### Full Model Architecture
935
+
936
+ ```
937
+ SentenceTransformer(
938
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
939
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
940
+ (2): Normalize()
941
+ )
942
+ ```
943
+
944
+ ## Usage
945
+
946
+ ### Direct Usage (Sentence Transformers)
947
+
948
+ First install the Sentence Transformers library:
949
+
950
+ ```bash
951
+ pip install -U sentence-transformers
952
+ ```
953
+
954
+ Then you can load this model and run inference.
955
+ ```python
956
+ from sentence_transformers import SentenceTransformer
957
+
958
+ # Download from the 🤗 Hub
959
+ model = SentenceTransformer("sentence_transformers_model_id")
960
+ # Run inference
961
+ sentences = [
962
+ 'Volksvertreter',
963
+ 'Parlamentarier',
964
+ 'Oberbürgermeister',
965
+ ]
966
+ embeddings = model.encode(sentences)
967
+ print(embeddings.shape)
968
+ # [3, 384]
969
+
970
+ # Get the similarity scores for the embeddings
971
+ similarities = model.similarity(embeddings, embeddings)
972
+ print(similarities.shape)
973
+ # [3, 3]
974
+ ```
975
+
976
+ <!--
977
+ ### Direct Usage (Transformers)
978
+
979
+ <details><summary>Click to see the direct usage in Transformers</summary>
980
+
981
+ </details>
982
+ -->
983
+
984
+ <!--
985
+ ### Downstream Usage (Sentence Transformers)
986
+
987
+ You can finetune this model on your own dataset.
988
+
989
+ <details><summary>Click to expand</summary>
990
+
991
+ </details>
992
+ -->
993
+
994
+ <!--
995
+ ### Out-of-Scope Use
996
+
997
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
998
+ -->
999
+
1000
+ ## Evaluation
1001
+
1002
+ ### Metrics
1003
+
1004
+ #### Information Retrieval
1005
+
1006
+ * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
1007
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
1008
+
1009
+ | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
1010
+ |:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
1011
+ | cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
1012
+ | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9212 | 0.7379 | 0.7613 | 0.65 | 0.3586 |
1013
+ | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9655 | 0.8252 | 0.8523 | 0.7608 | 0.4901 |
1014
+ | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9754 | 0.8544 | 0.9121 | 0.8508 | 0.6002 |
1015
+ | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9852 | 0.9029 | 0.9418 | 0.8898 | 0.6613 |
1016
+ | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9852 | 0.9417 | 0.9548 | 0.9204 | 0.7062 |
1017
+ | cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
1018
+ | cosine_precision@20 | 0.5024 | 0.4897 | 0.4246 | 0.1733 | 0.0892 | 0.0731 | 0.0314 |
1019
+ | cosine_precision@50 | 0.308 | 0.3179 | 0.2814 | 0.0944 | 0.0418 | 0.0361 | 0.0185 |
1020
+ | cosine_precision@100 | 0.1863 | 0.1986 | 0.1801 | 0.0589 | 0.0229 | 0.0206 | 0.0116 |
1021
+ | cosine_precision@150 | 0.1322 | 0.1469 | 0.1362 | 0.0458 | 0.0159 | 0.0147 | 0.0087 |
1022
+ | cosine_precision@200 | 0.103 | 0.1179 | 0.1105 | 0.0385 | 0.0122 | 0.0116 | 0.0071 |
1023
+ | cosine_recall@1 | 0.068 | 0.0031 | 0.0111 | 0.0273 | 0.1565 | 0.1109 | 0.0329 |
1024
+ | cosine_recall@20 | 0.5385 | 0.3221 | 0.2614 | 0.1766 | 0.6594 | 0.5344 | 0.2091 |
1025
+ | cosine_recall@50 | 0.726 | 0.4638 | 0.3835 | 0.2393 | 0.7705 | 0.6585 | 0.3054 |
1026
+ | cosine_recall@100 | 0.8329 | 0.5438 | 0.4677 | 0.2863 | 0.8472 | 0.7525 | 0.3835 |
1027
+ | cosine_recall@150 | 0.8745 | 0.5825 | 0.5183 | 0.3287 | 0.8825 | 0.8026 | 0.4309 |
1028
+ | cosine_recall@200 | 0.9057 | 0.6147 | 0.5517 | 0.3631 | 0.9051 | 0.8418 | 0.4715 |
1029
+ | cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
1030
+ | cosine_ndcg@20 | 0.6845 | 0.5385 | 0.4601 | 0.2468 | 0.5117 | 0.3919 | 0.1385 |
1031
+ | cosine_ndcg@50 | 0.704 | 0.5012 | 0.4229 | 0.2394 | 0.542 | 0.4256 | 0.1656 |
1032
+ | cosine_ndcg@100 | 0.7589 | 0.5147 | 0.4371 | 0.2619 | 0.5588 | 0.4462 | 0.1835 |
1033
+ | cosine_ndcg@150 | 0.7774 | 0.5348 | 0.4629 | 0.2787 | 0.5656 | 0.4561 | 0.1931 |
1034
+ | **cosine_ndcg@200** | **0.7893** | **0.5505** | **0.4797** | **0.2919** | **0.5697** | **0.4632** | **0.2007** |
1035
+ | cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
1036
+ | cosine_mrr@20 | 0.8103 | 0.5515 | 0.4896 | 0.4485 | 0.4979 | 0.3779 | 0.1522 |
1037
+ | cosine_mrr@50 | 0.8103 | 0.5515 | 0.4909 | 0.4515 | 0.501 | 0.3815 | 0.1564 |
1038
+ | cosine_mrr@100 | 0.8103 | 0.5515 | 0.4911 | 0.4519 | 0.5018 | 0.3827 | 0.158 |
1039
+ | cosine_mrr@150 | 0.8103 | 0.5515 | 0.4912 | 0.4523 | 0.5021 | 0.3831 | 0.1585 |
1040
+ | cosine_mrr@200 | 0.8103 | 0.5515 | 0.4912 | 0.4525 | 0.5021 | 0.3832 | 0.1588 |
1041
+ | cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
1042
+ | cosine_map@20 | 0.5418 | 0.4028 | 0.3236 | 0.147 | 0.4264 | 0.3097 | 0.0875 |
1043
+ | cosine_map@50 | 0.5327 | 0.3422 | 0.2644 | 0.1267 | 0.4338 | 0.3174 | 0.093 |
1044
+ | cosine_map@100 | 0.5657 | 0.3395 | 0.2576 | 0.1326 | 0.436 | 0.3199 | 0.095 |
1045
+ | cosine_map@150 | 0.5734 | 0.3478 | 0.2669 | 0.1352 | 0.4366 | 0.3207 | 0.0957 |
1046
+ | cosine_map@200 | 0.5772 | 0.3534 | 0.2722 | 0.1368 | 0.4368 | 0.3212 | 0.0961 |
1047
+ | cosine_map@500 | 0.5814 | 0.3631 | 0.2833 | 0.1407 | 0.4373 | 0.3219 | 0.0971 |
1048
+
1049
+ <!--
1050
+ ## Bias, Risks and Limitations
1051
+
1052
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
1053
+ -->
1054
+
1055
+ <!--
1056
+ ### Recommendations
1057
+
1058
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
1059
+ -->
1060
+
1061
+ ## Training Details
1062
+
1063
+ ### Training Datasets
1064
+ <details><summary>full_en</summary>
1065
+
1066
+ #### full_en
1067
+
1068
+ * Dataset: full_en
1069
+ * Size: 28,880 training samples
1070
+ * Columns: <code>anchor</code> and <code>positive</code>
1071
+ * Approximate statistics based on the first 1000 samples:
1072
+ | | anchor | positive |
1073
+ |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1074
+ | type | string | string |
1075
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.0 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.01 tokens</li><li>max: 13 tokens</li></ul> |
1076
+ * Samples:
1077
+ | anchor | positive |
1078
+ |:-----------------------------------------|:-----------------------------------------|
1079
+ | <code>air commodore</code> | <code>flight lieutenant</code> |
1080
+ | <code>command and control officer</code> | <code>flight officer</code> |
1081
+ | <code>air commodore</code> | <code>command and control officer</code> |
1082
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1083
+ ```json
1084
+ {'guide': SentenceTransformer(
1085
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1086
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1087
+ (2): Normalize()
1088
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1089
+ ```
1090
+ </details>
1091
+ <details><summary>full_de</summary>
1092
+
1093
+ #### full_de
1094
+
1095
+ * Dataset: full_de
1096
+ * Size: 23,023 training samples
1097
+ * Columns: <code>anchor</code> and <code>positive</code>
1098
+ * Approximate statistics based on the first 1000 samples:
1099
+ | | anchor | positive |
1100
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1101
+ | type | string | string |
1102
+ | details | <ul><li>min: 3 tokens</li><li>mean: 11.05 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.43 tokens</li><li>max: 45 tokens</li></ul> |
1103
+ * Samples:
1104
+ | anchor | positive |
1105
+ |:----------------------------------|:-----------------------------------------------------|
1106
+ | <code>Staffelkommandantin</code> | <code>Kommodore</code> |
1107
+ | <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
1108
+ | <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
1109
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1110
+ ```json
1111
+ {'guide': SentenceTransformer(
1112
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1113
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1114
+ (2): Normalize()
1115
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1116
+ ```
1117
+ </details>
1118
+ <details><summary>full_es</summary>
1119
+
1120
+ #### full_es
1121
+
1122
+ * Dataset: full_es
1123
+ * Size: 20,724 training samples
1124
+ * Columns: <code>anchor</code> and <code>positive</code>
1125
+ * Approximate statistics based on the first 1000 samples:
1126
+ | | anchor | positive |
1127
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1128
+ | type | string | string |
1129
+ | details | <ul><li>min: 3 tokens</li><li>mean: 12.95 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.57 tokens</li><li>max: 50 tokens</li></ul> |
1130
+ * Samples:
1131
+ | anchor | positive |
1132
+ |:------------------------------------|:-------------------------------------------|
1133
+ | <code>jefe de escuadrón</code> | <code>instructor</code> |
1134
+ | <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
1135
+ | <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
1136
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1137
+ ```json
1138
+ {'guide': SentenceTransformer(
1139
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1140
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1141
+ (2): Normalize()
1142
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1143
+ ```
1144
+ </details>
1145
+ <details><summary>full_zh</summary>
1146
+
1147
+ #### full_zh
1148
+
1149
+ * Dataset: full_zh
1150
+ * Size: 30,401 training samples
1151
+ * Columns: <code>anchor</code> and <code>positive</code>
1152
+ * Approximate statistics based on the first 1000 samples:
1153
+ | | anchor | positive |
1154
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1155
+ | type | string | string |
1156
+ | details | <ul><li>min: 4 tokens</li><li>mean: 8.36 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.95 tokens</li><li>max: 27 tokens</li></ul> |
1157
+ * Samples:
1158
+ | anchor | positive |
1159
+ |:------------------|:---------------------|
1160
+ | <code>技术总监</code> | <code>技术和运营总监</code> |
1161
+ | <code>技术总监</code> | <code>技术主管</code> |
1162
+ | <code>技术总监</code> | <code>技术艺术总监</code> |
1163
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1164
+ ```json
1165
+ {'guide': SentenceTransformer(
1166
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1167
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1168
+ (2): Normalize()
1169
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1170
+ ```
1171
+ </details>
1172
+ <details><summary>mix</summary>
1173
+
1174
+ #### mix
1175
+
1176
+ * Dataset: mix
1177
+ * Size: 21,760 training samples
1178
+ * Columns: <code>anchor</code> and <code>positive</code>
1179
+ * Approximate statistics based on the first 1000 samples:
1180
+ | | anchor | positive |
1181
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1182
+ | type | string | string |
1183
+ | details | <ul><li>min: 2 tokens</li><li>mean: 5.65 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 10.08 tokens</li><li>max: 30 tokens</li></ul> |
1184
+ * Samples:
1185
+ | anchor | positive |
1186
+ |:------------------------------------------|:----------------------------------------------------------------|
1187
+ | <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
1188
+ | <code>head of technical</code> | <code>directora técnica</code> |
1189
+ | <code>head of technical department</code> | <code>技术艺术总监</code> |
1190
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1191
+ ```json
1192
+ {'guide': SentenceTransformer(
1193
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1194
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1195
+ (2): Normalize()
1196
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1197
+ ```
1198
+ </details>
1199
+
1200
+ ### Training Hyperparameters
1201
+ #### Non-Default Hyperparameters
1202
+
1203
+ - `eval_strategy`: steps
1204
+ - `per_device_train_batch_size`: 128
1205
+ - `per_device_eval_batch_size`: 128
1206
+ - `gradient_accumulation_steps`: 2
1207
+ - `num_train_epochs`: 5
1208
+ - `warmup_ratio`: 0.05
1209
+ - `log_on_each_node`: False
1210
+ - `fp16`: True
1211
+ - `dataloader_num_workers`: 4
1212
+ - `ddp_find_unused_parameters`: True
1213
+ - `batch_sampler`: no_duplicates
1214
+
1215
+ #### All Hyperparameters
1216
+ <details><summary>Click to expand</summary>
1217
+
1218
+ - `overwrite_output_dir`: False
1219
+ - `do_predict`: False
1220
+ - `eval_strategy`: steps
1221
+ - `prediction_loss_only`: True
1222
+ - `per_device_train_batch_size`: 128
1223
+ - `per_device_eval_batch_size`: 128
1224
+ - `per_gpu_train_batch_size`: None
1225
+ - `per_gpu_eval_batch_size`: None
1226
+ - `gradient_accumulation_steps`: 2
1227
+ - `eval_accumulation_steps`: None
1228
+ - `torch_empty_cache_steps`: None
1229
+ - `learning_rate`: 5e-05
1230
+ - `weight_decay`: 0.0
1231
+ - `adam_beta1`: 0.9
1232
+ - `adam_beta2`: 0.999
1233
+ - `adam_epsilon`: 1e-08
1234
+ - `max_grad_norm`: 1.0
1235
+ - `num_train_epochs`: 5
1236
+ - `max_steps`: -1
1237
+ - `lr_scheduler_type`: linear
1238
+ - `lr_scheduler_kwargs`: {}
1239
+ - `warmup_ratio`: 0.05
1240
+ - `warmup_steps`: 0
1241
+ - `log_level`: passive
1242
+ - `log_level_replica`: warning
1243
+ - `log_on_each_node`: False
1244
+ - `logging_nan_inf_filter`: True
1245
+ - `save_safetensors`: True
1246
+ - `save_on_each_node`: False
1247
+ - `save_only_model`: False
1248
+ - `restore_callback_states_from_checkpoint`: False
1249
+ - `no_cuda`: False
1250
+ - `use_cpu`: False
1251
+ - `use_mps_device`: False
1252
+ - `seed`: 42
1253
+ - `data_seed`: None
1254
+ - `jit_mode_eval`: False
1255
+ - `use_ipex`: False
1256
+ - `bf16`: False
1257
+ - `fp16`: True
1258
+ - `fp16_opt_level`: O1
1259
+ - `half_precision_backend`: auto
1260
+ - `bf16_full_eval`: False
1261
+ - `fp16_full_eval`: False
1262
+ - `tf32`: None
1263
+ - `local_rank`: 0
1264
+ - `ddp_backend`: None
1265
+ - `tpu_num_cores`: None
1266
+ - `tpu_metrics_debug`: False
1267
+ - `debug`: []
1268
+ - `dataloader_drop_last`: True
1269
+ - `dataloader_num_workers`: 4
1270
+ - `dataloader_prefetch_factor`: None
1271
+ - `past_index`: -1
1272
+ - `disable_tqdm`: False
1273
+ - `remove_unused_columns`: True
1274
+ - `label_names`: None
1275
+ - `load_best_model_at_end`: False
1276
+ - `ignore_data_skip`: False
1277
+ - `fsdp`: []
1278
+ - `fsdp_min_num_params`: 0
1279
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1280
+ - `tp_size`: 0
1281
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1282
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1283
+ - `deepspeed`: None
1284
+ - `label_smoothing_factor`: 0.0
1285
+ - `optim`: adamw_torch
1286
+ - `optim_args`: None
1287
+ - `adafactor`: False
1288
+ - `group_by_length`: False
1289
+ - `length_column_name`: length
1290
+ - `ddp_find_unused_parameters`: True
1291
+ - `ddp_bucket_cap_mb`: None
1292
+ - `ddp_broadcast_buffers`: False
1293
+ - `dataloader_pin_memory`: True
1294
+ - `dataloader_persistent_workers`: False
1295
+ - `skip_memory_metrics`: True
1296
+ - `use_legacy_prediction_loop`: False
1297
+ - `push_to_hub`: False
1298
+ - `resume_from_checkpoint`: None
1299
+ - `hub_model_id`: None
1300
+ - `hub_strategy`: every_save
1301
+ - `hub_private_repo`: None
1302
+ - `hub_always_push`: False
1303
+ - `gradient_checkpointing`: False
1304
+ - `gradient_checkpointing_kwargs`: None
1305
+ - `include_inputs_for_metrics`: False
1306
+ - `include_for_metrics`: []
1307
+ - `eval_do_concat_batches`: True
1308
+ - `fp16_backend`: auto
1309
+ - `push_to_hub_model_id`: None
1310
+ - `push_to_hub_organization`: None
1311
+ - `mp_parameters`:
1312
+ - `auto_find_batch_size`: False
1313
+ - `full_determinism`: False
1314
+ - `torchdynamo`: None
1315
+ - `ray_scope`: last
1316
+ - `ddp_timeout`: 1800
1317
+ - `torch_compile`: False
1318
+ - `torch_compile_backend`: None
1319
+ - `torch_compile_mode`: None
1320
+ - `include_tokens_per_second`: False
1321
+ - `include_num_input_tokens_seen`: False
1322
+ - `neftune_noise_alpha`: None
1323
+ - `optim_target_modules`: None
1324
+ - `batch_eval_metrics`: False
1325
+ - `eval_on_start`: False
1326
+ - `use_liger_kernel`: False
1327
+ - `eval_use_gather_object`: False
1328
+ - `average_tokens_across_devices`: False
1329
+ - `prompts`: None
1330
+ - `batch_sampler`: no_duplicates
1331
+ - `multi_dataset_batch_sampler`: proportional
1332
+
1333
+ </details>
1334
+
1335
+ ### Training Logs
1336
+ | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
1337
+ |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
1338
+ | -1 | -1 | - | 0.7322 | 0.4690 | 0.3853 | 0.2723 | 0.3209 | 0.2244 | 0.0919 |
1339
+ | 0.0021 | 1 | 23.8878 | - | - | - | - | - | - | - |
1340
+ | 0.2058 | 100 | 7.2098 | - | - | - | - | - | - | - |
1341
+ | 0.4115 | 200 | 4.2635 | 0.7800 | 0.5132 | 0.4268 | 0.2798 | 0.4372 | 0.2996 | 0.1447 |
1342
+ | 0.6173 | 300 | 4.1931 | - | - | - | - | - | - | - |
1343
+ | 0.8230 | 400 | 3.73 | 0.7863 | 0.5274 | 0.4451 | 0.2805 | 0.4762 | 0.3455 | 0.1648 |
1344
+ | 1.0309 | 500 | 3.3569 | - | - | - | - | - | - | - |
1345
+ | 1.2366 | 600 | 3.6464 | 0.7868 | 0.5372 | 0.4540 | 0.2813 | 0.5063 | 0.3794 | 0.1755 |
1346
+ | 1.4424 | 700 | 3.0772 | - | - | - | - | - | - | - |
1347
+ | 1.6481 | 800 | 3.114 | 0.7906 | 0.5391 | 0.4576 | 0.2832 | 0.5221 | 0.4047 | 0.1779 |
1348
+ | 1.8539 | 900 | 2.9246 | - | - | - | - | - | - | - |
1349
+ | 2.0617 | 1000 | 2.7479 | 0.7873 | 0.5423 | 0.4631 | 0.2871 | 0.5323 | 0.4143 | 0.1843 |
1350
+ | 2.2675 | 1100 | 3.049 | - | - | - | - | - | - | - |
1351
+ | 2.4733 | 1200 | 2.6137 | 0.7878 | 0.5418 | 0.4685 | 0.2870 | 0.5470 | 0.4339 | 0.1932 |
1352
+ | 2.6790 | 1300 | 2.8607 | - | - | - | - | - | - | - |
1353
+ | 2.8848 | 1400 | 2.7071 | 0.7889 | 0.5465 | 0.4714 | 0.2891 | 0.5504 | 0.4362 | 0.1944 |
1354
+ | 3.0926 | 1500 | 2.7012 | - | - | - | - | - | - | - |
1355
+ | 3.2984 | 1600 | 2.7423 | 0.7882 | 0.5471 | 0.4748 | 0.2868 | 0.5542 | 0.4454 | 0.1976 |
1356
+ | 3.5041 | 1700 | 2.5316 | - | - | - | - | - | - | - |
1357
+ | 3.7099 | 1800 | 2.6344 | 0.7900 | 0.5498 | 0.4763 | 0.2857 | 0.5639 | 0.4552 | 0.1954 |
1358
+ | 3.9156 | 1900 | 2.4983 | - | - | - | - | - | - | - |
1359
+ | 4.1235 | 2000 | 2.5423 | 0.7894 | 0.5499 | 0.4786 | 0.2870 | 0.5644 | 0.4576 | 0.1974 |
1360
+ | 4.3292 | 2100 | 2.5674 | - | - | - | - | - | - | - |
1361
+ | 4.5350 | 2200 | 2.6237 | 0.7899 | 0.5502 | 0.4802 | 0.2843 | 0.5674 | 0.4607 | 0.1993 |
1362
+ | 4.7407 | 2300 | 2.3776 | - | - | - | - | - | - | - |
1363
+ | 4.9465 | 2400 | 2.1116 | 0.7893 | 0.5505 | 0.4797 | 0.2919 | 0.5697 | 0.4632 | 0.2007 |
1364
+
1365
+
1366
+ ### Framework Versions
1367
+ - Python: 3.11.11
1368
+ - Sentence Transformers: 4.1.0
1369
+ - Transformers: 4.51.3
1370
+ - PyTorch: 2.6.0+cu124
1371
+ - Accelerate: 1.6.0
1372
+ - Datasets: 3.5.0
1373
+ - Tokenizers: 0.21.1
1374
+
1375
+ ## Citation
1376
+
1377
+ ### BibTeX
1378
+
1379
+ #### Sentence Transformers
1380
+ ```bibtex
1381
+ @inproceedings{reimers-2019-sentence-bert,
1382
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1383
+ author = "Reimers, Nils and Gurevych, Iryna",
1384
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1385
+ month = "11",
1386
+ year = "2019",
1387
+ publisher = "Association for Computational Linguistics",
1388
+ url = "https://arxiv.org/abs/1908.10084",
1389
+ }
1390
+ ```
1391
+
1392
+ #### GISTEmbedLoss
1393
+ ```bibtex
1394
+ @misc{solatorio2024gistembed,
1395
+ title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
1396
+ author={Aivin V. Solatorio},
1397
+ year={2024},
1398
+ eprint={2402.16829},
1399
+ archivePrefix={arXiv},
1400
+ primaryClass={cs.LG}
1401
+ }
1402
+ ```
1403
+
1404
+ <!--
1405
+ ## Glossary
1406
+
1407
+ *Clearly define terms in order to be accessible across audiences.*
1408
+ -->
1409
+
1410
+ <!--
1411
+ ## Model Card Authors
1412
+
1413
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1414
+ -->
1415
+
1416
+ <!--
1417
+ ## Model Card Contact
1418
+
1419
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1420
+ -->
checkpoint-1600/README.md ADDED
@@ -0,0 +1,1412 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:124788
8
+ - loss:GISTEmbedLoss
9
+ base_model: BAAI/bge-small-en-v1.5
10
+ widget:
11
+ - source_sentence: 其他机械、设备和有形货物租赁服务代表
12
+ sentences:
13
+ - 其他机械和设备租赁服务工作人员
14
+ - 电子和电信设备及零部件物流经理
15
+ - 工业主厨
16
+ - source_sentence: 公交车司机
17
+ sentences:
18
+ - 表演灯光设计师
19
+ - 乙烯基地板安装工
20
+ - 国际巴士司机
21
+ - source_sentence: online communication manager
22
+ sentences:
23
+ - trades union official
24
+ - social media manager
25
+ - budget manager
26
+ - source_sentence: Projektmanagerin
27
+ sentences:
28
+ - Projektmanager/Projektmanagerin
29
+ - Category-Manager
30
+ - Infanterist
31
+ - source_sentence: Volksvertreter
32
+ sentences:
33
+ - Parlamentarier
34
+ - Oberbürgermeister
35
+ - Konsul
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - cosine_accuracy@1
40
+ - cosine_accuracy@20
41
+ - cosine_accuracy@50
42
+ - cosine_accuracy@100
43
+ - cosine_accuracy@150
44
+ - cosine_accuracy@200
45
+ - cosine_precision@1
46
+ - cosine_precision@20
47
+ - cosine_precision@50
48
+ - cosine_precision@100
49
+ - cosine_precision@150
50
+ - cosine_precision@200
51
+ - cosine_recall@1
52
+ - cosine_recall@20
53
+ - cosine_recall@50
54
+ - cosine_recall@100
55
+ - cosine_recall@150
56
+ - cosine_recall@200
57
+ - cosine_ndcg@1
58
+ - cosine_ndcg@20
59
+ - cosine_ndcg@50
60
+ - cosine_ndcg@100
61
+ - cosine_ndcg@150
62
+ - cosine_ndcg@200
63
+ - cosine_mrr@1
64
+ - cosine_mrr@20
65
+ - cosine_mrr@50
66
+ - cosine_mrr@100
67
+ - cosine_mrr@150
68
+ - cosine_mrr@200
69
+ - cosine_map@1
70
+ - cosine_map@20
71
+ - cosine_map@50
72
+ - cosine_map@100
73
+ - cosine_map@150
74
+ - cosine_map@200
75
+ - cosine_map@500
76
+ model-index:
77
+ - name: SentenceTransformer based on BAAI/bge-small-en-v1.5
78
+ results:
79
+ - task:
80
+ type: information-retrieval
81
+ name: Information Retrieval
82
+ dataset:
83
+ name: full en
84
+ type: full_en
85
+ metrics:
86
+ - type: cosine_accuracy@1
87
+ value: 0.6571428571428571
88
+ name: Cosine Accuracy@1
89
+ - type: cosine_accuracy@20
90
+ value: 0.9904761904761905
91
+ name: Cosine Accuracy@20
92
+ - type: cosine_accuracy@50
93
+ value: 0.9904761904761905
94
+ name: Cosine Accuracy@50
95
+ - type: cosine_accuracy@100
96
+ value: 0.9904761904761905
97
+ name: Cosine Accuracy@100
98
+ - type: cosine_accuracy@150
99
+ value: 0.9904761904761905
100
+ name: Cosine Accuracy@150
101
+ - type: cosine_accuracy@200
102
+ value: 0.9904761904761905
103
+ name: Cosine Accuracy@200
104
+ - type: cosine_precision@1
105
+ value: 0.6571428571428571
106
+ name: Cosine Precision@1
107
+ - type: cosine_precision@20
108
+ value: 0.5019047619047619
109
+ name: Cosine Precision@20
110
+ - type: cosine_precision@50
111
+ value: 0.3087619047619048
112
+ name: Cosine Precision@50
113
+ - type: cosine_precision@100
114
+ value: 0.18676190476190477
115
+ name: Cosine Precision@100
116
+ - type: cosine_precision@150
117
+ value: 0.13282539682539682
118
+ name: Cosine Precision@150
119
+ - type: cosine_precision@200
120
+ value: 0.10247619047619048
121
+ name: Cosine Precision@200
122
+ - type: cosine_recall@1
123
+ value: 0.0680237860830842
124
+ name: Cosine Recall@1
125
+ - type: cosine_recall@20
126
+ value: 0.5375018845788361
127
+ name: Cosine Recall@20
128
+ - type: cosine_recall@50
129
+ value: 0.7285392134841354
130
+ name: Cosine Recall@50
131
+ - type: cosine_recall@100
132
+ value: 0.8322341922506664
133
+ name: Cosine Recall@100
134
+ - type: cosine_recall@150
135
+ value: 0.8801590338170654
136
+ name: Cosine Recall@150
137
+ - type: cosine_recall@200
138
+ value: 0.902805836843439
139
+ name: Cosine Recall@200
140
+ - type: cosine_ndcg@1
141
+ value: 0.6571428571428571
142
+ name: Cosine Ndcg@1
143
+ - type: cosine_ndcg@20
144
+ value: 0.6842763252168604
145
+ name: Cosine Ndcg@20
146
+ - type: cosine_ndcg@50
147
+ value: 0.7050658917677234
148
+ name: Cosine Ndcg@50
149
+ - type: cosine_ndcg@100
150
+ value: 0.7592503116780603
151
+ name: Cosine Ndcg@100
152
+ - type: cosine_ndcg@150
153
+ value: 0.7793217469818706
154
+ name: Cosine Ndcg@150
155
+ - type: cosine_ndcg@200
156
+ value: 0.7881724081346186
157
+ name: Cosine Ndcg@200
158
+ - type: cosine_mrr@1
159
+ value: 0.6571428571428571
160
+ name: Cosine Mrr@1
161
+ - type: cosine_mrr@20
162
+ value: 0.8095238095238095
163
+ name: Cosine Mrr@20
164
+ - type: cosine_mrr@50
165
+ value: 0.8095238095238095
166
+ name: Cosine Mrr@50
167
+ - type: cosine_mrr@100
168
+ value: 0.8095238095238095
169
+ name: Cosine Mrr@100
170
+ - type: cosine_mrr@150
171
+ value: 0.8095238095238095
172
+ name: Cosine Mrr@150
173
+ - type: cosine_mrr@200
174
+ value: 0.8095238095238095
175
+ name: Cosine Mrr@200
176
+ - type: cosine_map@1
177
+ value: 0.6571428571428571
178
+ name: Cosine Map@1
179
+ - type: cosine_map@20
180
+ value: 0.5422881048847362
181
+ name: Cosine Map@20
182
+ - type: cosine_map@50
183
+ value: 0.5339554214943681
184
+ name: Cosine Map@50
185
+ - type: cosine_map@100
186
+ value: 0.5668962932951893
187
+ name: Cosine Map@100
188
+ - type: cosine_map@150
189
+ value: 0.5749918744199348
190
+ name: Cosine Map@150
191
+ - type: cosine_map@200
192
+ value: 0.5778159227565198
193
+ name: Cosine Map@200
194
+ - type: cosine_map@500
195
+ value: 0.5826470723639171
196
+ name: Cosine Map@500
197
+ - task:
198
+ type: information-retrieval
199
+ name: Information Retrieval
200
+ dataset:
201
+ name: full es
202
+ type: full_es
203
+ metrics:
204
+ - type: cosine_accuracy@1
205
+ value: 0.12972972972972974
206
+ name: Cosine Accuracy@1
207
+ - type: cosine_accuracy@20
208
+ value: 1.0
209
+ name: Cosine Accuracy@20
210
+ - type: cosine_accuracy@50
211
+ value: 1.0
212
+ name: Cosine Accuracy@50
213
+ - type: cosine_accuracy@100
214
+ value: 1.0
215
+ name: Cosine Accuracy@100
216
+ - type: cosine_accuracy@150
217
+ value: 1.0
218
+ name: Cosine Accuracy@150
219
+ - type: cosine_accuracy@200
220
+ value: 1.0
221
+ name: Cosine Accuracy@200
222
+ - type: cosine_precision@1
223
+ value: 0.12972972972972974
224
+ name: Cosine Precision@1
225
+ - type: cosine_precision@20
226
+ value: 0.48837837837837833
227
+ name: Cosine Precision@20
228
+ - type: cosine_precision@50
229
+ value: 0.31416216216216214
230
+ name: Cosine Precision@50
231
+ - type: cosine_precision@100
232
+ value: 0.19681081081081084
233
+ name: Cosine Precision@100
234
+ - type: cosine_precision@150
235
+ value: 0.1451891891891892
236
+ name: Cosine Precision@150
237
+ - type: cosine_precision@200
238
+ value: 0.11681081081081081
239
+ name: Cosine Precision@200
240
+ - type: cosine_recall@1
241
+ value: 0.003237252034219735
242
+ name: Cosine Recall@1
243
+ - type: cosine_recall@20
244
+ value: 0.3208378102445782
245
+ name: Cosine Recall@20
246
+ - type: cosine_recall@50
247
+ value: 0.4567910906819754
248
+ name: Cosine Recall@50
249
+ - type: cosine_recall@100
250
+ value: 0.5381915850001637
251
+ name: Cosine Recall@100
252
+ - type: cosine_recall@150
253
+ value: 0.5773791795052656
254
+ name: Cosine Recall@150
255
+ - type: cosine_recall@200
256
+ value: 0.6089669618204154
257
+ name: Cosine Recall@200
258
+ - type: cosine_ndcg@1
259
+ value: 0.12972972972972974
260
+ name: Cosine Ndcg@1
261
+ - type: cosine_ndcg@20
262
+ value: 0.5381393612536364
263
+ name: Cosine Ndcg@20
264
+ - type: cosine_ndcg@50
265
+ value: 0.497412740756737
266
+ name: Cosine Ndcg@50
267
+ - type: cosine_ndcg@100
268
+ value: 0.5113652855488736
269
+ name: Cosine Ndcg@100
270
+ - type: cosine_ndcg@150
271
+ value: 0.5312098014018798
272
+ name: Cosine Ndcg@150
273
+ - type: cosine_ndcg@200
274
+ value: 0.5471404882139521
275
+ name: Cosine Ndcg@200
276
+ - type: cosine_mrr@1
277
+ value: 0.12972972972972974
278
+ name: Cosine Mrr@1
279
+ - type: cosine_mrr@20
280
+ value: 0.5546546546546548
281
+ name: Cosine Mrr@20
282
+ - type: cosine_mrr@50
283
+ value: 0.5546546546546548
284
+ name: Cosine Mrr@50
285
+ - type: cosine_mrr@100
286
+ value: 0.5546546546546548
287
+ name: Cosine Mrr@100
288
+ - type: cosine_mrr@150
289
+ value: 0.5546546546546548
290
+ name: Cosine Mrr@150
291
+ - type: cosine_mrr@200
292
+ value: 0.5546546546546548
293
+ name: Cosine Mrr@200
294
+ - type: cosine_map@1
295
+ value: 0.12972972972972974
296
+ name: Cosine Map@1
297
+ - type: cosine_map@20
298
+ value: 0.4042978961401532
299
+ name: Cosine Map@20
300
+ - type: cosine_map@50
301
+ value: 0.33937321205124016
302
+ name: Cosine Map@50
303
+ - type: cosine_map@100
304
+ value: 0.3368552825005167
305
+ name: Cosine Map@100
306
+ - type: cosine_map@150
307
+ value: 0.34453705443740057
308
+ name: Cosine Map@150
309
+ - type: cosine_map@200
310
+ value: 0.35018165521941574
311
+ name: Cosine Map@200
312
+ - type: cosine_map@500
313
+ value: 0.360079205985487
314
+ name: Cosine Map@500
315
+ - task:
316
+ type: information-retrieval
317
+ name: Information Retrieval
318
+ dataset:
319
+ name: full de
320
+ type: full_de
321
+ metrics:
322
+ - type: cosine_accuracy@1
323
+ value: 0.2955665024630542
324
+ name: Cosine Accuracy@1
325
+ - type: cosine_accuracy@20
326
+ value: 0.9261083743842364
327
+ name: Cosine Accuracy@20
328
+ - type: cosine_accuracy@50
329
+ value: 0.9556650246305419
330
+ name: Cosine Accuracy@50
331
+ - type: cosine_accuracy@100
332
+ value: 0.9802955665024631
333
+ name: Cosine Accuracy@100
334
+ - type: cosine_accuracy@150
335
+ value: 0.9852216748768473
336
+ name: Cosine Accuracy@150
337
+ - type: cosine_accuracy@200
338
+ value: 0.9852216748768473
339
+ name: Cosine Accuracy@200
340
+ - type: cosine_precision@1
341
+ value: 0.2955665024630542
342
+ name: Cosine Precision@1
343
+ - type: cosine_precision@20
344
+ value: 0.4263546798029557
345
+ name: Cosine Precision@20
346
+ - type: cosine_precision@50
347
+ value: 0.2770443349753695
348
+ name: Cosine Precision@50
349
+ - type: cosine_precision@100
350
+ value: 0.17901477832512316
351
+ name: Cosine Precision@100
352
+ - type: cosine_precision@150
353
+ value: 0.13490968801313627
354
+ name: Cosine Precision@150
355
+ - type: cosine_precision@200
356
+ value: 0.10899014778325124
357
+ name: Cosine Precision@200
358
+ - type: cosine_recall@1
359
+ value: 0.01108543831680986
360
+ name: Cosine Recall@1
361
+ - type: cosine_recall@20
362
+ value: 0.26014264456225006
363
+ name: Cosine Recall@20
364
+ - type: cosine_recall@50
365
+ value: 0.37472046766567035
366
+ name: Cosine Recall@50
367
+ - type: cosine_recall@100
368
+ value: 0.4638118170858238
369
+ name: Cosine Recall@100
370
+ - type: cosine_recall@150
371
+ value: 0.5124044299199141
372
+ name: Cosine Recall@150
373
+ - type: cosine_recall@200
374
+ value: 0.5445439134836504
375
+ name: Cosine Recall@200
376
+ - type: cosine_ndcg@1
377
+ value: 0.2955665024630542
378
+ name: Cosine Ndcg@1
379
+ - type: cosine_ndcg@20
380
+ value: 0.45965919662626975
381
+ name: Cosine Ndcg@20
382
+ - type: cosine_ndcg@50
383
+ value: 0.41741219260743895
384
+ name: Cosine Ndcg@50
385
+ - type: cosine_ndcg@100
386
+ value: 0.43399231095446933
387
+ name: Cosine Ndcg@100
388
+ - type: cosine_ndcg@150
389
+ value: 0.45874970458896197
390
+ name: Cosine Ndcg@150
391
+ - type: cosine_ndcg@200
392
+ value: 0.47478895069588406
393
+ name: Cosine Ndcg@200
394
+ - type: cosine_mrr@1
395
+ value: 0.2955665024630542
396
+ name: Cosine Mrr@1
397
+ - type: cosine_mrr@20
398
+ value: 0.4892752997831232
399
+ name: Cosine Mrr@20
400
+ - type: cosine_mrr@50
401
+ value: 0.4902771206282054
402
+ name: Cosine Mrr@50
403
+ - type: cosine_mrr@100
404
+ value: 0.4906981997008054
405
+ name: Cosine Mrr@100
406
+ - type: cosine_mrr@150
407
+ value: 0.4907366849224803
408
+ name: Cosine Mrr@150
409
+ - type: cosine_mrr@200
410
+ value: 0.4907366849224803
411
+ name: Cosine Mrr@200
412
+ - type: cosine_map@1
413
+ value: 0.2955665024630542
414
+ name: Cosine Map@1
415
+ - type: cosine_map@20
416
+ value: 0.3232519233820698
417
+ name: Cosine Map@20
418
+ - type: cosine_map@50
419
+ value: 0.26102657686588665
420
+ name: Cosine Map@50
421
+ - type: cosine_map@100
422
+ value: 0.2553505082151027
423
+ name: Cosine Map@100
424
+ - type: cosine_map@150
425
+ value: 0.2642642274892868
426
+ name: Cosine Map@150
427
+ - type: cosine_map@200
428
+ value: 0.2691969880894716
429
+ name: Cosine Map@200
430
+ - type: cosine_map@500
431
+ value: 0.2803112292648821
432
+ name: Cosine Map@500
433
+ - task:
434
+ type: information-retrieval
435
+ name: Information Retrieval
436
+ dataset:
437
+ name: full zh
438
+ type: full_zh
439
+ metrics:
440
+ - type: cosine_accuracy@1
441
+ value: 0.32038834951456313
442
+ name: Cosine Accuracy@1
443
+ - type: cosine_accuracy@20
444
+ value: 0.7281553398058253
445
+ name: Cosine Accuracy@20
446
+ - type: cosine_accuracy@50
447
+ value: 0.8155339805825242
448
+ name: Cosine Accuracy@50
449
+ - type: cosine_accuracy@100
450
+ value: 0.8640776699029126
451
+ name: Cosine Accuracy@100
452
+ - type: cosine_accuracy@150
453
+ value: 0.912621359223301
454
+ name: Cosine Accuracy@150
455
+ - type: cosine_accuracy@200
456
+ value: 0.941747572815534
457
+ name: Cosine Accuracy@200
458
+ - type: cosine_precision@1
459
+ value: 0.32038834951456313
460
+ name: Cosine Precision@1
461
+ - type: cosine_precision@20
462
+ value: 0.17233009708737868
463
+ name: Cosine Precision@20
464
+ - type: cosine_precision@50
465
+ value: 0.09378640776699028
466
+ name: Cosine Precision@50
467
+ - type: cosine_precision@100
468
+ value: 0.057475728155339814
469
+ name: Cosine Precision@100
470
+ - type: cosine_precision@150
471
+ value: 0.04543689320388349
472
+ name: Cosine Precision@150
473
+ - type: cosine_precision@200
474
+ value: 0.038252427184466024
475
+ name: Cosine Precision@200
476
+ - type: cosine_recall@1
477
+ value: 0.02471280462494792
478
+ name: Cosine Recall@1
479
+ - type: cosine_recall@20
480
+ value: 0.18281935756329049
481
+ name: Cosine Recall@20
482
+ - type: cosine_recall@50
483
+ value: 0.23610648880680668
484
+ name: Cosine Recall@50
485
+ - type: cosine_recall@100
486
+ value: 0.2817401925500015
487
+ name: Cosine Recall@100
488
+ - type: cosine_recall@150
489
+ value: 0.32445039777652873
490
+ name: Cosine Recall@150
491
+ - type: cosine_recall@200
492
+ value: 0.3579914968024133
493
+ name: Cosine Recall@200
494
+ - type: cosine_ndcg@1
495
+ value: 0.32038834951456313
496
+ name: Cosine Ndcg@1
497
+ - type: cosine_ndcg@20
498
+ value: 0.24485074137633345
499
+ name: Cosine Ndcg@20
500
+ - type: cosine_ndcg@50
501
+ value: 0.23539725480038964
502
+ name: Cosine Ndcg@50
503
+ - type: cosine_ndcg@100
504
+ value: 0.25621007342179275
505
+ name: Cosine Ndcg@100
506
+ - type: cosine_ndcg@150
507
+ value: 0.2738226067489134
508
+ name: Cosine Ndcg@150
509
+ - type: cosine_ndcg@200
510
+ value: 0.28679471829998743
511
+ name: Cosine Ndcg@200
512
+ - type: cosine_mrr@1
513
+ value: 0.32038834951456313
514
+ name: Cosine Mrr@1
515
+ - type: cosine_mrr@20
516
+ value: 0.43991789706080797
517
+ name: Cosine Mrr@20
518
+ - type: cosine_mrr@50
519
+ value: 0.44280457808819257
520
+ name: Cosine Mrr@50
521
+ - type: cosine_mrr@100
522
+ value: 0.4434266046741581
523
+ name: Cosine Mrr@100
524
+ - type: cosine_mrr@150
525
+ value: 0.44385297519656264
526
+ name: Cosine Mrr@150
527
+ - type: cosine_mrr@200
528
+ value: 0.44401312541610144
529
+ name: Cosine Mrr@200
530
+ - type: cosine_map@1
531
+ value: 0.32038834951456313
532
+ name: Cosine Map@1
533
+ - type: cosine_map@20
534
+ value: 0.1447951005144368
535
+ name: Cosine Map@20
536
+ - type: cosine_map@50
537
+ value: 0.12441013252369439
538
+ name: Cosine Map@50
539
+ - type: cosine_map@100
540
+ value: 0.12937320652986672
541
+ name: Cosine Map@100
542
+ - type: cosine_map@150
543
+ value: 0.13203408286028803
544
+ name: Cosine Map@150
545
+ - type: cosine_map@200
546
+ value: 0.13359947484648899
547
+ name: Cosine Map@200
548
+ - type: cosine_map@500
549
+ value: 0.1374353051856652
550
+ name: Cosine Map@500
551
+ - task:
552
+ type: information-retrieval
553
+ name: Information Retrieval
554
+ dataset:
555
+ name: mix es
556
+ type: mix_es
557
+ metrics:
558
+ - type: cosine_accuracy@1
559
+ value: 0.39417576703068125
560
+ name: Cosine Accuracy@1
561
+ - type: cosine_accuracy@20
562
+ value: 0.749869994799792
563
+ name: Cosine Accuracy@20
564
+ - type: cosine_accuracy@50
565
+ value: 0.8387935517420697
566
+ name: Cosine Accuracy@50
567
+ - type: cosine_accuracy@100
568
+ value: 0.9011960478419136
569
+ name: Cosine Accuracy@100
570
+ - type: cosine_accuracy@150
571
+ value: 0.9313572542901716
572
+ name: Cosine Accuracy@150
573
+ - type: cosine_accuracy@200
574
+ value: 0.9453978159126365
575
+ name: Cosine Accuracy@200
576
+ - type: cosine_precision@1
577
+ value: 0.39417576703068125
578
+ name: Cosine Precision@1
579
+ - type: cosine_precision@20
580
+ value: 0.0872854914196568
581
+ name: Cosine Precision@20
582
+ - type: cosine_precision@50
583
+ value: 0.040842433697347906
584
+ name: Cosine Precision@50
585
+ - type: cosine_precision@100
586
+ value: 0.022449297971918882
587
+ name: Cosine Precision@100
588
+ - type: cosine_precision@150
589
+ value: 0.015697694574449642
590
+ name: Cosine Precision@150
591
+ - type: cosine_precision@200
592
+ value: 0.012098283931357257
593
+ name: Cosine Precision@200
594
+ - type: cosine_recall@1
595
+ value: 0.14977961023202832
596
+ name: Cosine Recall@1
597
+ - type: cosine_recall@20
598
+ value: 0.6446252135799717
599
+ name: Cosine Recall@20
600
+ - type: cosine_recall@50
601
+ value: 0.7537131961468935
602
+ name: Cosine Recall@50
603
+ - type: cosine_recall@100
604
+ value: 0.8297142361884952
605
+ name: Cosine Recall@100
606
+ - type: cosine_recall@150
607
+ value: 0.8701891885199218
608
+ name: Cosine Recall@150
609
+ - type: cosine_recall@200
610
+ value: 0.8944221578386945
611
+ name: Cosine Recall@200
612
+ - type: cosine_ndcg@1
613
+ value: 0.39417576703068125
614
+ name: Cosine Ndcg@1
615
+ - type: cosine_ndcg@20
616
+ value: 0.49564845544675695
617
+ name: Cosine Ndcg@20
618
+ - type: cosine_ndcg@50
619
+ value: 0.5252351899067441
620
+ name: Cosine Ndcg@50
621
+ - type: cosine_ndcg@100
622
+ value: 0.5419194834352565
623
+ name: Cosine Ndcg@100
624
+ - type: cosine_ndcg@150
625
+ value: 0.549799901314173
626
+ name: Cosine Ndcg@150
627
+ - type: cosine_ndcg@200
628
+ value: 0.5541820214452097
629
+ name: Cosine Ndcg@200
630
+ - type: cosine_mrr@1
631
+ value: 0.39417576703068125
632
+ name: Cosine Mrr@1
633
+ - type: cosine_mrr@20
634
+ value: 0.48161375643951787
635
+ name: Cosine Mrr@20
636
+ - type: cosine_mrr@50
637
+ value: 0.48456339112411073
638
+ name: Cosine Mrr@50
639
+ - type: cosine_mrr@100
640
+ value: 0.48546449697579613
641
+ name: Cosine Mrr@100
642
+ - type: cosine_mrr@150
643
+ value: 0.4857120835710493
644
+ name: Cosine Mrr@150
645
+ - type: cosine_mrr@200
646
+ value: 0.48579472848118294
647
+ name: Cosine Mrr@200
648
+ - type: cosine_map@1
649
+ value: 0.39417576703068125
650
+ name: Cosine Map@1
651
+ - type: cosine_map@20
652
+ value: 0.4098891006090195
653
+ name: Cosine Map@20
654
+ - type: cosine_map@50
655
+ value: 0.41704940718756184
656
+ name: Cosine Map@50
657
+ - type: cosine_map@100
658
+ value: 0.4192177736540712
659
+ name: Cosine Map@100
660
+ - type: cosine_map@150
661
+ value: 0.41989349138490134
662
+ name: Cosine Map@150
663
+ - type: cosine_map@200
664
+ value: 0.4201792836237905
665
+ name: Cosine Map@200
666
+ - type: cosine_map@500
667
+ value: 0.42068145332288714
668
+ name: Cosine Map@500
669
+ - task:
670
+ type: information-retrieval
671
+ name: Information Retrieval
672
+ dataset:
673
+ name: mix de
674
+ type: mix_de
675
+ metrics:
676
+ - type: cosine_accuracy@1
677
+ value: 0.27769110764430577
678
+ name: Cosine Accuracy@1
679
+ - type: cosine_accuracy@20
680
+ value: 0.6349453978159126
681
+ name: Cosine Accuracy@20
682
+ - type: cosine_accuracy@50
683
+ value: 0.7399895995839834
684
+ name: Cosine Accuracy@50
685
+ - type: cosine_accuracy@100
686
+ value: 0.8273530941237649
687
+ name: Cosine Accuracy@100
688
+ - type: cosine_accuracy@150
689
+ value: 0.87467498699948
690
+ name: Cosine Accuracy@150
691
+ - type: cosine_accuracy@200
692
+ value: 0.9053562142485699
693
+ name: Cosine Accuracy@200
694
+ - type: cosine_precision@1
695
+ value: 0.27769110764430577
696
+ name: Cosine Precision@1
697
+ - type: cosine_precision@20
698
+ value: 0.07090483619344773
699
+ name: Cosine Precision@20
700
+ - type: cosine_precision@50
701
+ value: 0.03469578783151326
702
+ name: Cosine Precision@50
703
+ - type: cosine_precision@100
704
+ value: 0.020046801872074884
705
+ name: Cosine Precision@100
706
+ - type: cosine_precision@150
707
+ value: 0.014331773270930834
708
+ name: Cosine Precision@150
709
+ - type: cosine_precision@200
710
+ value: 0.011263650546021842
711
+ name: Cosine Precision@200
712
+ - type: cosine_recall@1
713
+ value: 0.10457618304732187
714
+ name: Cosine Recall@1
715
+ - type: cosine_recall@20
716
+ value: 0.5190240942971052
717
+ name: Cosine Recall@20
718
+ - type: cosine_recall@50
719
+ value: 0.6331426590396949
720
+ name: Cosine Recall@50
721
+ - type: cosine_recall@100
722
+ value: 0.7301352054082164
723
+ name: Cosine Recall@100
724
+ - type: cosine_recall@150
725
+ value: 0.7834720055468886
726
+ name: Cosine Recall@150
727
+ - type: cosine_recall@200
728
+ value: 0.821043508407003
729
+ name: Cosine Recall@200
730
+ - type: cosine_ndcg@1
731
+ value: 0.27769110764430577
732
+ name: Cosine Ndcg@1
733
+ - type: cosine_ndcg@20
734
+ value: 0.37573520751288797
735
+ name: Cosine Ndcg@20
736
+ - type: cosine_ndcg@50
737
+ value: 0.40663904775077114
738
+ name: Cosine Ndcg@50
739
+ - type: cosine_ndcg@100
740
+ value: 0.428125197732266
741
+ name: Cosine Ndcg@100
742
+ - type: cosine_ndcg@150
743
+ value: 0.43851431587679784
744
+ name: Cosine Ndcg@150
745
+ - type: cosine_ndcg@200
746
+ value: 0.44538466038255
747
+ name: Cosine Ndcg@200
748
+ - type: cosine_mrr@1
749
+ value: 0.27769110764430577
750
+ name: Cosine Mrr@1
751
+ - type: cosine_mrr@20
752
+ value: 0.35976204370795134
753
+ name: Cosine Mrr@20
754
+ - type: cosine_mrr@50
755
+ value: 0.36312305918627735
756
+ name: Cosine Mrr@50
757
+ - type: cosine_mrr@100
758
+ value: 0.3643486184027757
759
+ name: Cosine Mrr@100
760
+ - type: cosine_mrr@150
761
+ value: 0.36473033595438964
762
+ name: Cosine Mrr@150
763
+ - type: cosine_mrr@200
764
+ value: 0.36490983745143385
765
+ name: Cosine Mrr@200
766
+ - type: cosine_map@1
767
+ value: 0.27769110764430577
768
+ name: Cosine Map@1
769
+ - type: cosine_map@20
770
+ value: 0.29406713368898557
771
+ name: Cosine Map@20
772
+ - type: cosine_map@50
773
+ value: 0.30113502054518276
774
+ name: Cosine Map@50
775
+ - type: cosine_map@100
776
+ value: 0.30386818472766647
777
+ name: Cosine Map@100
778
+ - type: cosine_map@150
779
+ value: 0.3047008515614112
780
+ name: Cosine Map@150
781
+ - type: cosine_map@200
782
+ value: 0.3051359976327236
783
+ name: Cosine Map@200
784
+ - type: cosine_map@500
785
+ value: 0.3059525328830033
786
+ name: Cosine Map@500
787
+ - task:
788
+ type: information-retrieval
789
+ name: Information Retrieval
790
+ dataset:
791
+ name: mix zh
792
+ type: mix_zh
793
+ metrics:
794
+ - type: cosine_accuracy@1
795
+ value: 0.09394572025052192
796
+ name: Cosine Accuracy@1
797
+ - type: cosine_accuracy@20
798
+ value: 0.35386221294363257
799
+ name: Cosine Accuracy@20
800
+ - type: cosine_accuracy@50
801
+ value: 0.4869519832985386
802
+ name: Cosine Accuracy@50
803
+ - type: cosine_accuracy@100
804
+ value: 0.5955114822546973
805
+ name: Cosine Accuracy@100
806
+ - type: cosine_accuracy@150
807
+ value: 0.662839248434238
808
+ name: Cosine Accuracy@150
809
+ - type: cosine_accuracy@200
810
+ value: 0.7009394572025052
811
+ name: Cosine Accuracy@200
812
+ - type: cosine_precision@1
813
+ value: 0.09394572025052192
814
+ name: Cosine Precision@1
815
+ - type: cosine_precision@20
816
+ value: 0.0308455114822547
817
+ name: Cosine Precision@20
818
+ - type: cosine_precision@50
819
+ value: 0.01838204592901879
820
+ name: Cosine Precision@50
821
+ - type: cosine_precision@100
822
+ value: 0.011565762004175365
823
+ name: Cosine Precision@100
824
+ - type: cosine_precision@150
825
+ value: 0.008764787752261655
826
+ name: Cosine Precision@150
827
+ - type: cosine_precision@200
828
+ value: 0.0070720250521920675
829
+ name: Cosine Precision@200
830
+ - type: cosine_recall@1
831
+ value: 0.03218510786360473
832
+ name: Cosine Recall@1
833
+ - type: cosine_recall@20
834
+ value: 0.2054242469430361
835
+ name: Cosine Recall@20
836
+ - type: cosine_recall@50
837
+ value: 0.3032918282135401
838
+ name: Cosine Recall@50
839
+ - type: cosine_recall@100
840
+ value: 0.3818466878748716
841
+ name: Cosine Recall@100
842
+ - type: cosine_recall@150
843
+ value: 0.4343829737879842
844
+ name: Cosine Recall@150
845
+ - type: cosine_recall@200
846
+ value: 0.46733356529807474
847
+ name: Cosine Recall@200
848
+ - type: cosine_ndcg@1
849
+ value: 0.09394572025052192
850
+ name: Cosine Ndcg@1
851
+ - type: cosine_ndcg@20
852
+ value: 0.13526182724058286
853
+ name: Cosine Ndcg@20
854
+ - type: cosine_ndcg@50
855
+ value: 0.16273403880201556
856
+ name: Cosine Ndcg@50
857
+ - type: cosine_ndcg@100
858
+ value: 0.180685476350191
859
+ name: Cosine Ndcg@100
860
+ - type: cosine_ndcg@150
861
+ value: 0.1913175060746284
862
+ name: Cosine Ndcg@150
863
+ - type: cosine_ndcg@200
864
+ value: 0.19756360996316394
865
+ name: Cosine Ndcg@200
866
+ - type: cosine_mrr@1
867
+ value: 0.09394572025052192
868
+ name: Cosine Mrr@1
869
+ - type: cosine_mrr@20
870
+ value: 0.1486268139347834
871
+ name: Cosine Mrr@20
872
+ - type: cosine_mrr@50
873
+ value: 0.15284573002617868
874
+ name: Cosine Mrr@50
875
+ - type: cosine_mrr@100
876
+ value: 0.15439034982296526
877
+ name: Cosine Mrr@100
878
+ - type: cosine_mrr@150
879
+ value: 0.1549448592625029
880
+ name: Cosine Mrr@150
881
+ - type: cosine_mrr@200
882
+ value: 0.15516529379486205
883
+ name: Cosine Mrr@200
884
+ - type: cosine_map@1
885
+ value: 0.09394572025052192
886
+ name: Cosine Map@1
887
+ - type: cosine_map@20
888
+ value: 0.08491818175758956
889
+ name: Cosine Map@20
890
+ - type: cosine_map@50
891
+ value: 0.09052948294713963
892
+ name: Cosine Map@50
893
+ - type: cosine_map@100
894
+ value: 0.09248066772963609
895
+ name: Cosine Map@100
896
+ - type: cosine_map@150
897
+ value: 0.09326228290776101
898
+ name: Cosine Map@150
899
+ - type: cosine_map@200
900
+ value: 0.09361529404962608
901
+ name: Cosine Map@200
902
+ - type: cosine_map@500
903
+ value: 0.09455859576932324
904
+ name: Cosine Map@500
905
+ ---
906
+
907
+ # SentenceTransformer based on BAAI/bge-small-en-v1.5
908
+
909
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
910
+
911
+ ## Model Details
912
+
913
+ ### Model Description
914
+ - **Model Type:** Sentence Transformer
915
+ - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
916
+ - **Maximum Sequence Length:** 512 tokens
917
+ - **Output Dimensionality:** 384 dimensions
918
+ - **Similarity Function:** Cosine Similarity
919
+ - **Training Datasets:**
920
+ - full_en
921
+ - full_de
922
+ - full_es
923
+ - full_zh
924
+ - mix
925
+ <!-- - **Language:** Unknown -->
926
+ <!-- - **License:** Unknown -->
927
+
928
+ ### Model Sources
929
+
930
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
931
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
932
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
933
+
934
+ ### Full Model Architecture
935
+
936
+ ```
937
+ SentenceTransformer(
938
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
939
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
940
+ (2): Normalize()
941
+ )
942
+ ```
943
+
944
+ ## Usage
945
+
946
+ ### Direct Usage (Sentence Transformers)
947
+
948
+ First install the Sentence Transformers library:
949
+
950
+ ```bash
951
+ pip install -U sentence-transformers
952
+ ```
953
+
954
+ Then you can load this model and run inference.
955
+ ```python
956
+ from sentence_transformers import SentenceTransformer
957
+
958
+ # Download from the 🤗 Hub
959
+ model = SentenceTransformer("sentence_transformers_model_id")
960
+ # Run inference
961
+ sentences = [
962
+ 'Volksvertreter',
963
+ 'Parlamentarier',
964
+ 'Oberbürgermeister',
965
+ ]
966
+ embeddings = model.encode(sentences)
967
+ print(embeddings.shape)
968
+ # [3, 384]
969
+
970
+ # Get the similarity scores for the embeddings
971
+ similarities = model.similarity(embeddings, embeddings)
972
+ print(similarities.shape)
973
+ # [3, 3]
974
+ ```
975
+
976
+ <!--
977
+ ### Direct Usage (Transformers)
978
+
979
+ <details><summary>Click to see the direct usage in Transformers</summary>
980
+
981
+ </details>
982
+ -->
983
+
984
+ <!--
985
+ ### Downstream Usage (Sentence Transformers)
986
+
987
+ You can finetune this model on your own dataset.
988
+
989
+ <details><summary>Click to expand</summary>
990
+
991
+ </details>
992
+ -->
993
+
994
+ <!--
995
+ ### Out-of-Scope Use
996
+
997
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
998
+ -->
999
+
1000
+ ## Evaluation
1001
+
1002
+ ### Metrics
1003
+
1004
+ #### Information Retrieval
1005
+
1006
+ * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
1007
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
1008
+
1009
+ | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
1010
+ |:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
1011
+ | cosine_accuracy@1 | 0.6571 | 0.1297 | 0.2956 | 0.3204 | 0.3942 | 0.2777 | 0.0939 |
1012
+ | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9261 | 0.7282 | 0.7499 | 0.6349 | 0.3539 |
1013
+ | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9557 | 0.8155 | 0.8388 | 0.74 | 0.487 |
1014
+ | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9803 | 0.8641 | 0.9012 | 0.8274 | 0.5955 |
1015
+ | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9852 | 0.9126 | 0.9314 | 0.8747 | 0.6628 |
1016
+ | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9852 | 0.9417 | 0.9454 | 0.9054 | 0.7009 |
1017
+ | cosine_precision@1 | 0.6571 | 0.1297 | 0.2956 | 0.3204 | 0.3942 | 0.2777 | 0.0939 |
1018
+ | cosine_precision@20 | 0.5019 | 0.4884 | 0.4264 | 0.1723 | 0.0873 | 0.0709 | 0.0308 |
1019
+ | cosine_precision@50 | 0.3088 | 0.3142 | 0.277 | 0.0938 | 0.0408 | 0.0347 | 0.0184 |
1020
+ | cosine_precision@100 | 0.1868 | 0.1968 | 0.179 | 0.0575 | 0.0224 | 0.02 | 0.0116 |
1021
+ | cosine_precision@150 | 0.1328 | 0.1452 | 0.1349 | 0.0454 | 0.0157 | 0.0143 | 0.0088 |
1022
+ | cosine_precision@200 | 0.1025 | 0.1168 | 0.109 | 0.0383 | 0.0121 | 0.0113 | 0.0071 |
1023
+ | cosine_recall@1 | 0.068 | 0.0032 | 0.0111 | 0.0247 | 0.1498 | 0.1046 | 0.0322 |
1024
+ | cosine_recall@20 | 0.5375 | 0.3208 | 0.2601 | 0.1828 | 0.6446 | 0.519 | 0.2054 |
1025
+ | cosine_recall@50 | 0.7285 | 0.4568 | 0.3747 | 0.2361 | 0.7537 | 0.6331 | 0.3033 |
1026
+ | cosine_recall@100 | 0.8322 | 0.5382 | 0.4638 | 0.2817 | 0.8297 | 0.7301 | 0.3818 |
1027
+ | cosine_recall@150 | 0.8802 | 0.5774 | 0.5124 | 0.3245 | 0.8702 | 0.7835 | 0.4344 |
1028
+ | cosine_recall@200 | 0.9028 | 0.609 | 0.5445 | 0.358 | 0.8944 | 0.821 | 0.4673 |
1029
+ | cosine_ndcg@1 | 0.6571 | 0.1297 | 0.2956 | 0.3204 | 0.3942 | 0.2777 | 0.0939 |
1030
+ | cosine_ndcg@20 | 0.6843 | 0.5381 | 0.4597 | 0.2449 | 0.4956 | 0.3757 | 0.1353 |
1031
+ | cosine_ndcg@50 | 0.7051 | 0.4974 | 0.4174 | 0.2354 | 0.5252 | 0.4066 | 0.1627 |
1032
+ | cosine_ndcg@100 | 0.7593 | 0.5114 | 0.434 | 0.2562 | 0.5419 | 0.4281 | 0.1807 |
1033
+ | cosine_ndcg@150 | 0.7793 | 0.5312 | 0.4587 | 0.2738 | 0.5498 | 0.4385 | 0.1913 |
1034
+ | **cosine_ndcg@200** | **0.7882** | **0.5471** | **0.4748** | **0.2868** | **0.5542** | **0.4454** | **0.1976** |
1035
+ | cosine_mrr@1 | 0.6571 | 0.1297 | 0.2956 | 0.3204 | 0.3942 | 0.2777 | 0.0939 |
1036
+ | cosine_mrr@20 | 0.8095 | 0.5547 | 0.4893 | 0.4399 | 0.4816 | 0.3598 | 0.1486 |
1037
+ | cosine_mrr@50 | 0.8095 | 0.5547 | 0.4903 | 0.4428 | 0.4846 | 0.3631 | 0.1528 |
1038
+ | cosine_mrr@100 | 0.8095 | 0.5547 | 0.4907 | 0.4434 | 0.4855 | 0.3643 | 0.1544 |
1039
+ | cosine_mrr@150 | 0.8095 | 0.5547 | 0.4907 | 0.4439 | 0.4857 | 0.3647 | 0.1549 |
1040
+ | cosine_mrr@200 | 0.8095 | 0.5547 | 0.4907 | 0.444 | 0.4858 | 0.3649 | 0.1552 |
1041
+ | cosine_map@1 | 0.6571 | 0.1297 | 0.2956 | 0.3204 | 0.3942 | 0.2777 | 0.0939 |
1042
+ | cosine_map@20 | 0.5423 | 0.4043 | 0.3233 | 0.1448 | 0.4099 | 0.2941 | 0.0849 |
1043
+ | cosine_map@50 | 0.534 | 0.3394 | 0.261 | 0.1244 | 0.417 | 0.3011 | 0.0905 |
1044
+ | cosine_map@100 | 0.5669 | 0.3369 | 0.2554 | 0.1294 | 0.4192 | 0.3039 | 0.0925 |
1045
+ | cosine_map@150 | 0.575 | 0.3445 | 0.2643 | 0.132 | 0.4199 | 0.3047 | 0.0933 |
1046
+ | cosine_map@200 | 0.5778 | 0.3502 | 0.2692 | 0.1336 | 0.4202 | 0.3051 | 0.0936 |
1047
+ | cosine_map@500 | 0.5826 | 0.3601 | 0.2803 | 0.1374 | 0.4207 | 0.306 | 0.0946 |
1048
+
1049
+ <!--
1050
+ ## Bias, Risks and Limitations
1051
+
1052
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
1053
+ -->
1054
+
1055
+ <!--
1056
+ ### Recommendations
1057
+
1058
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
1059
+ -->
1060
+
1061
+ ## Training Details
1062
+
1063
+ ### Training Datasets
1064
+ <details><summary>full_en</summary>
1065
+
1066
+ #### full_en
1067
+
1068
+ * Dataset: full_en
1069
+ * Size: 28,880 training samples
1070
+ * Columns: <code>anchor</code> and <code>positive</code>
1071
+ * Approximate statistics based on the first 1000 samples:
1072
+ | | anchor | positive |
1073
+ |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1074
+ | type | string | string |
1075
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.0 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.01 tokens</li><li>max: 13 tokens</li></ul> |
1076
+ * Samples:
1077
+ | anchor | positive |
1078
+ |:-----------------------------------------|:-----------------------------------------|
1079
+ | <code>air commodore</code> | <code>flight lieutenant</code> |
1080
+ | <code>command and control officer</code> | <code>flight officer</code> |
1081
+ | <code>air commodore</code> | <code>command and control officer</code> |
1082
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1083
+ ```json
1084
+ {'guide': SentenceTransformer(
1085
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1086
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1087
+ (2): Normalize()
1088
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1089
+ ```
1090
+ </details>
1091
+ <details><summary>full_de</summary>
1092
+
1093
+ #### full_de
1094
+
1095
+ * Dataset: full_de
1096
+ * Size: 23,023 training samples
1097
+ * Columns: <code>anchor</code> and <code>positive</code>
1098
+ * Approximate statistics based on the first 1000 samples:
1099
+ | | anchor | positive |
1100
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1101
+ | type | string | string |
1102
+ | details | <ul><li>min: 3 tokens</li><li>mean: 11.05 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.43 tokens</li><li>max: 45 tokens</li></ul> |
1103
+ * Samples:
1104
+ | anchor | positive |
1105
+ |:----------------------------------|:-----------------------------------------------------|
1106
+ | <code>Staffelkommandantin</code> | <code>Kommodore</code> |
1107
+ | <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
1108
+ | <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
1109
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1110
+ ```json
1111
+ {'guide': SentenceTransformer(
1112
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1113
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1114
+ (2): Normalize()
1115
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1116
+ ```
1117
+ </details>
1118
+ <details><summary>full_es</summary>
1119
+
1120
+ #### full_es
1121
+
1122
+ * Dataset: full_es
1123
+ * Size: 20,724 training samples
1124
+ * Columns: <code>anchor</code> and <code>positive</code>
1125
+ * Approximate statistics based on the first 1000 samples:
1126
+ | | anchor | positive |
1127
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1128
+ | type | string | string |
1129
+ | details | <ul><li>min: 3 tokens</li><li>mean: 12.95 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.57 tokens</li><li>max: 50 tokens</li></ul> |
1130
+ * Samples:
1131
+ | anchor | positive |
1132
+ |:------------------------------------|:-------------------------------------------|
1133
+ | <code>jefe de escuadrón</code> | <code>instructor</code> |
1134
+ | <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
1135
+ | <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
1136
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1137
+ ```json
1138
+ {'guide': SentenceTransformer(
1139
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1140
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1141
+ (2): Normalize()
1142
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1143
+ ```
1144
+ </details>
1145
+ <details><summary>full_zh</summary>
1146
+
1147
+ #### full_zh
1148
+
1149
+ * Dataset: full_zh
1150
+ * Size: 30,401 training samples
1151
+ * Columns: <code>anchor</code> and <code>positive</code>
1152
+ * Approximate statistics based on the first 1000 samples:
1153
+ | | anchor | positive |
1154
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1155
+ | type | string | string |
1156
+ | details | <ul><li>min: 4 tokens</li><li>mean: 8.36 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.95 tokens</li><li>max: 27 tokens</li></ul> |
1157
+ * Samples:
1158
+ | anchor | positive |
1159
+ |:------------------|:---------------------|
1160
+ | <code>技术总监</code> | <code>技术和运营总监</code> |
1161
+ | <code>技术总监</code> | <code>技术主管</code> |
1162
+ | <code>技术总监</code> | <code>技术艺术总监</code> |
1163
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1164
+ ```json
1165
+ {'guide': SentenceTransformer(
1166
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1167
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1168
+ (2): Normalize()
1169
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1170
+ ```
1171
+ </details>
1172
+ <details><summary>mix</summary>
1173
+
1174
+ #### mix
1175
+
1176
+ * Dataset: mix
1177
+ * Size: 21,760 training samples
1178
+ * Columns: <code>anchor</code> and <code>positive</code>
1179
+ * Approximate statistics based on the first 1000 samples:
1180
+ | | anchor | positive |
1181
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1182
+ | type | string | string |
1183
+ | details | <ul><li>min: 2 tokens</li><li>mean: 5.65 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 10.08 tokens</li><li>max: 30 tokens</li></ul> |
1184
+ * Samples:
1185
+ | anchor | positive |
1186
+ |:------------------------------------------|:----------------------------------------------------------------|
1187
+ | <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
1188
+ | <code>head of technical</code> | <code>directora técnica</code> |
1189
+ | <code>head of technical department</code> | <code>技术艺术总监</code> |
1190
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1191
+ ```json
1192
+ {'guide': SentenceTransformer(
1193
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1194
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1195
+ (2): Normalize()
1196
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1197
+ ```
1198
+ </details>
1199
+
1200
+ ### Training Hyperparameters
1201
+ #### Non-Default Hyperparameters
1202
+
1203
+ - `eval_strategy`: steps
1204
+ - `per_device_train_batch_size`: 128
1205
+ - `per_device_eval_batch_size`: 128
1206
+ - `gradient_accumulation_steps`: 2
1207
+ - `num_train_epochs`: 5
1208
+ - `warmup_ratio`: 0.05
1209
+ - `log_on_each_node`: False
1210
+ - `fp16`: True
1211
+ - `dataloader_num_workers`: 4
1212
+ - `ddp_find_unused_parameters`: True
1213
+ - `batch_sampler`: no_duplicates
1214
+
1215
+ #### All Hyperparameters
1216
+ <details><summary>Click to expand</summary>
1217
+
1218
+ - `overwrite_output_dir`: False
1219
+ - `do_predict`: False
1220
+ - `eval_strategy`: steps
1221
+ - `prediction_loss_only`: True
1222
+ - `per_device_train_batch_size`: 128
1223
+ - `per_device_eval_batch_size`: 128
1224
+ - `per_gpu_train_batch_size`: None
1225
+ - `per_gpu_eval_batch_size`: None
1226
+ - `gradient_accumulation_steps`: 2
1227
+ - `eval_accumulation_steps`: None
1228
+ - `torch_empty_cache_steps`: None
1229
+ - `learning_rate`: 5e-05
1230
+ - `weight_decay`: 0.0
1231
+ - `adam_beta1`: 0.9
1232
+ - `adam_beta2`: 0.999
1233
+ - `adam_epsilon`: 1e-08
1234
+ - `max_grad_norm`: 1.0
1235
+ - `num_train_epochs`: 5
1236
+ - `max_steps`: -1
1237
+ - `lr_scheduler_type`: linear
1238
+ - `lr_scheduler_kwargs`: {}
1239
+ - `warmup_ratio`: 0.05
1240
+ - `warmup_steps`: 0
1241
+ - `log_level`: passive
1242
+ - `log_level_replica`: warning
1243
+ - `log_on_each_node`: False
1244
+ - `logging_nan_inf_filter`: True
1245
+ - `save_safetensors`: True
1246
+ - `save_on_each_node`: False
1247
+ - `save_only_model`: False
1248
+ - `restore_callback_states_from_checkpoint`: False
1249
+ - `no_cuda`: False
1250
+ - `use_cpu`: False
1251
+ - `use_mps_device`: False
1252
+ - `seed`: 42
1253
+ - `data_seed`: None
1254
+ - `jit_mode_eval`: False
1255
+ - `use_ipex`: False
1256
+ - `bf16`: False
1257
+ - `fp16`: True
1258
+ - `fp16_opt_level`: O1
1259
+ - `half_precision_backend`: auto
1260
+ - `bf16_full_eval`: False
1261
+ - `fp16_full_eval`: False
1262
+ - `tf32`: None
1263
+ - `local_rank`: 0
1264
+ - `ddp_backend`: None
1265
+ - `tpu_num_cores`: None
1266
+ - `tpu_metrics_debug`: False
1267
+ - `debug`: []
1268
+ - `dataloader_drop_last`: True
1269
+ - `dataloader_num_workers`: 4
1270
+ - `dataloader_prefetch_factor`: None
1271
+ - `past_index`: -1
1272
+ - `disable_tqdm`: False
1273
+ - `remove_unused_columns`: True
1274
+ - `label_names`: None
1275
+ - `load_best_model_at_end`: False
1276
+ - `ignore_data_skip`: False
1277
+ - `fsdp`: []
1278
+ - `fsdp_min_num_params`: 0
1279
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1280
+ - `tp_size`: 0
1281
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1282
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1283
+ - `deepspeed`: None
1284
+ - `label_smoothing_factor`: 0.0
1285
+ - `optim`: adamw_torch
1286
+ - `optim_args`: None
1287
+ - `adafactor`: False
1288
+ - `group_by_length`: False
1289
+ - `length_column_name`: length
1290
+ - `ddp_find_unused_parameters`: True
1291
+ - `ddp_bucket_cap_mb`: None
1292
+ - `ddp_broadcast_buffers`: False
1293
+ - `dataloader_pin_memory`: True
1294
+ - `dataloader_persistent_workers`: False
1295
+ - `skip_memory_metrics`: True
1296
+ - `use_legacy_prediction_loop`: False
1297
+ - `push_to_hub`: False
1298
+ - `resume_from_checkpoint`: None
1299
+ - `hub_model_id`: None
1300
+ - `hub_strategy`: every_save
1301
+ - `hub_private_repo`: None
1302
+ - `hub_always_push`: False
1303
+ - `gradient_checkpointing`: False
1304
+ - `gradient_checkpointing_kwargs`: None
1305
+ - `include_inputs_for_metrics`: False
1306
+ - `include_for_metrics`: []
1307
+ - `eval_do_concat_batches`: True
1308
+ - `fp16_backend`: auto
1309
+ - `push_to_hub_model_id`: None
1310
+ - `push_to_hub_organization`: None
1311
+ - `mp_parameters`:
1312
+ - `auto_find_batch_size`: False
1313
+ - `full_determinism`: False
1314
+ - `torchdynamo`: None
1315
+ - `ray_scope`: last
1316
+ - `ddp_timeout`: 1800
1317
+ - `torch_compile`: False
1318
+ - `torch_compile_backend`: None
1319
+ - `torch_compile_mode`: None
1320
+ - `include_tokens_per_second`: False
1321
+ - `include_num_input_tokens_seen`: False
1322
+ - `neftune_noise_alpha`: None
1323
+ - `optim_target_modules`: None
1324
+ - `batch_eval_metrics`: False
1325
+ - `eval_on_start`: False
1326
+ - `use_liger_kernel`: False
1327
+ - `eval_use_gather_object`: False
1328
+ - `average_tokens_across_devices`: False
1329
+ - `prompts`: None
1330
+ - `batch_sampler`: no_duplicates
1331
+ - `multi_dataset_batch_sampler`: proportional
1332
+
1333
+ </details>
1334
+
1335
+ ### Training Logs
1336
+ | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
1337
+ |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
1338
+ | -1 | -1 | - | 0.7322 | 0.4690 | 0.3853 | 0.2723 | 0.3209 | 0.2244 | 0.0919 |
1339
+ | 0.0021 | 1 | 23.8878 | - | - | - | - | - | - | - |
1340
+ | 0.2058 | 100 | 7.2098 | - | - | - | - | - | - | - |
1341
+ | 0.4115 | 200 | 4.2635 | 0.7800 | 0.5132 | 0.4268 | 0.2798 | 0.4372 | 0.2996 | 0.1447 |
1342
+ | 0.6173 | 300 | 4.1931 | - | - | - | - | - | - | - |
1343
+ | 0.8230 | 400 | 3.73 | 0.7863 | 0.5274 | 0.4451 | 0.2805 | 0.4762 | 0.3455 | 0.1648 |
1344
+ | 1.0309 | 500 | 3.3569 | - | - | - | - | - | - | - |
1345
+ | 1.2366 | 600 | 3.6464 | 0.7868 | 0.5372 | 0.4540 | 0.2813 | 0.5063 | 0.3794 | 0.1755 |
1346
+ | 1.4424 | 700 | 3.0772 | - | - | - | - | - | - | - |
1347
+ | 1.6481 | 800 | 3.114 | 0.7906 | 0.5391 | 0.4576 | 0.2832 | 0.5221 | 0.4047 | 0.1779 |
1348
+ | 1.8539 | 900 | 2.9246 | - | - | - | - | - | - | - |
1349
+ | 2.0617 | 1000 | 2.7479 | 0.7873 | 0.5423 | 0.4631 | 0.2871 | 0.5323 | 0.4143 | 0.1843 |
1350
+ | 2.2675 | 1100 | 3.049 | - | - | - | - | - | - | - |
1351
+ | 2.4733 | 1200 | 2.6137 | 0.7878 | 0.5418 | 0.4685 | 0.2870 | 0.5470 | 0.4339 | 0.1932 |
1352
+ | 2.6790 | 1300 | 2.8607 | - | - | - | - | - | - | - |
1353
+ | 2.8848 | 1400 | 2.7071 | 0.7889 | 0.5465 | 0.4714 | 0.2891 | 0.5504 | 0.4362 | 0.1944 |
1354
+ | 3.0926 | 1500 | 2.7012 | - | - | - | - | - | - | - |
1355
+ | 3.2984 | 1600 | 2.7423 | 0.7882 | 0.5471 | 0.4748 | 0.2868 | 0.5542 | 0.4454 | 0.1976 |
1356
+
1357
+
1358
+ ### Framework Versions
1359
+ - Python: 3.11.11
1360
+ - Sentence Transformers: 4.1.0
1361
+ - Transformers: 4.51.3
1362
+ - PyTorch: 2.6.0+cu124
1363
+ - Accelerate: 1.6.0
1364
+ - Datasets: 3.5.0
1365
+ - Tokenizers: 0.21.1
1366
+
1367
+ ## Citation
1368
+
1369
+ ### BibTeX
1370
+
1371
+ #### Sentence Transformers
1372
+ ```bibtex
1373
+ @inproceedings{reimers-2019-sentence-bert,
1374
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1375
+ author = "Reimers, Nils and Gurevych, Iryna",
1376
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1377
+ month = "11",
1378
+ year = "2019",
1379
+ publisher = "Association for Computational Linguistics",
1380
+ url = "https://arxiv.org/abs/1908.10084",
1381
+ }
1382
+ ```
1383
+
1384
+ #### GISTEmbedLoss
1385
+ ```bibtex
1386
+ @misc{solatorio2024gistembed,
1387
+ title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
1388
+ author={Aivin V. Solatorio},
1389
+ year={2024},
1390
+ eprint={2402.16829},
1391
+ archivePrefix={arXiv},
1392
+ primaryClass={cs.LG}
1393
+ }
1394
+ ```
1395
+
1396
+ <!--
1397
+ ## Glossary
1398
+
1399
+ *Clearly define terms in order to be accessible across audiences.*
1400
+ -->
1401
+
1402
+ <!--
1403
+ ## Model Card Authors
1404
+
1405
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1406
+ -->
1407
+
1408
+ <!--
1409
+ ## Model Card Contact
1410
+
1411
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1412
+ -->
checkpoint-1600/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 384,
10
+ "id2label": {
11
+ "0": "LABEL_0"
12
+ },
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 1536,
15
+ "label2id": {
16
+ "LABEL_0": 0
17
+ },
18
+ "layer_norm_eps": 1e-12,
19
+ "max_position_embeddings": 512,
20
+ "model_type": "bert",
21
+ "num_attention_heads": 12,
22
+ "num_hidden_layers": 12,
23
+ "pad_token_id": 0,
24
+ "position_embedding_type": "absolute",
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.51.3",
27
+ "type_vocab_size": 2,
28
+ "use_cache": true,
29
+ "vocab_size": 30522
30
+ }
checkpoint-1600/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-1600/tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
checkpoint-1600/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1800/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-1800/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 384,
10
+ "id2label": {
11
+ "0": "LABEL_0"
12
+ },
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 1536,
15
+ "label2id": {
16
+ "LABEL_0": 0
17
+ },
18
+ "layer_norm_eps": 1e-12,
19
+ "max_position_embeddings": 512,
20
+ "model_type": "bert",
21
+ "num_attention_heads": 12,
22
+ "num_hidden_layers": 12,
23
+ "pad_token_id": 0,
24
+ "position_embedding_type": "absolute",
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.51.3",
27
+ "type_vocab_size": 2,
28
+ "use_cache": true,
29
+ "vocab_size": 30522
30
+ }
checkpoint-1800/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-1800/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2437b5c67036935c72b2c072bed4ff74e1c8b6722209e57827521e3614926ba5
3
+ size 14244
checkpoint-1800/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ad34971e3c69650a686a499a0f3766200f8730349122d5039c4709bab310232
3
+ size 1064
checkpoint-1800/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1800/tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
checkpoint-1800/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1800/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:760a4b48c96df095158050a3998b912dc701e81df23c2f6256e0e65915c7301a
3
+ size 5624
checkpoint-1800/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2000/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-2000/README.md ADDED
@@ -0,0 +1,1416 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:124788
8
+ - loss:GISTEmbedLoss
9
+ base_model: BAAI/bge-small-en-v1.5
10
+ widget:
11
+ - source_sentence: 其他机械、设备和有形货物租赁服务代表
12
+ sentences:
13
+ - 其他机械和设备租赁服务工作人员
14
+ - 电子和电信设备及零部件物流经理
15
+ - 工业主厨
16
+ - source_sentence: 公交车司机
17
+ sentences:
18
+ - 表演灯光设计师
19
+ - 乙烯基地板安装工
20
+ - 国际巴士司机
21
+ - source_sentence: online communication manager
22
+ sentences:
23
+ - trades union official
24
+ - social media manager
25
+ - budget manager
26
+ - source_sentence: Projektmanagerin
27
+ sentences:
28
+ - Projektmanager/Projektmanagerin
29
+ - Category-Manager
30
+ - Infanterist
31
+ - source_sentence: Volksvertreter
32
+ sentences:
33
+ - Parlamentarier
34
+ - Oberbürgermeister
35
+ - Konsul
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - cosine_accuracy@1
40
+ - cosine_accuracy@20
41
+ - cosine_accuracy@50
42
+ - cosine_accuracy@100
43
+ - cosine_accuracy@150
44
+ - cosine_accuracy@200
45
+ - cosine_precision@1
46
+ - cosine_precision@20
47
+ - cosine_precision@50
48
+ - cosine_precision@100
49
+ - cosine_precision@150
50
+ - cosine_precision@200
51
+ - cosine_recall@1
52
+ - cosine_recall@20
53
+ - cosine_recall@50
54
+ - cosine_recall@100
55
+ - cosine_recall@150
56
+ - cosine_recall@200
57
+ - cosine_ndcg@1
58
+ - cosine_ndcg@20
59
+ - cosine_ndcg@50
60
+ - cosine_ndcg@100
61
+ - cosine_ndcg@150
62
+ - cosine_ndcg@200
63
+ - cosine_mrr@1
64
+ - cosine_mrr@20
65
+ - cosine_mrr@50
66
+ - cosine_mrr@100
67
+ - cosine_mrr@150
68
+ - cosine_mrr@200
69
+ - cosine_map@1
70
+ - cosine_map@20
71
+ - cosine_map@50
72
+ - cosine_map@100
73
+ - cosine_map@150
74
+ - cosine_map@200
75
+ - cosine_map@500
76
+ model-index:
77
+ - name: SentenceTransformer based on BAAI/bge-small-en-v1.5
78
+ results:
79
+ - task:
80
+ type: information-retrieval
81
+ name: Information Retrieval
82
+ dataset:
83
+ name: full en
84
+ type: full_en
85
+ metrics:
86
+ - type: cosine_accuracy@1
87
+ value: 0.6571428571428571
88
+ name: Cosine Accuracy@1
89
+ - type: cosine_accuracy@20
90
+ value: 0.9904761904761905
91
+ name: Cosine Accuracy@20
92
+ - type: cosine_accuracy@50
93
+ value: 0.9904761904761905
94
+ name: Cosine Accuracy@50
95
+ - type: cosine_accuracy@100
96
+ value: 0.9904761904761905
97
+ name: Cosine Accuracy@100
98
+ - type: cosine_accuracy@150
99
+ value: 0.9904761904761905
100
+ name: Cosine Accuracy@150
101
+ - type: cosine_accuracy@200
102
+ value: 0.9904761904761905
103
+ name: Cosine Accuracy@200
104
+ - type: cosine_precision@1
105
+ value: 0.6571428571428571
106
+ name: Cosine Precision@1
107
+ - type: cosine_precision@20
108
+ value: 0.5057142857142858
109
+ name: Cosine Precision@20
110
+ - type: cosine_precision@50
111
+ value: 0.3085714285714286
112
+ name: Cosine Precision@50
113
+ - type: cosine_precision@100
114
+ value: 0.18685714285714286
115
+ name: Cosine Precision@100
116
+ - type: cosine_precision@150
117
+ value: 0.13263492063492063
118
+ name: Cosine Precision@150
119
+ - type: cosine_precision@200
120
+ value: 0.10261904761904762
121
+ name: Cosine Precision@200
122
+ - type: cosine_recall@1
123
+ value: 0.0680237860830842
124
+ name: Cosine Recall@1
125
+ - type: cosine_recall@20
126
+ value: 0.539814746481506
127
+ name: Cosine Recall@20
128
+ - type: cosine_recall@50
129
+ value: 0.7281788406466259
130
+ name: Cosine Recall@50
131
+ - type: cosine_recall@100
132
+ value: 0.8369695734692713
133
+ name: Cosine Recall@100
134
+ - type: cosine_recall@150
135
+ value: 0.8797734908498225
136
+ name: Cosine Recall@150
137
+ - type: cosine_recall@200
138
+ value: 0.9040821090543185
139
+ name: Cosine Recall@200
140
+ - type: cosine_ndcg@1
141
+ value: 0.6571428571428571
142
+ name: Cosine Ndcg@1
143
+ - type: cosine_ndcg@20
144
+ value: 0.6871892352981543
145
+ name: Cosine Ndcg@20
146
+ - type: cosine_ndcg@50
147
+ value: 0.7057435134474674
148
+ name: Cosine Ndcg@50
149
+ - type: cosine_ndcg@100
150
+ value: 0.7611594394123498
151
+ name: Cosine Ndcg@100
152
+ - type: cosine_ndcg@150
153
+ value: 0.7798336860589586
154
+ name: Cosine Ndcg@150
155
+ - type: cosine_ndcg@200
156
+ value: 0.7894131768304745
157
+ name: Cosine Ndcg@200
158
+ - type: cosine_mrr@1
159
+ value: 0.6571428571428571
160
+ name: Cosine Mrr@1
161
+ - type: cosine_mrr@20
162
+ value: 0.8095238095238095
163
+ name: Cosine Mrr@20
164
+ - type: cosine_mrr@50
165
+ value: 0.8095238095238095
166
+ name: Cosine Mrr@50
167
+ - type: cosine_mrr@100
168
+ value: 0.8095238095238095
169
+ name: Cosine Mrr@100
170
+ - type: cosine_mrr@150
171
+ value: 0.8095238095238095
172
+ name: Cosine Mrr@150
173
+ - type: cosine_mrr@200
174
+ value: 0.8095238095238095
175
+ name: Cosine Mrr@200
176
+ - type: cosine_map@1
177
+ value: 0.6571428571428571
178
+ name: Cosine Map@1
179
+ - type: cosine_map@20
180
+ value: 0.5458017299619246
181
+ name: Cosine Map@20
182
+ - type: cosine_map@50
183
+ value: 0.5350568967293148
184
+ name: Cosine Map@50
185
+ - type: cosine_map@100
186
+ value: 0.5681338314009312
187
+ name: Cosine Map@100
188
+ - type: cosine_map@150
189
+ value: 0.5758337072896192
190
+ name: Cosine Map@150
191
+ - type: cosine_map@200
192
+ value: 0.5788774324789392
193
+ name: Cosine Map@200
194
+ - type: cosine_map@500
195
+ value: 0.5832951333498196
196
+ name: Cosine Map@500
197
+ - task:
198
+ type: information-retrieval
199
+ name: Information Retrieval
200
+ dataset:
201
+ name: full es
202
+ type: full_es
203
+ metrics:
204
+ - type: cosine_accuracy@1
205
+ value: 0.12432432432432433
206
+ name: Cosine Accuracy@1
207
+ - type: cosine_accuracy@20
208
+ value: 1.0
209
+ name: Cosine Accuracy@20
210
+ - type: cosine_accuracy@50
211
+ value: 1.0
212
+ name: Cosine Accuracy@50
213
+ - type: cosine_accuracy@100
214
+ value: 1.0
215
+ name: Cosine Accuracy@100
216
+ - type: cosine_accuracy@150
217
+ value: 1.0
218
+ name: Cosine Accuracy@150
219
+ - type: cosine_accuracy@200
220
+ value: 1.0
221
+ name: Cosine Accuracy@200
222
+ - type: cosine_precision@1
223
+ value: 0.12432432432432433
224
+ name: Cosine Precision@1
225
+ - type: cosine_precision@20
226
+ value: 0.49054054054054047
227
+ name: Cosine Precision@20
228
+ - type: cosine_precision@50
229
+ value: 0.3163243243243243
230
+ name: Cosine Precision@50
231
+ - type: cosine_precision@100
232
+ value: 0.19794594594594597
233
+ name: Cosine Precision@100
234
+ - type: cosine_precision@150
235
+ value: 0.1476036036036036
236
+ name: Cosine Precision@150
237
+ - type: cosine_precision@200
238
+ value: 0.11764864864864866
239
+ name: Cosine Precision@200
240
+ - type: cosine_recall@1
241
+ value: 0.003111544931768446
242
+ name: Cosine Recall@1
243
+ - type: cosine_recall@20
244
+ value: 0.3226281360780687
245
+ name: Cosine Recall@20
246
+ - type: cosine_recall@50
247
+ value: 0.460233186838451
248
+ name: Cosine Recall@50
249
+ - type: cosine_recall@100
250
+ value: 0.541868009988165
251
+ name: Cosine Recall@100
252
+ - type: cosine_recall@150
253
+ value: 0.5852603494024129
254
+ name: Cosine Recall@150
255
+ - type: cosine_recall@200
256
+ value: 0.6129186722388266
257
+ name: Cosine Recall@200
258
+ - type: cosine_ndcg@1
259
+ value: 0.12432432432432433
260
+ name: Cosine Ndcg@1
261
+ - type: cosine_ndcg@20
262
+ value: 0.539216162208845
263
+ name: Cosine Ndcg@20
264
+ - type: cosine_ndcg@50
265
+ value: 0.4996835226060237
266
+ name: Cosine Ndcg@50
267
+ - type: cosine_ndcg@100
268
+ value: 0.5137905428062277
269
+ name: Cosine Ndcg@100
270
+ - type: cosine_ndcg@150
271
+ value: 0.5360687473286022
272
+ name: Cosine Ndcg@150
273
+ - type: cosine_ndcg@200
274
+ value: 0.5499397431446335
275
+ name: Cosine Ndcg@200
276
+ - type: cosine_mrr@1
277
+ value: 0.12432432432432433
278
+ name: Cosine Mrr@1
279
+ - type: cosine_mrr@20
280
+ value: 0.54987987987988
281
+ name: Cosine Mrr@20
282
+ - type: cosine_mrr@50
283
+ value: 0.54987987987988
284
+ name: Cosine Mrr@50
285
+ - type: cosine_mrr@100
286
+ value: 0.54987987987988
287
+ name: Cosine Mrr@100
288
+ - type: cosine_mrr@150
289
+ value: 0.54987987987988
290
+ name: Cosine Mrr@150
291
+ - type: cosine_mrr@200
292
+ value: 0.54987987987988
293
+ name: Cosine Mrr@200
294
+ - type: cosine_map@1
295
+ value: 0.12432432432432433
296
+ name: Cosine Map@1
297
+ - type: cosine_map@20
298
+ value: 0.4038320848933988
299
+ name: Cosine Map@20
300
+ - type: cosine_map@50
301
+ value: 0.34180322548979025
302
+ name: Cosine Map@50
303
+ - type: cosine_map@100
304
+ value: 0.33919520921684143
305
+ name: Cosine Map@100
306
+ - type: cosine_map@150
307
+ value: 0.34836248453935964
308
+ name: Cosine Map@150
309
+ - type: cosine_map@200
310
+ value: 0.3534621616433109
311
+ name: Cosine Map@200
312
+ - type: cosine_map@500
313
+ value: 0.36317607366795296
314
+ name: Cosine Map@500
315
+ - task:
316
+ type: information-retrieval
317
+ name: Information Retrieval
318
+ dataset:
319
+ name: full de
320
+ type: full_de
321
+ metrics:
322
+ - type: cosine_accuracy@1
323
+ value: 0.2955665024630542
324
+ name: Cosine Accuracy@1
325
+ - type: cosine_accuracy@20
326
+ value: 0.9211822660098522
327
+ name: Cosine Accuracy@20
328
+ - type: cosine_accuracy@50
329
+ value: 0.9655172413793104
330
+ name: Cosine Accuracy@50
331
+ - type: cosine_accuracy@100
332
+ value: 0.9753694581280788
333
+ name: Cosine Accuracy@100
334
+ - type: cosine_accuracy@150
335
+ value: 0.9852216748768473
336
+ name: Cosine Accuracy@150
337
+ - type: cosine_accuracy@200
338
+ value: 0.9852216748768473
339
+ name: Cosine Accuracy@200
340
+ - type: cosine_precision@1
341
+ value: 0.2955665024630542
342
+ name: Cosine Precision@1
343
+ - type: cosine_precision@20
344
+ value: 0.4273399014778325
345
+ name: Cosine Precision@20
346
+ - type: cosine_precision@50
347
+ value: 0.2806896551724138
348
+ name: Cosine Precision@50
349
+ - type: cosine_precision@100
350
+ value: 0.17970443349753695
351
+ name: Cosine Precision@100
352
+ - type: cosine_precision@150
353
+ value: 0.13536945812807882
354
+ name: Cosine Precision@150
355
+ - type: cosine_precision@200
356
+ value: 0.11017241379310345
357
+ name: Cosine Precision@200
358
+ - type: cosine_recall@1
359
+ value: 0.01108543831680986
360
+ name: Cosine Recall@1
361
+ - type: cosine_recall@20
362
+ value: 0.2624274710898933
363
+ name: Cosine Recall@20
364
+ - type: cosine_recall@50
365
+ value: 0.3816838951440551
366
+ name: Cosine Recall@50
367
+ - type: cosine_recall@100
368
+ value: 0.466648189283344
369
+ name: Cosine Recall@100
370
+ - type: cosine_recall@150
371
+ value: 0.5156350937800631
372
+ name: Cosine Recall@150
373
+ - type: cosine_recall@200
374
+ value: 0.5501200676805387
375
+ name: Cosine Recall@200
376
+ - type: cosine_ndcg@1
377
+ value: 0.2955665024630542
378
+ name: Cosine Ndcg@1
379
+ - type: cosine_ndcg@20
380
+ value: 0.4612630794197783
381
+ name: Cosine Ndcg@20
382
+ - type: cosine_ndcg@50
383
+ value: 0.4218308857158181
384
+ name: Cosine Ndcg@50
385
+ - type: cosine_ndcg@100
386
+ value: 0.43630012299200127
387
+ name: Cosine Ndcg@100
388
+ - type: cosine_ndcg@150
389
+ value: 0.4611671590034933
390
+ name: Cosine Ndcg@150
391
+ - type: cosine_ndcg@200
392
+ value: 0.47859447889613466
393
+ name: Cosine Ndcg@200
394
+ - type: cosine_mrr@1
395
+ value: 0.2955665024630542
396
+ name: Cosine Mrr@1
397
+ - type: cosine_mrr@20
398
+ value: 0.4902263308667246
399
+ name: Cosine Mrr@20
400
+ - type: cosine_mrr@50
401
+ value: 0.49157690165668283
402
+ name: Cosine Mrr@50
403
+ - type: cosine_mrr@100
404
+ value: 0.491727421634789
405
+ name: Cosine Mrr@100
406
+ - type: cosine_mrr@150
407
+ value: 0.49180457899033725
408
+ name: Cosine Mrr@150
409
+ - type: cosine_mrr@200
410
+ value: 0.49180457899033725
411
+ name: Cosine Mrr@200
412
+ - type: cosine_map@1
413
+ value: 0.2955665024630542
414
+ name: Cosine Map@1
415
+ - type: cosine_map@20
416
+ value: 0.32403320158333687
417
+ name: Cosine Map@20
418
+ - type: cosine_map@50
419
+ value: 0.263929499089501
420
+ name: Cosine Map@50
421
+ - type: cosine_map@100
422
+ value: 0.2571656148623807
423
+ name: Cosine Map@100
424
+ - type: cosine_map@150
425
+ value: 0.2662223711722934
426
+ name: Cosine Map@150
427
+ - type: cosine_map@200
428
+ value: 0.2716128199441605
429
+ name: Cosine Map@200
430
+ - type: cosine_map@500
431
+ value: 0.2826472699200774
432
+ name: Cosine Map@500
433
+ - task:
434
+ type: information-retrieval
435
+ name: Information Retrieval
436
+ dataset:
437
+ name: full zh
438
+ type: full_zh
439
+ metrics:
440
+ - type: cosine_accuracy@1
441
+ value: 0.30097087378640774
442
+ name: Cosine Accuracy@1
443
+ - type: cosine_accuracy@20
444
+ value: 0.6990291262135923
445
+ name: Cosine Accuracy@20
446
+ - type: cosine_accuracy@50
447
+ value: 0.8446601941747572
448
+ name: Cosine Accuracy@50
449
+ - type: cosine_accuracy@100
450
+ value: 0.883495145631068
451
+ name: Cosine Accuracy@100
452
+ - type: cosine_accuracy@150
453
+ value: 0.941747572815534
454
+ name: Cosine Accuracy@150
455
+ - type: cosine_accuracy@200
456
+ value: 0.941747572815534
457
+ name: Cosine Accuracy@200
458
+ - type: cosine_precision@1
459
+ value: 0.30097087378640774
460
+ name: Cosine Precision@1
461
+ - type: cosine_precision@20
462
+ value: 0.16504854368932043
463
+ name: Cosine Precision@20
464
+ - type: cosine_precision@50
465
+ value: 0.0932038834951456
466
+ name: Cosine Precision@50
467
+ - type: cosine_precision@100
468
+ value: 0.05825242718446601
469
+ name: Cosine Precision@100
470
+ - type: cosine_precision@150
471
+ value: 0.04601941747572816
472
+ name: Cosine Precision@150
473
+ - type: cosine_precision@200
474
+ value: 0.038834951456310676
475
+ name: Cosine Precision@200
476
+ - type: cosine_recall@1
477
+ value: 0.02386287516726942
478
+ name: Cosine Recall@1
479
+ - type: cosine_recall@20
480
+ value: 0.1765726567124355
481
+ name: Cosine Recall@20
482
+ - type: cosine_recall@50
483
+ value: 0.23652817418030478
484
+ name: Cosine Recall@50
485
+ - type: cosine_recall@100
486
+ value: 0.2843496525793469
487
+ name: Cosine Recall@100
488
+ - type: cosine_recall@150
489
+ value: 0.3277225727000478
490
+ name: Cosine Recall@150
491
+ - type: cosine_recall@200
492
+ value: 0.3596812771438104
493
+ name: Cosine Recall@200
494
+ - type: cosine_ndcg@1
495
+ value: 0.30097087378640774
496
+ name: Cosine Ndcg@1
497
+ - type: cosine_ndcg@20
498
+ value: 0.23858136398044388
499
+ name: Cosine Ndcg@20
500
+ - type: cosine_ndcg@50
501
+ value: 0.23394297561992747
502
+ name: Cosine Ndcg@50
503
+ - type: cosine_ndcg@100
504
+ value: 0.25614039865630267
505
+ name: Cosine Ndcg@100
506
+ - type: cosine_ndcg@150
507
+ value: 0.2739893276218014
508
+ name: Cosine Ndcg@150
509
+ - type: cosine_ndcg@200
510
+ value: 0.2869614126642384
511
+ name: Cosine Ndcg@200
512
+ - type: cosine_mrr@1
513
+ value: 0.30097087378640774
514
+ name: Cosine Mrr@1
515
+ - type: cosine_mrr@20
516
+ value: 0.4190465134339312
517
+ name: Cosine Mrr@20
518
+ - type: cosine_mrr@50
519
+ value: 0.4240176433261117
520
+ name: Cosine Mrr@50
521
+ - type: cosine_mrr@100
522
+ value: 0.4245497320288698
523
+ name: Cosine Mrr@100
524
+ - type: cosine_mrr@150
525
+ value: 0.4250484654944024
526
+ name: Cosine Mrr@150
527
+ - type: cosine_mrr@200
528
+ value: 0.4250484654944024
529
+ name: Cosine Mrr@200
530
+ - type: cosine_map@1
531
+ value: 0.30097087378640774
532
+ name: Cosine Map@1
533
+ - type: cosine_map@20
534
+ value: 0.1429307444790631
535
+ name: Cosine Map@20
536
+ - type: cosine_map@50
537
+ value: 0.12440485302105762
538
+ name: Cosine Map@50
539
+ - type: cosine_map@100
540
+ value: 0.12975707309312245
541
+ name: Cosine Map@100
542
+ - type: cosine_map@150
543
+ value: 0.1324151603536725
544
+ name: Cosine Map@150
545
+ - type: cosine_map@200
546
+ value: 0.13400586423473068
547
+ name: Cosine Map@200
548
+ - type: cosine_map@500
549
+ value: 0.13792557615284717
550
+ name: Cosine Map@500
551
+ - task:
552
+ type: information-retrieval
553
+ name: Information Retrieval
554
+ dataset:
555
+ name: mix es
556
+ type: mix_es
557
+ metrics:
558
+ - type: cosine_accuracy@1
559
+ value: 0.40561622464898595
560
+ name: Cosine Accuracy@1
561
+ - type: cosine_accuracy@20
562
+ value: 0.7555902236089443
563
+ name: Cosine Accuracy@20
564
+ - type: cosine_accuracy@50
565
+ value: 0.8465938637545501
566
+ name: Cosine Accuracy@50
567
+ - type: cosine_accuracy@100
568
+ value: 0.9053562142485699
569
+ name: Cosine Accuracy@100
570
+ - type: cosine_accuracy@150
571
+ value: 0.9391575663026521
572
+ name: Cosine Accuracy@150
573
+ - type: cosine_accuracy@200
574
+ value: 0.9521580863234529
575
+ name: Cosine Accuracy@200
576
+ - type: cosine_precision@1
577
+ value: 0.40561622464898595
578
+ name: Cosine Precision@1
579
+ - type: cosine_precision@20
580
+ value: 0.08801352054082164
581
+ name: Cosine Precision@20
582
+ - type: cosine_precision@50
583
+ value: 0.0414560582423297
584
+ name: Cosine Precision@50
585
+ - type: cosine_precision@100
586
+ value: 0.02274050962038482
587
+ name: Cosine Precision@100
588
+ - type: cosine_precision@150
589
+ value: 0.01580863234529381
590
+ name: Cosine Precision@150
591
+ - type: cosine_precision@200
592
+ value: 0.012181487259490382
593
+ name: Cosine Precision@200
594
+ - type: cosine_recall@1
595
+ value: 0.15422578807914222
596
+ name: Cosine Recall@1
597
+ - type: cosine_recall@20
598
+ value: 0.6504234455092489
599
+ name: Cosine Recall@20
600
+ - type: cosine_recall@50
601
+ value: 0.7645209617908526
602
+ name: Cosine Recall@50
603
+ - type: cosine_recall@100
604
+ value: 0.8407386771661344
605
+ name: Cosine Recall@100
606
+ - type: cosine_recall@150
607
+ value: 0.8772614714112373
608
+ name: Cosine Recall@150
609
+ - type: cosine_recall@200
610
+ value: 0.9011477601961221
611
+ name: Cosine Recall@200
612
+ - type: cosine_ndcg@1
613
+ value: 0.40561622464898595
614
+ name: Cosine Ndcg@1
615
+ - type: cosine_ndcg@20
616
+ value: 0.5052527283785204
617
+ name: Cosine Ndcg@20
618
+ - type: cosine_ndcg@50
619
+ value: 0.5363668402911114
620
+ name: Cosine Ndcg@50
621
+ - type: cosine_ndcg@100
622
+ value: 0.5529351239282845
623
+ name: Cosine Ndcg@100
624
+ - type: cosine_ndcg@150
625
+ value: 0.5600105253735999
626
+ name: Cosine Ndcg@150
627
+ - type: cosine_ndcg@200
628
+ value: 0.5643581500059056
629
+ name: Cosine Ndcg@200
630
+ - type: cosine_mrr@1
631
+ value: 0.40561622464898595
632
+ name: Cosine Mrr@1
633
+ - type: cosine_mrr@20
634
+ value: 0.49193080862589195
635
+ name: Cosine Mrr@20
636
+ - type: cosine_mrr@50
637
+ value: 0.49497073018920573
638
+ name: Cosine Mrr@50
639
+ - type: cosine_mrr@100
640
+ value: 0.4958131715411002
641
+ name: Cosine Mrr@100
642
+ - type: cosine_mrr@150
643
+ value: 0.4960911044064609
644
+ name: Cosine Mrr@150
645
+ - type: cosine_mrr@200
646
+ value: 0.49616673564150066
647
+ name: Cosine Mrr@200
648
+ - type: cosine_map@1
649
+ value: 0.40561622464898595
650
+ name: Cosine Map@1
651
+ - type: cosine_map@20
652
+ value: 0.42113760176243775
653
+ name: Cosine Map@20
654
+ - type: cosine_map@50
655
+ value: 0.4288029559186059
656
+ name: Cosine Map@50
657
+ - type: cosine_map@100
658
+ value: 0.4309354633228117
659
+ name: Cosine Map@100
660
+ - type: cosine_map@150
661
+ value: 0.43151233276792966
662
+ name: Cosine Map@150
663
+ - type: cosine_map@200
664
+ value: 0.4318026647046382
665
+ name: Cosine Map@200
666
+ - type: cosine_map@500
667
+ value: 0.4322791851958394
668
+ name: Cosine Map@500
669
+ - task:
670
+ type: information-retrieval
671
+ name: Information Retrieval
672
+ dataset:
673
+ name: mix de
674
+ type: mix_de
675
+ metrics:
676
+ - type: cosine_accuracy@1
677
+ value: 0.28965158606344255
678
+ name: Cosine Accuracy@1
679
+ - type: cosine_accuracy@20
680
+ value: 0.6453458138325533
681
+ name: Cosine Accuracy@20
682
+ - type: cosine_accuracy@50
683
+ value: 0.7514300572022881
684
+ name: Cosine Accuracy@50
685
+ - type: cosine_accuracy@100
686
+ value: 0.8424336973478939
687
+ name: Cosine Accuracy@100
688
+ - type: cosine_accuracy@150
689
+ value: 0.8840353614144566
690
+ name: Cosine Accuracy@150
691
+ - type: cosine_accuracy@200
692
+ value: 0.9131565262610505
693
+ name: Cosine Accuracy@200
694
+ - type: cosine_precision@1
695
+ value: 0.28965158606344255
696
+ name: Cosine Precision@1
697
+ - type: cosine_precision@20
698
+ value: 0.07230889235569424
699
+ name: Cosine Precision@20
700
+ - type: cosine_precision@50
701
+ value: 0.035559022360894435
702
+ name: Cosine Precision@50
703
+ - type: cosine_precision@100
704
+ value: 0.02045241809672387
705
+ name: Cosine Precision@100
706
+ - type: cosine_precision@150
707
+ value: 0.014543248396602529
708
+ name: Cosine Precision@150
709
+ - type: cosine_precision@200
710
+ value: 0.011443057722308895
711
+ name: Cosine Precision@200
712
+ - type: cosine_recall@1
713
+ value: 0.10873634945397814
714
+ name: Cosine Recall@1
715
+ - type: cosine_recall@20
716
+ value: 0.5285491419656786
717
+ name: Cosine Recall@20
718
+ - type: cosine_recall@50
719
+ value: 0.6476772404229503
720
+ name: Cosine Recall@50
721
+ - type: cosine_recall@100
722
+ value: 0.7456058242329694
723
+ name: Cosine Recall@100
724
+ - type: cosine_recall@150
725
+ value: 0.7947564569249437
726
+ name: Cosine Recall@150
727
+ - type: cosine_recall@200
728
+ value: 0.8333680013867221
729
+ name: Cosine Recall@200
730
+ - type: cosine_ndcg@1
731
+ value: 0.28965158606344255
732
+ name: Cosine Ndcg@1
733
+ - type: cosine_ndcg@20
734
+ value: 0.3869439859976832
735
+ name: Cosine Ndcg@20
736
+ - type: cosine_ndcg@50
737
+ value: 0.419340853881164
738
+ name: Cosine Ndcg@50
739
+ - type: cosine_ndcg@100
740
+ value: 0.4408718349726106
741
+ name: Cosine Ndcg@100
742
+ - type: cosine_ndcg@150
743
+ value: 0.4505012036387736
744
+ name: Cosine Ndcg@150
745
+ - type: cosine_ndcg@200
746
+ value: 0.4575667024678089
747
+ name: Cosine Ndcg@200
748
+ - type: cosine_mrr@1
749
+ value: 0.28965158606344255
750
+ name: Cosine Mrr@1
751
+ - type: cosine_mrr@20
752
+ value: 0.37323361269727506
753
+ name: Cosine Mrr@20
754
+ - type: cosine_mrr@50
755
+ value: 0.37671986743715985
756
+ name: Cosine Mrr@50
757
+ - type: cosine_mrr@100
758
+ value: 0.37799876590389947
759
+ name: Cosine Mrr@100
760
+ - type: cosine_mrr@150
761
+ value: 0.3783355727887503
762
+ name: Cosine Mrr@150
763
+ - type: cosine_mrr@200
764
+ value: 0.37850251063580587
765
+ name: Cosine Mrr@200
766
+ - type: cosine_map@1
767
+ value: 0.28965158606344255
768
+ name: Cosine Map@1
769
+ - type: cosine_map@20
770
+ value: 0.3048226727334811
771
+ name: Cosine Map@20
772
+ - type: cosine_map@50
773
+ value: 0.3123006074016708
774
+ name: Cosine Map@50
775
+ - type: cosine_map@100
776
+ value: 0.3150058759399239
777
+ name: Cosine Map@100
778
+ - type: cosine_map@150
779
+ value: 0.31578258870027714
780
+ name: Cosine Map@150
781
+ - type: cosine_map@200
782
+ value: 0.31623339353875296
783
+ name: Cosine Map@200
784
+ - type: cosine_map@500
785
+ value: 0.3169966358324732
786
+ name: Cosine Map@500
787
+ - task:
788
+ type: information-retrieval
789
+ name: Information Retrieval
790
+ dataset:
791
+ name: mix zh
792
+ type: mix_zh
793
+ metrics:
794
+ - type: cosine_accuracy@1
795
+ value: 0.09551148225469729
796
+ name: Cosine Accuracy@1
797
+ - type: cosine_accuracy@20
798
+ value: 0.34812108559498955
799
+ name: Cosine Accuracy@20
800
+ - type: cosine_accuracy@50
801
+ value: 0.4932150313152401
802
+ name: Cosine Accuracy@50
803
+ - type: cosine_accuracy@100
804
+ value: 0.5970772442588727
805
+ name: Cosine Accuracy@100
806
+ - type: cosine_accuracy@150
807
+ value: 0.6623173277661796
808
+ name: Cosine Accuracy@150
809
+ - type: cosine_accuracy@200
810
+ value: 0.7035490605427975
811
+ name: Cosine Accuracy@200
812
+ - type: cosine_precision@1
813
+ value: 0.09551148225469729
814
+ name: Cosine Precision@1
815
+ - type: cosine_precision@20
816
+ value: 0.030480167014613778
817
+ name: Cosine Precision@20
818
+ - type: cosine_precision@50
819
+ value: 0.018402922755741128
820
+ name: Cosine Precision@50
821
+ - type: cosine_precision@100
822
+ value: 0.01144572025052192
823
+ name: Cosine Precision@100
824
+ - type: cosine_precision@150
825
+ value: 0.00861864996520529
826
+ name: Cosine Precision@150
827
+ - type: cosine_precision@200
828
+ value: 0.0070720250521920675
829
+ name: Cosine Precision@200
830
+ - type: cosine_recall@1
831
+ value: 0.03220250521920668
832
+ name: Cosine Recall@1
833
+ - type: cosine_recall@20
834
+ value: 0.20316259071478276
835
+ name: Cosine Recall@20
836
+ - type: cosine_recall@50
837
+ value: 0.3040399145044239
838
+ name: Cosine Recall@50
839
+ - type: cosine_recall@100
840
+ value: 0.37823300858269543
841
+ name: Cosine Recall@100
842
+ - type: cosine_recall@150
843
+ value: 0.4274327302250057
844
+ name: Cosine Recall@150
845
+ - type: cosine_recall@200
846
+ value: 0.467568429598701
847
+ name: Cosine Recall@200
848
+ - type: cosine_ndcg@1
849
+ value: 0.09551148225469729
850
+ name: Cosine Ndcg@1
851
+ - type: cosine_ndcg@20
852
+ value: 0.13449413074843178
853
+ name: Cosine Ndcg@20
854
+ - type: cosine_ndcg@50
855
+ value: 0.16281375869650408
856
+ name: Cosine Ndcg@50
857
+ - type: cosine_ndcg@100
858
+ value: 0.1798079117342116
859
+ name: Cosine Ndcg@100
860
+ - type: cosine_ndcg@150
861
+ value: 0.18976873702750593
862
+ name: Cosine Ndcg@150
863
+ - type: cosine_ndcg@200
864
+ value: 0.19737879358914515
865
+ name: Cosine Ndcg@200
866
+ - type: cosine_mrr@1
867
+ value: 0.09551148225469729
868
+ name: Cosine Mrr@1
869
+ - type: cosine_mrr@20
870
+ value: 0.148796848074501
871
+ name: Cosine Mrr@20
872
+ - type: cosine_mrr@50
873
+ value: 0.15342712486814447
874
+ name: Cosine Mrr@50
875
+ - type: cosine_mrr@100
876
+ value: 0.15489924735195337
877
+ name: Cosine Mrr@100
878
+ - type: cosine_mrr@150
879
+ value: 0.15543781318663716
880
+ name: Cosine Mrr@150
881
+ - type: cosine_mrr@200
882
+ value: 0.15567492413016254
883
+ name: Cosine Mrr@200
884
+ - type: cosine_map@1
885
+ value: 0.09551148225469729
886
+ name: Cosine Map@1
887
+ - type: cosine_map@20
888
+ value: 0.08472355170504958
889
+ name: Cosine Map@20
890
+ - type: cosine_map@50
891
+ value: 0.09038650929811239
892
+ name: Cosine Map@50
893
+ - type: cosine_map@100
894
+ value: 0.0922515804329945
895
+ name: Cosine Map@100
896
+ - type: cosine_map@150
897
+ value: 0.09296251507722719
898
+ name: Cosine Map@150
899
+ - type: cosine_map@200
900
+ value: 0.09340391507908284
901
+ name: Cosine Map@200
902
+ - type: cosine_map@500
903
+ value: 0.09434895514443004
904
+ name: Cosine Map@500
905
+ ---
906
+
907
+ # SentenceTransformer based on BAAI/bge-small-en-v1.5
908
+
909
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
910
+
911
+ ## Model Details
912
+
913
+ ### Model Description
914
+ - **Model Type:** Sentence Transformer
915
+ - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
916
+ - **Maximum Sequence Length:** 512 tokens
917
+ - **Output Dimensionality:** 384 dimensions
918
+ - **Similarity Function:** Cosine Similarity
919
+ - **Training Datasets:**
920
+ - full_en
921
+ - full_de
922
+ - full_es
923
+ - full_zh
924
+ - mix
925
+ <!-- - **Language:** Unknown -->
926
+ <!-- - **License:** Unknown -->
927
+
928
+ ### Model Sources
929
+
930
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
931
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
932
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
933
+
934
+ ### Full Model Architecture
935
+
936
+ ```
937
+ SentenceTransformer(
938
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
939
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
940
+ (2): Normalize()
941
+ )
942
+ ```
943
+
944
+ ## Usage
945
+
946
+ ### Direct Usage (Sentence Transformers)
947
+
948
+ First install the Sentence Transformers library:
949
+
950
+ ```bash
951
+ pip install -U sentence-transformers
952
+ ```
953
+
954
+ Then you can load this model and run inference.
955
+ ```python
956
+ from sentence_transformers import SentenceTransformer
957
+
958
+ # Download from the 🤗 Hub
959
+ model = SentenceTransformer("sentence_transformers_model_id")
960
+ # Run inference
961
+ sentences = [
962
+ 'Volksvertreter',
963
+ 'Parlamentarier',
964
+ 'Oberbürgermeister',
965
+ ]
966
+ embeddings = model.encode(sentences)
967
+ print(embeddings.shape)
968
+ # [3, 384]
969
+
970
+ # Get the similarity scores for the embeddings
971
+ similarities = model.similarity(embeddings, embeddings)
972
+ print(similarities.shape)
973
+ # [3, 3]
974
+ ```
975
+
976
+ <!--
977
+ ### Direct Usage (Transformers)
978
+
979
+ <details><summary>Click to see the direct usage in Transformers</summary>
980
+
981
+ </details>
982
+ -->
983
+
984
+ <!--
985
+ ### Downstream Usage (Sentence Transformers)
986
+
987
+ You can finetune this model on your own dataset.
988
+
989
+ <details><summary>Click to expand</summary>
990
+
991
+ </details>
992
+ -->
993
+
994
+ <!--
995
+ ### Out-of-Scope Use
996
+
997
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
998
+ -->
999
+
1000
+ ## Evaluation
1001
+
1002
+ ### Metrics
1003
+
1004
+ #### Information Retrieval
1005
+
1006
+ * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
1007
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
1008
+
1009
+ | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
1010
+ |:---------------------|:-----------|:-----------|:-----------|:----------|:-----------|:-----------|:-----------|
1011
+ | cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4056 | 0.2897 | 0.0955 |
1012
+ | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9212 | 0.699 | 0.7556 | 0.6453 | 0.3481 |
1013
+ | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9655 | 0.8447 | 0.8466 | 0.7514 | 0.4932 |
1014
+ | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9754 | 0.8835 | 0.9054 | 0.8424 | 0.5971 |
1015
+ | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9852 | 0.9417 | 0.9392 | 0.884 | 0.6623 |
1016
+ | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9852 | 0.9417 | 0.9522 | 0.9132 | 0.7035 |
1017
+ | cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4056 | 0.2897 | 0.0955 |
1018
+ | cosine_precision@20 | 0.5057 | 0.4905 | 0.4273 | 0.165 | 0.088 | 0.0723 | 0.0305 |
1019
+ | cosine_precision@50 | 0.3086 | 0.3163 | 0.2807 | 0.0932 | 0.0415 | 0.0356 | 0.0184 |
1020
+ | cosine_precision@100 | 0.1869 | 0.1979 | 0.1797 | 0.0583 | 0.0227 | 0.0205 | 0.0114 |
1021
+ | cosine_precision@150 | 0.1326 | 0.1476 | 0.1354 | 0.046 | 0.0158 | 0.0145 | 0.0086 |
1022
+ | cosine_precision@200 | 0.1026 | 0.1176 | 0.1102 | 0.0388 | 0.0122 | 0.0114 | 0.0071 |
1023
+ | cosine_recall@1 | 0.068 | 0.0031 | 0.0111 | 0.0239 | 0.1542 | 0.1087 | 0.0322 |
1024
+ | cosine_recall@20 | 0.5398 | 0.3226 | 0.2624 | 0.1766 | 0.6504 | 0.5285 | 0.2032 |
1025
+ | cosine_recall@50 | 0.7282 | 0.4602 | 0.3817 | 0.2365 | 0.7645 | 0.6477 | 0.304 |
1026
+ | cosine_recall@100 | 0.837 | 0.5419 | 0.4666 | 0.2843 | 0.8407 | 0.7456 | 0.3782 |
1027
+ | cosine_recall@150 | 0.8798 | 0.5853 | 0.5156 | 0.3277 | 0.8773 | 0.7948 | 0.4274 |
1028
+ | cosine_recall@200 | 0.9041 | 0.6129 | 0.5501 | 0.3597 | 0.9011 | 0.8334 | 0.4676 |
1029
+ | cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4056 | 0.2897 | 0.0955 |
1030
+ | cosine_ndcg@20 | 0.6872 | 0.5392 | 0.4613 | 0.2386 | 0.5053 | 0.3869 | 0.1345 |
1031
+ | cosine_ndcg@50 | 0.7057 | 0.4997 | 0.4218 | 0.2339 | 0.5364 | 0.4193 | 0.1628 |
1032
+ | cosine_ndcg@100 | 0.7612 | 0.5138 | 0.4363 | 0.2561 | 0.5529 | 0.4409 | 0.1798 |
1033
+ | cosine_ndcg@150 | 0.7798 | 0.5361 | 0.4612 | 0.274 | 0.56 | 0.4505 | 0.1898 |
1034
+ | **cosine_ndcg@200** | **0.7894** | **0.5499** | **0.4786** | **0.287** | **0.5644** | **0.4576** | **0.1974** |
1035
+ | cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4056 | 0.2897 | 0.0955 |
1036
+ | cosine_mrr@20 | 0.8095 | 0.5499 | 0.4902 | 0.419 | 0.4919 | 0.3732 | 0.1488 |
1037
+ | cosine_mrr@50 | 0.8095 | 0.5499 | 0.4916 | 0.424 | 0.495 | 0.3767 | 0.1534 |
1038
+ | cosine_mrr@100 | 0.8095 | 0.5499 | 0.4917 | 0.4245 | 0.4958 | 0.378 | 0.1549 |
1039
+ | cosine_mrr@150 | 0.8095 | 0.5499 | 0.4918 | 0.425 | 0.4961 | 0.3783 | 0.1554 |
1040
+ | cosine_mrr@200 | 0.8095 | 0.5499 | 0.4918 | 0.425 | 0.4962 | 0.3785 | 0.1557 |
1041
+ | cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4056 | 0.2897 | 0.0955 |
1042
+ | cosine_map@20 | 0.5458 | 0.4038 | 0.324 | 0.1429 | 0.4211 | 0.3048 | 0.0847 |
1043
+ | cosine_map@50 | 0.5351 | 0.3418 | 0.2639 | 0.1244 | 0.4288 | 0.3123 | 0.0904 |
1044
+ | cosine_map@100 | 0.5681 | 0.3392 | 0.2572 | 0.1298 | 0.4309 | 0.315 | 0.0923 |
1045
+ | cosine_map@150 | 0.5758 | 0.3484 | 0.2662 | 0.1324 | 0.4315 | 0.3158 | 0.093 |
1046
+ | cosine_map@200 | 0.5789 | 0.3535 | 0.2716 | 0.134 | 0.4318 | 0.3162 | 0.0934 |
1047
+ | cosine_map@500 | 0.5833 | 0.3632 | 0.2826 | 0.1379 | 0.4323 | 0.317 | 0.0943 |
1048
+
1049
+ <!--
1050
+ ## Bias, Risks and Limitations
1051
+
1052
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
1053
+ -->
1054
+
1055
+ <!--
1056
+ ### Recommendations
1057
+
1058
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
1059
+ -->
1060
+
1061
+ ## Training Details
1062
+
1063
+ ### Training Datasets
1064
+ <details><summary>full_en</summary>
1065
+
1066
+ #### full_en
1067
+
1068
+ * Dataset: full_en
1069
+ * Size: 28,880 training samples
1070
+ * Columns: <code>anchor</code> and <code>positive</code>
1071
+ * Approximate statistics based on the first 1000 samples:
1072
+ | | anchor | positive |
1073
+ |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1074
+ | type | string | string |
1075
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.0 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.01 tokens</li><li>max: 13 tokens</li></ul> |
1076
+ * Samples:
1077
+ | anchor | positive |
1078
+ |:-----------------------------------------|:-----------------------------------------|
1079
+ | <code>air commodore</code> | <code>flight lieutenant</code> |
1080
+ | <code>command and control officer</code> | <code>flight officer</code> |
1081
+ | <code>air commodore</code> | <code>command and control officer</code> |
1082
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1083
+ ```json
1084
+ {'guide': SentenceTransformer(
1085
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1086
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1087
+ (2): Normalize()
1088
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1089
+ ```
1090
+ </details>
1091
+ <details><summary>full_de</summary>
1092
+
1093
+ #### full_de
1094
+
1095
+ * Dataset: full_de
1096
+ * Size: 23,023 training samples
1097
+ * Columns: <code>anchor</code> and <code>positive</code>
1098
+ * Approximate statistics based on the first 1000 samples:
1099
+ | | anchor | positive |
1100
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1101
+ | type | string | string |
1102
+ | details | <ul><li>min: 3 tokens</li><li>mean: 11.05 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.43 tokens</li><li>max: 45 tokens</li></ul> |
1103
+ * Samples:
1104
+ | anchor | positive |
1105
+ |:----------------------------------|:-----------------------------------------------------|
1106
+ | <code>Staffelkommandantin</code> | <code>Kommodore</code> |
1107
+ | <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
1108
+ | <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
1109
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1110
+ ```json
1111
+ {'guide': SentenceTransformer(
1112
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1113
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1114
+ (2): Normalize()
1115
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1116
+ ```
1117
+ </details>
1118
+ <details><summary>full_es</summary>
1119
+
1120
+ #### full_es
1121
+
1122
+ * Dataset: full_es
1123
+ * Size: 20,724 training samples
1124
+ * Columns: <code>anchor</code> and <code>positive</code>
1125
+ * Approximate statistics based on the first 1000 samples:
1126
+ | | anchor | positive |
1127
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1128
+ | type | string | string |
1129
+ | details | <ul><li>min: 3 tokens</li><li>mean: 12.95 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.57 tokens</li><li>max: 50 tokens</li></ul> |
1130
+ * Samples:
1131
+ | anchor | positive |
1132
+ |:------------------------------------|:-------------------------------------------|
1133
+ | <code>jefe de escuadrón</code> | <code>instructor</code> |
1134
+ | <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
1135
+ | <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
1136
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1137
+ ```json
1138
+ {'guide': SentenceTransformer(
1139
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1140
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1141
+ (2): Normalize()
1142
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1143
+ ```
1144
+ </details>
1145
+ <details><summary>full_zh</summary>
1146
+
1147
+ #### full_zh
1148
+
1149
+ * Dataset: full_zh
1150
+ * Size: 30,401 training samples
1151
+ * Columns: <code>anchor</code> and <code>positive</code>
1152
+ * Approximate statistics based on the first 1000 samples:
1153
+ | | anchor | positive |
1154
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1155
+ | type | string | string |
1156
+ | details | <ul><li>min: 4 tokens</li><li>mean: 8.36 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.95 tokens</li><li>max: 27 tokens</li></ul> |
1157
+ * Samples:
1158
+ | anchor | positive |
1159
+ |:------------------|:---------------------|
1160
+ | <code>技术总监</code> | <code>技术和运营总监</code> |
1161
+ | <code>技术总监</code> | <code>技术主管</code> |
1162
+ | <code>技术总监</code> | <code>技术艺术总监</code> |
1163
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1164
+ ```json
1165
+ {'guide': SentenceTransformer(
1166
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1167
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1168
+ (2): Normalize()
1169
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1170
+ ```
1171
+ </details>
1172
+ <details><summary>mix</summary>
1173
+
1174
+ #### mix
1175
+
1176
+ * Dataset: mix
1177
+ * Size: 21,760 training samples
1178
+ * Columns: <code>anchor</code> and <code>positive</code>
1179
+ * Approximate statistics based on the first 1000 samples:
1180
+ | | anchor | positive |
1181
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1182
+ | type | string | string |
1183
+ | details | <ul><li>min: 2 tokens</li><li>mean: 5.65 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 10.08 tokens</li><li>max: 30 tokens</li></ul> |
1184
+ * Samples:
1185
+ | anchor | positive |
1186
+ |:------------------------------------------|:----------------------------------------------------------------|
1187
+ | <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
1188
+ | <code>head of technical</code> | <code>directora técnica</code> |
1189
+ | <code>head of technical department</code> | <code>技术艺术总监</code> |
1190
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1191
+ ```json
1192
+ {'guide': SentenceTransformer(
1193
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1194
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1195
+ (2): Normalize()
1196
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1197
+ ```
1198
+ </details>
1199
+
1200
+ ### Training Hyperparameters
1201
+ #### Non-Default Hyperparameters
1202
+
1203
+ - `eval_strategy`: steps
1204
+ - `per_device_train_batch_size`: 128
1205
+ - `per_device_eval_batch_size`: 128
1206
+ - `gradient_accumulation_steps`: 2
1207
+ - `num_train_epochs`: 5
1208
+ - `warmup_ratio`: 0.05
1209
+ - `log_on_each_node`: False
1210
+ - `fp16`: True
1211
+ - `dataloader_num_workers`: 4
1212
+ - `ddp_find_unused_parameters`: True
1213
+ - `batch_sampler`: no_duplicates
1214
+
1215
+ #### All Hyperparameters
1216
+ <details><summary>Click to expand</summary>
1217
+
1218
+ - `overwrite_output_dir`: False
1219
+ - `do_predict`: False
1220
+ - `eval_strategy`: steps
1221
+ - `prediction_loss_only`: True
1222
+ - `per_device_train_batch_size`: 128
1223
+ - `per_device_eval_batch_size`: 128
1224
+ - `per_gpu_train_batch_size`: None
1225
+ - `per_gpu_eval_batch_size`: None
1226
+ - `gradient_accumulation_steps`: 2
1227
+ - `eval_accumulation_steps`: None
1228
+ - `torch_empty_cache_steps`: None
1229
+ - `learning_rate`: 5e-05
1230
+ - `weight_decay`: 0.0
1231
+ - `adam_beta1`: 0.9
1232
+ - `adam_beta2`: 0.999
1233
+ - `adam_epsilon`: 1e-08
1234
+ - `max_grad_norm`: 1.0
1235
+ - `num_train_epochs`: 5
1236
+ - `max_steps`: -1
1237
+ - `lr_scheduler_type`: linear
1238
+ - `lr_scheduler_kwargs`: {}
1239
+ - `warmup_ratio`: 0.05
1240
+ - `warmup_steps`: 0
1241
+ - `log_level`: passive
1242
+ - `log_level_replica`: warning
1243
+ - `log_on_each_node`: False
1244
+ - `logging_nan_inf_filter`: True
1245
+ - `save_safetensors`: True
1246
+ - `save_on_each_node`: False
1247
+ - `save_only_model`: False
1248
+ - `restore_callback_states_from_checkpoint`: False
1249
+ - `no_cuda`: False
1250
+ - `use_cpu`: False
1251
+ - `use_mps_device`: False
1252
+ - `seed`: 42
1253
+ - `data_seed`: None
1254
+ - `jit_mode_eval`: False
1255
+ - `use_ipex`: False
1256
+ - `bf16`: False
1257
+ - `fp16`: True
1258
+ - `fp16_opt_level`: O1
1259
+ - `half_precision_backend`: auto
1260
+ - `bf16_full_eval`: False
1261
+ - `fp16_full_eval`: False
1262
+ - `tf32`: None
1263
+ - `local_rank`: 0
1264
+ - `ddp_backend`: None
1265
+ - `tpu_num_cores`: None
1266
+ - `tpu_metrics_debug`: False
1267
+ - `debug`: []
1268
+ - `dataloader_drop_last`: True
1269
+ - `dataloader_num_workers`: 4
1270
+ - `dataloader_prefetch_factor`: None
1271
+ - `past_index`: -1
1272
+ - `disable_tqdm`: False
1273
+ - `remove_unused_columns`: True
1274
+ - `label_names`: None
1275
+ - `load_best_model_at_end`: False
1276
+ - `ignore_data_skip`: False
1277
+ - `fsdp`: []
1278
+ - `fsdp_min_num_params`: 0
1279
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1280
+ - `tp_size`: 0
1281
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1282
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1283
+ - `deepspeed`: None
1284
+ - `label_smoothing_factor`: 0.0
1285
+ - `optim`: adamw_torch
1286
+ - `optim_args`: None
1287
+ - `adafactor`: False
1288
+ - `group_by_length`: False
1289
+ - `length_column_name`: length
1290
+ - `ddp_find_unused_parameters`: True
1291
+ - `ddp_bucket_cap_mb`: None
1292
+ - `ddp_broadcast_buffers`: False
1293
+ - `dataloader_pin_memory`: True
1294
+ - `dataloader_persistent_workers`: False
1295
+ - `skip_memory_metrics`: True
1296
+ - `use_legacy_prediction_loop`: False
1297
+ - `push_to_hub`: False
1298
+ - `resume_from_checkpoint`: None
1299
+ - `hub_model_id`: None
1300
+ - `hub_strategy`: every_save
1301
+ - `hub_private_repo`: None
1302
+ - `hub_always_push`: False
1303
+ - `gradient_checkpointing`: False
1304
+ - `gradient_checkpointing_kwargs`: None
1305
+ - `include_inputs_for_metrics`: False
1306
+ - `include_for_metrics`: []
1307
+ - `eval_do_concat_batches`: True
1308
+ - `fp16_backend`: auto
1309
+ - `push_to_hub_model_id`: None
1310
+ - `push_to_hub_organization`: None
1311
+ - `mp_parameters`:
1312
+ - `auto_find_batch_size`: False
1313
+ - `full_determinism`: False
1314
+ - `torchdynamo`: None
1315
+ - `ray_scope`: last
1316
+ - `ddp_timeout`: 1800
1317
+ - `torch_compile`: False
1318
+ - `torch_compile_backend`: None
1319
+ - `torch_compile_mode`: None
1320
+ - `include_tokens_per_second`: False
1321
+ - `include_num_input_tokens_seen`: False
1322
+ - `neftune_noise_alpha`: None
1323
+ - `optim_target_modules`: None
1324
+ - `batch_eval_metrics`: False
1325
+ - `eval_on_start`: False
1326
+ - `use_liger_kernel`: False
1327
+ - `eval_use_gather_object`: False
1328
+ - `average_tokens_across_devices`: False
1329
+ - `prompts`: None
1330
+ - `batch_sampler`: no_duplicates
1331
+ - `multi_dataset_batch_sampler`: proportional
1332
+
1333
+ </details>
1334
+
1335
+ ### Training Logs
1336
+ | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
1337
+ |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
1338
+ | -1 | -1 | - | 0.7322 | 0.4690 | 0.3853 | 0.2723 | 0.3209 | 0.2244 | 0.0919 |
1339
+ | 0.0021 | 1 | 23.8878 | - | - | - | - | - | - | - |
1340
+ | 0.2058 | 100 | 7.2098 | - | - | - | - | - | - | - |
1341
+ | 0.4115 | 200 | 4.2635 | 0.7800 | 0.5132 | 0.4268 | 0.2798 | 0.4372 | 0.2996 | 0.1447 |
1342
+ | 0.6173 | 300 | 4.1931 | - | - | - | - | - | - | - |
1343
+ | 0.8230 | 400 | 3.73 | 0.7863 | 0.5274 | 0.4451 | 0.2805 | 0.4762 | 0.3455 | 0.1648 |
1344
+ | 1.0309 | 500 | 3.3569 | - | - | - | - | - | - | - |
1345
+ | 1.2366 | 600 | 3.6464 | 0.7868 | 0.5372 | 0.4540 | 0.2813 | 0.5063 | 0.3794 | 0.1755 |
1346
+ | 1.4424 | 700 | 3.0772 | - | - | - | - | - | - | - |
1347
+ | 1.6481 | 800 | 3.114 | 0.7906 | 0.5391 | 0.4576 | 0.2832 | 0.5221 | 0.4047 | 0.1779 |
1348
+ | 1.8539 | 900 | 2.9246 | - | - | - | - | - | - | - |
1349
+ | 2.0617 | 1000 | 2.7479 | 0.7873 | 0.5423 | 0.4631 | 0.2871 | 0.5323 | 0.4143 | 0.1843 |
1350
+ | 2.2675 | 1100 | 3.049 | - | - | - | - | - | - | - |
1351
+ | 2.4733 | 1200 | 2.6137 | 0.7878 | 0.5418 | 0.4685 | 0.2870 | 0.5470 | 0.4339 | 0.1932 |
1352
+ | 2.6790 | 1300 | 2.8607 | - | - | - | - | - | - | - |
1353
+ | 2.8848 | 1400 | 2.7071 | 0.7889 | 0.5465 | 0.4714 | 0.2891 | 0.5504 | 0.4362 | 0.1944 |
1354
+ | 3.0926 | 1500 | 2.7012 | - | - | - | - | - | - | - |
1355
+ | 3.2984 | 1600 | 2.7423 | 0.7882 | 0.5471 | 0.4748 | 0.2868 | 0.5542 | 0.4454 | 0.1976 |
1356
+ | 3.5041 | 1700 | 2.5316 | - | - | - | - | - | - | - |
1357
+ | 3.7099 | 1800 | 2.6344 | 0.7900 | 0.5498 | 0.4763 | 0.2857 | 0.5639 | 0.4552 | 0.1954 |
1358
+ | 3.9156 | 1900 | 2.4983 | - | - | - | - | - | - | - |
1359
+ | 4.1235 | 2000 | 2.5423 | 0.7894 | 0.5499 | 0.4786 | 0.2870 | 0.5644 | 0.4576 | 0.1974 |
1360
+
1361
+
1362
+ ### Framework Versions
1363
+ - Python: 3.11.11
1364
+ - Sentence Transformers: 4.1.0
1365
+ - Transformers: 4.51.3
1366
+ - PyTorch: 2.6.0+cu124
1367
+ - Accelerate: 1.6.0
1368
+ - Datasets: 3.5.0
1369
+ - Tokenizers: 0.21.1
1370
+
1371
+ ## Citation
1372
+
1373
+ ### BibTeX
1374
+
1375
+ #### Sentence Transformers
1376
+ ```bibtex
1377
+ @inproceedings{reimers-2019-sentence-bert,
1378
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1379
+ author = "Reimers, Nils and Gurevych, Iryna",
1380
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1381
+ month = "11",
1382
+ year = "2019",
1383
+ publisher = "Association for Computational Linguistics",
1384
+ url = "https://arxiv.org/abs/1908.10084",
1385
+ }
1386
+ ```
1387
+
1388
+ #### GISTEmbedLoss
1389
+ ```bibtex
1390
+ @misc{solatorio2024gistembed,
1391
+ title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
1392
+ author={Aivin V. Solatorio},
1393
+ year={2024},
1394
+ eprint={2402.16829},
1395
+ archivePrefix={arXiv},
1396
+ primaryClass={cs.LG}
1397
+ }
1398
+ ```
1399
+
1400
+ <!--
1401
+ ## Glossary
1402
+
1403
+ *Clearly define terms in order to be accessible across audiences.*
1404
+ -->
1405
+
1406
+ <!--
1407
+ ## Model Card Authors
1408
+
1409
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1410
+ -->
1411
+
1412
+ <!--
1413
+ ## Model Card Contact
1414
+
1415
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1416
+ -->
checkpoint-2000/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 384,
10
+ "id2label": {
11
+ "0": "LABEL_0"
12
+ },
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 1536,
15
+ "label2id": {
16
+ "LABEL_0": 0
17
+ },
18
+ "layer_norm_eps": 1e-12,
19
+ "max_position_embeddings": 512,
20
+ "model_type": "bert",
21
+ "num_attention_heads": 12,
22
+ "num_hidden_layers": 12,
23
+ "pad_token_id": 0,
24
+ "position_embedding_type": "absolute",
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.51.3",
27
+ "type_vocab_size": 2,
28
+ "use_cache": true,
29
+ "vocab_size": 30522
30
+ }
checkpoint-2000/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-2000/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-2000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e756c3f89513295be3155fdf8ed1ea92f5d6f2c569291ca059a763f34d54beae
3
+ size 14244
checkpoint-2000/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb34a6d7418af42106b2b0133aa1f174b745ed4d807efde69588376ea449b438
3
+ size 988
checkpoint-2000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44d4faf0d53d3bbb44be74070bcf3d3b0b1dde1bc82878cd58999d4b5ac888d4
3
+ size 1064
checkpoint-2000/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
checkpoint-2000/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
checkpoint-2000/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2000/tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
checkpoint-2000/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:760a4b48c96df095158050a3998b912dc701e81df23c2f6256e0e65915c7301a
3
+ size 5624
checkpoint-2000/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2200/tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
checkpoint-2200/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2400/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-2400/README.md ADDED
@@ -0,0 +1,1420 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:124788
8
+ - loss:GISTEmbedLoss
9
+ base_model: BAAI/bge-small-en-v1.5
10
+ widget:
11
+ - source_sentence: 其他机械、设备和有形货物租赁服务代表
12
+ sentences:
13
+ - 其他机械和设备租赁服务工作人员
14
+ - 电子和电信设备及零部件物流经理
15
+ - 工业主厨
16
+ - source_sentence: 公交车司机
17
+ sentences:
18
+ - 表演灯光设计师
19
+ - 乙烯基地板安装工
20
+ - 国际巴士司机
21
+ - source_sentence: online communication manager
22
+ sentences:
23
+ - trades union official
24
+ - social media manager
25
+ - budget manager
26
+ - source_sentence: Projektmanagerin
27
+ sentences:
28
+ - Projektmanager/Projektmanagerin
29
+ - Category-Manager
30
+ - Infanterist
31
+ - source_sentence: Volksvertreter
32
+ sentences:
33
+ - Parlamentarier
34
+ - Oberbürgermeister
35
+ - Konsul
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - cosine_accuracy@1
40
+ - cosine_accuracy@20
41
+ - cosine_accuracy@50
42
+ - cosine_accuracy@100
43
+ - cosine_accuracy@150
44
+ - cosine_accuracy@200
45
+ - cosine_precision@1
46
+ - cosine_precision@20
47
+ - cosine_precision@50
48
+ - cosine_precision@100
49
+ - cosine_precision@150
50
+ - cosine_precision@200
51
+ - cosine_recall@1
52
+ - cosine_recall@20
53
+ - cosine_recall@50
54
+ - cosine_recall@100
55
+ - cosine_recall@150
56
+ - cosine_recall@200
57
+ - cosine_ndcg@1
58
+ - cosine_ndcg@20
59
+ - cosine_ndcg@50
60
+ - cosine_ndcg@100
61
+ - cosine_ndcg@150
62
+ - cosine_ndcg@200
63
+ - cosine_mrr@1
64
+ - cosine_mrr@20
65
+ - cosine_mrr@50
66
+ - cosine_mrr@100
67
+ - cosine_mrr@150
68
+ - cosine_mrr@200
69
+ - cosine_map@1
70
+ - cosine_map@20
71
+ - cosine_map@50
72
+ - cosine_map@100
73
+ - cosine_map@150
74
+ - cosine_map@200
75
+ - cosine_map@500
76
+ model-index:
77
+ - name: SentenceTransformer based on BAAI/bge-small-en-v1.5
78
+ results:
79
+ - task:
80
+ type: information-retrieval
81
+ name: Information Retrieval
82
+ dataset:
83
+ name: full en
84
+ type: full_en
85
+ metrics:
86
+ - type: cosine_accuracy@1
87
+ value: 0.6571428571428571
88
+ name: Cosine Accuracy@1
89
+ - type: cosine_accuracy@20
90
+ value: 0.9904761904761905
91
+ name: Cosine Accuracy@20
92
+ - type: cosine_accuracy@50
93
+ value: 0.9904761904761905
94
+ name: Cosine Accuracy@50
95
+ - type: cosine_accuracy@100
96
+ value: 0.9904761904761905
97
+ name: Cosine Accuracy@100
98
+ - type: cosine_accuracy@150
99
+ value: 0.9904761904761905
100
+ name: Cosine Accuracy@150
101
+ - type: cosine_accuracy@200
102
+ value: 0.9904761904761905
103
+ name: Cosine Accuracy@200
104
+ - type: cosine_precision@1
105
+ value: 0.6571428571428571
106
+ name: Cosine Precision@1
107
+ - type: cosine_precision@20
108
+ value: 0.5023809523809524
109
+ name: Cosine Precision@20
110
+ - type: cosine_precision@50
111
+ value: 0.30800000000000005
112
+ name: Cosine Precision@50
113
+ - type: cosine_precision@100
114
+ value: 0.18628571428571428
115
+ name: Cosine Precision@100
116
+ - type: cosine_precision@150
117
+ value: 0.1321904761904762
118
+ name: Cosine Precision@150
119
+ - type: cosine_precision@200
120
+ value: 0.10295238095238096
121
+ name: Cosine Precision@200
122
+ - type: cosine_recall@1
123
+ value: 0.0680237860830842
124
+ name: Cosine Recall@1
125
+ - type: cosine_recall@20
126
+ value: 0.5384852963395483
127
+ name: Cosine Recall@20
128
+ - type: cosine_recall@50
129
+ value: 0.7260449077992874
130
+ name: Cosine Recall@50
131
+ - type: cosine_recall@100
132
+ value: 0.8328530702930984
133
+ name: Cosine Recall@100
134
+ - type: cosine_recall@150
135
+ value: 0.8745262490032277
136
+ name: Cosine Recall@150
137
+ - type: cosine_recall@200
138
+ value: 0.9056960100263424
139
+ name: Cosine Recall@200
140
+ - type: cosine_ndcg@1
141
+ value: 0.6571428571428571
142
+ name: Cosine Ndcg@1
143
+ - type: cosine_ndcg@20
144
+ value: 0.6845256340390302
145
+ name: Cosine Ndcg@20
146
+ - type: cosine_ndcg@50
147
+ value: 0.7040452093638513
148
+ name: Cosine Ndcg@50
149
+ - type: cosine_ndcg@100
150
+ value: 0.758935932285001
151
+ name: Cosine Ndcg@100
152
+ - type: cosine_ndcg@150
153
+ value: 0.7774414598948007
154
+ name: Cosine Ndcg@150
155
+ - type: cosine_ndcg@200
156
+ value: 0.7892946240668293
157
+ name: Cosine Ndcg@200
158
+ - type: cosine_mrr@1
159
+ value: 0.6571428571428571
160
+ name: Cosine Mrr@1
161
+ - type: cosine_mrr@20
162
+ value: 0.8103174603174604
163
+ name: Cosine Mrr@20
164
+ - type: cosine_mrr@50
165
+ value: 0.8103174603174604
166
+ name: Cosine Mrr@50
167
+ - type: cosine_mrr@100
168
+ value: 0.8103174603174604
169
+ name: Cosine Mrr@100
170
+ - type: cosine_mrr@150
171
+ value: 0.8103174603174604
172
+ name: Cosine Mrr@150
173
+ - type: cosine_mrr@200
174
+ value: 0.8103174603174604
175
+ name: Cosine Mrr@200
176
+ - type: cosine_map@1
177
+ value: 0.6571428571428571
178
+ name: Cosine Map@1
179
+ - type: cosine_map@20
180
+ value: 0.5418235787800474
181
+ name: Cosine Map@20
182
+ - type: cosine_map@50
183
+ value: 0.5327215779103721
184
+ name: Cosine Map@50
185
+ - type: cosine_map@100
186
+ value: 0.565706253334091
187
+ name: Cosine Map@100
188
+ - type: cosine_map@150
189
+ value: 0.5733951147399983
190
+ name: Cosine Map@150
191
+ - type: cosine_map@200
192
+ value: 0.5771587776237981
193
+ name: Cosine Map@200
194
+ - type: cosine_map@500
195
+ value: 0.5813892452974444
196
+ name: Cosine Map@500
197
+ - task:
198
+ type: information-retrieval
199
+ name: Information Retrieval
200
+ dataset:
201
+ name: full es
202
+ type: full_es
203
+ metrics:
204
+ - type: cosine_accuracy@1
205
+ value: 0.12432432432432433
206
+ name: Cosine Accuracy@1
207
+ - type: cosine_accuracy@20
208
+ value: 1.0
209
+ name: Cosine Accuracy@20
210
+ - type: cosine_accuracy@50
211
+ value: 1.0
212
+ name: Cosine Accuracy@50
213
+ - type: cosine_accuracy@100
214
+ value: 1.0
215
+ name: Cosine Accuracy@100
216
+ - type: cosine_accuracy@150
217
+ value: 1.0
218
+ name: Cosine Accuracy@150
219
+ - type: cosine_accuracy@200
220
+ value: 1.0
221
+ name: Cosine Accuracy@200
222
+ - type: cosine_precision@1
223
+ value: 0.12432432432432433
224
+ name: Cosine Precision@1
225
+ - type: cosine_precision@20
226
+ value: 0.4897297297297297
227
+ name: Cosine Precision@20
228
+ - type: cosine_precision@50
229
+ value: 0.31794594594594594
230
+ name: Cosine Precision@50
231
+ - type: cosine_precision@100
232
+ value: 0.19864864864864865
233
+ name: Cosine Precision@100
234
+ - type: cosine_precision@150
235
+ value: 0.14688288288288287
236
+ name: Cosine Precision@150
237
+ - type: cosine_precision@200
238
+ value: 0.11789189189189188
239
+ name: Cosine Precision@200
240
+ - type: cosine_recall@1
241
+ value: 0.003111544931768446
242
+ name: Cosine Recall@1
243
+ - type: cosine_recall@20
244
+ value: 0.32208664960961075
245
+ name: Cosine Recall@20
246
+ - type: cosine_recall@50
247
+ value: 0.46383117404893587
248
+ name: Cosine Recall@50
249
+ - type: cosine_recall@100
250
+ value: 0.5437537828683688
251
+ name: Cosine Recall@100
252
+ - type: cosine_recall@150
253
+ value: 0.5824968655076911
254
+ name: Cosine Recall@150
255
+ - type: cosine_recall@200
256
+ value: 0.6146962508233631
257
+ name: Cosine Recall@200
258
+ - type: cosine_ndcg@1
259
+ value: 0.12432432432432433
260
+ name: Cosine Ndcg@1
261
+ - type: cosine_ndcg@20
262
+ value: 0.5384577730264963
263
+ name: Cosine Ndcg@20
264
+ - type: cosine_ndcg@50
265
+ value: 0.5012455261232941
266
+ name: Cosine Ndcg@50
267
+ - type: cosine_ndcg@100
268
+ value: 0.5147486871284331
269
+ name: Cosine Ndcg@100
270
+ - type: cosine_ndcg@150
271
+ value: 0.5348194013794069
272
+ name: Cosine Ndcg@150
273
+ - type: cosine_ndcg@200
274
+ value: 0.5505397598095297
275
+ name: Cosine Ndcg@200
276
+ - type: cosine_mrr@1
277
+ value: 0.12432432432432433
278
+ name: Cosine Mrr@1
279
+ - type: cosine_mrr@20
280
+ value: 0.5515015015015016
281
+ name: Cosine Mrr@20
282
+ - type: cosine_mrr@50
283
+ value: 0.5515015015015016
284
+ name: Cosine Mrr@50
285
+ - type: cosine_mrr@100
286
+ value: 0.5515015015015016
287
+ name: Cosine Mrr@100
288
+ - type: cosine_mrr@150
289
+ value: 0.5515015015015016
290
+ name: Cosine Mrr@150
291
+ - type: cosine_mrr@200
292
+ value: 0.5515015015015016
293
+ name: Cosine Mrr@200
294
+ - type: cosine_map@1
295
+ value: 0.12432432432432433
296
+ name: Cosine Map@1
297
+ - type: cosine_map@20
298
+ value: 0.40280623036556984
299
+ name: Cosine Map@20
300
+ - type: cosine_map@50
301
+ value: 0.3421710529569103
302
+ name: Cosine Map@50
303
+ - type: cosine_map@100
304
+ value: 0.33947884152876345
305
+ name: Cosine Map@100
306
+ - type: cosine_map@150
307
+ value: 0.34777364049184706
308
+ name: Cosine Map@150
309
+ - type: cosine_map@200
310
+ value: 0.35339765423089375
311
+ name: Cosine Map@200
312
+ - type: cosine_map@500
313
+ value: 0.3631043007370563
314
+ name: Cosine Map@500
315
+ - task:
316
+ type: information-retrieval
317
+ name: Information Retrieval
318
+ dataset:
319
+ name: full de
320
+ type: full_de
321
+ metrics:
322
+ - type: cosine_accuracy@1
323
+ value: 0.2955665024630542
324
+ name: Cosine Accuracy@1
325
+ - type: cosine_accuracy@20
326
+ value: 0.9211822660098522
327
+ name: Cosine Accuracy@20
328
+ - type: cosine_accuracy@50
329
+ value: 0.9655172413793104
330
+ name: Cosine Accuracy@50
331
+ - type: cosine_accuracy@100
332
+ value: 0.9753694581280788
333
+ name: Cosine Accuracy@100
334
+ - type: cosine_accuracy@150
335
+ value: 0.9852216748768473
336
+ name: Cosine Accuracy@150
337
+ - type: cosine_accuracy@200
338
+ value: 0.9852216748768473
339
+ name: Cosine Accuracy@200
340
+ - type: cosine_precision@1
341
+ value: 0.2955665024630542
342
+ name: Cosine Precision@1
343
+ - type: cosine_precision@20
344
+ value: 0.4246305418719211
345
+ name: Cosine Precision@20
346
+ - type: cosine_precision@50
347
+ value: 0.2813793103448276
348
+ name: Cosine Precision@50
349
+ - type: cosine_precision@100
350
+ value: 0.1800985221674877
351
+ name: Cosine Precision@100
352
+ - type: cosine_precision@150
353
+ value: 0.1362233169129721
354
+ name: Cosine Precision@150
355
+ - type: cosine_precision@200
356
+ value: 0.11054187192118226
357
+ name: Cosine Precision@200
358
+ - type: cosine_recall@1
359
+ value: 0.01108543831680986
360
+ name: Cosine Recall@1
361
+ - type: cosine_recall@20
362
+ value: 0.26139377973111655
363
+ name: Cosine Recall@20
364
+ - type: cosine_recall@50
365
+ value: 0.3835171819041212
366
+ name: Cosine Recall@50
367
+ - type: cosine_recall@100
368
+ value: 0.4676892706124872
369
+ name: Cosine Recall@100
370
+ - type: cosine_recall@150
371
+ value: 0.5183014504752351
372
+ name: Cosine Recall@150
373
+ - type: cosine_recall@200
374
+ value: 0.551717511250073
375
+ name: Cosine Recall@200
376
+ - type: cosine_ndcg@1
377
+ value: 0.2955665024630542
378
+ name: Cosine Ndcg@1
379
+ - type: cosine_ndcg@20
380
+ value: 0.4600580109269636
381
+ name: Cosine Ndcg@20
382
+ - type: cosine_ndcg@50
383
+ value: 0.4229190542750304
384
+ name: Cosine Ndcg@50
385
+ - type: cosine_ndcg@100
386
+ value: 0.4370543021366767
387
+ name: Cosine Ndcg@100
388
+ - type: cosine_ndcg@150
389
+ value: 0.46289045418097646
390
+ name: Cosine Ndcg@150
391
+ - type: cosine_ndcg@200
392
+ value: 0.4796711024513544
393
+ name: Cosine Ndcg@200
394
+ - type: cosine_mrr@1
395
+ value: 0.2955665024630542
396
+ name: Cosine Mrr@1
397
+ - type: cosine_mrr@20
398
+ value: 0.48958320005117995
399
+ name: Cosine Mrr@20
400
+ - type: cosine_mrr@50
401
+ value: 0.49093477998292195
402
+ name: Cosine Mrr@50
403
+ - type: cosine_mrr@100
404
+ value: 0.4910841931964832
405
+ name: Cosine Mrr@100
406
+ - type: cosine_mrr@150
407
+ value: 0.4911623560854821
408
+ name: Cosine Mrr@150
409
+ - type: cosine_mrr@200
410
+ value: 0.4911623560854821
411
+ name: Cosine Mrr@200
412
+ - type: cosine_map@1
413
+ value: 0.2955665024630542
414
+ name: Cosine Map@1
415
+ - type: cosine_map@20
416
+ value: 0.32364842421740225
417
+ name: Cosine Map@20
418
+ - type: cosine_map@50
419
+ value: 0.2643813390551392
420
+ name: Cosine Map@50
421
+ - type: cosine_map@100
422
+ value: 0.2576413544507463
423
+ name: Cosine Map@100
424
+ - type: cosine_map@150
425
+ value: 0.2669126239698539
426
+ name: Cosine Map@150
427
+ - type: cosine_map@200
428
+ value: 0.27215799504041416
429
+ name: Cosine Map@200
430
+ - type: cosine_map@500
431
+ value: 0.28329484592874316
432
+ name: Cosine Map@500
433
+ - task:
434
+ type: information-retrieval
435
+ name: Information Retrieval
436
+ dataset:
437
+ name: full zh
438
+ type: full_zh
439
+ metrics:
440
+ - type: cosine_accuracy@1
441
+ value: 0.34951456310679613
442
+ name: Cosine Accuracy@1
443
+ - type: cosine_accuracy@20
444
+ value: 0.7378640776699029
445
+ name: Cosine Accuracy@20
446
+ - type: cosine_accuracy@50
447
+ value: 0.8252427184466019
448
+ name: Cosine Accuracy@50
449
+ - type: cosine_accuracy@100
450
+ value: 0.8543689320388349
451
+ name: Cosine Accuracy@100
452
+ - type: cosine_accuracy@150
453
+ value: 0.9029126213592233
454
+ name: Cosine Accuracy@150
455
+ - type: cosine_accuracy@200
456
+ value: 0.941747572815534
457
+ name: Cosine Accuracy@200
458
+ - type: cosine_precision@1
459
+ value: 0.34951456310679613
460
+ name: Cosine Precision@1
461
+ - type: cosine_precision@20
462
+ value: 0.17330097087378643
463
+ name: Cosine Precision@20
464
+ - type: cosine_precision@50
465
+ value: 0.09436893203883494
466
+ name: Cosine Precision@50
467
+ - type: cosine_precision@100
468
+ value: 0.05893203883495146
469
+ name: Cosine Precision@100
470
+ - type: cosine_precision@150
471
+ value: 0.0458252427184466
472
+ name: Cosine Precision@150
473
+ - type: cosine_precision@200
474
+ value: 0.03854368932038834
475
+ name: Cosine Precision@200
476
+ - type: cosine_recall@1
477
+ value: 0.02726635297033844
478
+ name: Cosine Recall@1
479
+ - type: cosine_recall@20
480
+ value: 0.17661061398990294
481
+ name: Cosine Recall@20
482
+ - type: cosine_recall@50
483
+ value: 0.2392861843604663
484
+ name: Cosine Recall@50
485
+ - type: cosine_recall@100
486
+ value: 0.2862639658547104
487
+ name: Cosine Recall@100
488
+ - type: cosine_recall@150
489
+ value: 0.3286954340443375
490
+ name: Cosine Recall@150
491
+ - type: cosine_recall@200
492
+ value: 0.3630829587412431
493
+ name: Cosine Recall@200
494
+ - type: cosine_ndcg@1
495
+ value: 0.34951456310679613
496
+ name: Cosine Ndcg@1
497
+ - type: cosine_ndcg@20
498
+ value: 0.24683538489164747
499
+ name: Cosine Ndcg@20
500
+ - type: cosine_ndcg@50
501
+ value: 0.23936442282824424
502
+ name: Cosine Ndcg@50
503
+ - type: cosine_ndcg@100
504
+ value: 0.2618891246293786
505
+ name: Cosine Ndcg@100
506
+ - type: cosine_ndcg@150
507
+ value: 0.27867525817923894
508
+ name: Cosine Ndcg@150
509
+ - type: cosine_ndcg@200
510
+ value: 0.29190260238165355
511
+ name: Cosine Ndcg@200
512
+ - type: cosine_mrr@1
513
+ value: 0.34951456310679613
514
+ name: Cosine Mrr@1
515
+ - type: cosine_mrr@20
516
+ value: 0.44845699819699636
517
+ name: Cosine Mrr@20
518
+ - type: cosine_mrr@50
519
+ value: 0.4514515915598798
520
+ name: Cosine Mrr@50
521
+ - type: cosine_mrr@100
522
+ value: 0.451864194979824
523
+ name: Cosine Mrr@100
524
+ - type: cosine_mrr@150
525
+ value: 0.4522894025156287
526
+ name: Cosine Mrr@150
527
+ - type: cosine_mrr@200
528
+ value: 0.45250948321580986
529
+ name: Cosine Mrr@200
530
+ - type: cosine_map@1
531
+ value: 0.34951456310679613
532
+ name: Cosine Map@1
533
+ - type: cosine_map@20
534
+ value: 0.1470309927546457
535
+ name: Cosine Map@20
536
+ - type: cosine_map@50
537
+ value: 0.12671489844037503
538
+ name: Cosine Map@50
539
+ - type: cosine_map@100
540
+ value: 0.13257859039926595
541
+ name: Cosine Map@100
542
+ - type: cosine_map@150
543
+ value: 0.13523273342027425
544
+ name: Cosine Map@150
545
+ - type: cosine_map@200
546
+ value: 0.13679857663871084
547
+ name: Cosine Map@200
548
+ - type: cosine_map@500
549
+ value: 0.14069476480399515
550
+ name: Cosine Map@500
551
+ - task:
552
+ type: information-retrieval
553
+ name: Information Retrieval
554
+ dataset:
555
+ name: mix es
556
+ type: mix_es
557
+ metrics:
558
+ - type: cosine_accuracy@1
559
+ value: 0.41133645345813835
560
+ name: Cosine Accuracy@1
561
+ - type: cosine_accuracy@20
562
+ value: 0.7613104524180967
563
+ name: Cosine Accuracy@20
564
+ - type: cosine_accuracy@50
565
+ value: 0.8523140925637025
566
+ name: Cosine Accuracy@50
567
+ - type: cosine_accuracy@100
568
+ value: 0.9121164846593863
569
+ name: Cosine Accuracy@100
570
+ - type: cosine_accuracy@150
571
+ value: 0.9417576703068122
572
+ name: Cosine Accuracy@150
573
+ - type: cosine_accuracy@200
574
+ value: 0.9547581903276131
575
+ name: Cosine Accuracy@200
576
+ - type: cosine_precision@1
577
+ value: 0.41133645345813835
578
+ name: Cosine Precision@1
579
+ - type: cosine_precision@20
580
+ value: 0.08920956838273532
581
+ name: Cosine Precision@20
582
+ - type: cosine_precision@50
583
+ value: 0.04175767030681228
584
+ name: Cosine Precision@50
585
+ - type: cosine_precision@100
586
+ value: 0.02291731669266771
587
+ name: Cosine Precision@100
588
+ - type: cosine_precision@150
589
+ value: 0.015905702894782457
590
+ name: Cosine Precision@150
591
+ - type: cosine_precision@200
592
+ value: 0.012243889755590227
593
+ name: Cosine Precision@200
594
+ - type: cosine_recall@1
595
+ value: 0.15653988064284477
596
+ name: Cosine Recall@1
597
+ - type: cosine_recall@20
598
+ value: 0.6593678032835598
599
+ name: Cosine Recall@20
600
+ - type: cosine_recall@50
601
+ value: 0.7704838669737266
602
+ name: Cosine Recall@50
603
+ - type: cosine_recall@100
604
+ value: 0.847169601069757
605
+ name: Cosine Recall@100
606
+ - type: cosine_recall@150
607
+ value: 0.8825483495530297
608
+ name: Cosine Recall@150
609
+ - type: cosine_recall@200
610
+ value: 0.9050999182824455
611
+ name: Cosine Recall@200
612
+ - type: cosine_ndcg@1
613
+ value: 0.41133645345813835
614
+ name: Cosine Ndcg@1
615
+ - type: cosine_ndcg@20
616
+ value: 0.5116672519515115
617
+ name: Cosine Ndcg@20
618
+ - type: cosine_ndcg@50
619
+ value: 0.542000920569141
620
+ name: Cosine Ndcg@50
621
+ - type: cosine_ndcg@100
622
+ value: 0.558759964344595
623
+ name: Cosine Ndcg@100
624
+ - type: cosine_ndcg@150
625
+ value: 0.5655977162199296
626
+ name: Cosine Ndcg@150
627
+ - type: cosine_ndcg@200
628
+ value: 0.5697289878952349
629
+ name: Cosine Ndcg@200
630
+ - type: cosine_mrr@1
631
+ value: 0.41133645345813835
632
+ name: Cosine Mrr@1
633
+ - type: cosine_mrr@20
634
+ value: 0.4978677179556957
635
+ name: Cosine Mrr@20
636
+ - type: cosine_mrr@50
637
+ value: 0.5009543893008301
638
+ name: Cosine Mrr@50
639
+ - type: cosine_mrr@100
640
+ value: 0.5018183607581652
641
+ name: Cosine Mrr@100
642
+ - type: cosine_mrr@150
643
+ value: 0.5020589846475842
644
+ name: Cosine Mrr@150
645
+ - type: cosine_mrr@200
646
+ value: 0.5021321446410069
647
+ name: Cosine Mrr@200
648
+ - type: cosine_map@1
649
+ value: 0.41133645345813835
650
+ name: Cosine Map@1
651
+ - type: cosine_map@20
652
+ value: 0.4263681424556441
653
+ name: Cosine Map@20
654
+ - type: cosine_map@50
655
+ value: 0.4338209025376249
656
+ name: Cosine Map@50
657
+ - type: cosine_map@100
658
+ value: 0.4359939776007631
659
+ name: Cosine Map@100
660
+ - type: cosine_map@150
661
+ value: 0.43656970643226983
662
+ name: Cosine Map@150
663
+ - type: cosine_map@200
664
+ value: 0.4368426702726571
665
+ name: Cosine Map@200
666
+ - type: cosine_map@500
667
+ value: 0.43729529920887905
668
+ name: Cosine Map@500
669
+ - task:
670
+ type: information-retrieval
671
+ name: Information Retrieval
672
+ dataset:
673
+ name: mix de
674
+ type: mix_de
675
+ metrics:
676
+ - type: cosine_accuracy@1
677
+ value: 0.29433177327093085
678
+ name: Cosine Accuracy@1
679
+ - type: cosine_accuracy@20
680
+ value: 0.6500260010400416
681
+ name: Cosine Accuracy@20
682
+ - type: cosine_accuracy@50
683
+ value: 0.7607904316172647
684
+ name: Cosine Accuracy@50
685
+ - type: cosine_accuracy@100
686
+ value: 0.8507540301612064
687
+ name: Cosine Accuracy@100
688
+ - type: cosine_accuracy@150
689
+ value: 0.889755590223609
690
+ name: Cosine Accuracy@150
691
+ - type: cosine_accuracy@200
692
+ value: 0.9204368174726989
693
+ name: Cosine Accuracy@200
694
+ - type: cosine_precision@1
695
+ value: 0.29433177327093085
696
+ name: Cosine Precision@1
697
+ - type: cosine_precision@20
698
+ value: 0.07308892355694228
699
+ name: Cosine Precision@20
700
+ - type: cosine_precision@50
701
+ value: 0.036141445657826315
702
+ name: Cosine Precision@50
703
+ - type: cosine_precision@100
704
+ value: 0.020634425377015084
705
+ name: Cosine Precision@100
706
+ - type: cosine_precision@150
707
+ value: 0.014681920610157736
708
+ name: Cosine Precision@150
709
+ - type: cosine_precision@200
710
+ value: 0.011552262090483621
711
+ name: Cosine Precision@200
712
+ - type: cosine_recall@1
713
+ value: 0.1109031027907783
714
+ name: Cosine Recall@1
715
+ - type: cosine_recall@20
716
+ value: 0.534356040908303
717
+ name: Cosine Recall@20
718
+ - type: cosine_recall@50
719
+ value: 0.6584676720402148
720
+ name: Cosine Recall@50
721
+ - type: cosine_recall@100
722
+ value: 0.752470098803952
723
+ name: Cosine Recall@100
724
+ - type: cosine_recall@150
725
+ value: 0.8025567689374241
726
+ name: Cosine Recall@150
727
+ - type: cosine_recall@200
728
+ value: 0.8417663373201595
729
+ name: Cosine Recall@200
730
+ - type: cosine_ndcg@1
731
+ value: 0.29433177327093085
732
+ name: Cosine Ndcg@1
733
+ - type: cosine_ndcg@20
734
+ value: 0.3919428679123834
735
+ name: Cosine Ndcg@20
736
+ - type: cosine_ndcg@50
737
+ value: 0.425599899100406
738
+ name: Cosine Ndcg@50
739
+ - type: cosine_ndcg@100
740
+ value: 0.4462421162922913
741
+ name: Cosine Ndcg@100
742
+ - type: cosine_ndcg@150
743
+ value: 0.45606402272845137
744
+ name: Cosine Ndcg@150
745
+ - type: cosine_ndcg@200
746
+ value: 0.4632312746623382
747
+ name: Cosine Ndcg@200
748
+ - type: cosine_mrr@1
749
+ value: 0.29433177327093085
750
+ name: Cosine Mrr@1
751
+ - type: cosine_mrr@20
752
+ value: 0.37785395494554963
753
+ name: Cosine Mrr@20
754
+ - type: cosine_mrr@50
755
+ value: 0.38148321196953044
756
+ name: Cosine Mrr@50
757
+ - type: cosine_mrr@100
758
+ value: 0.38274724688611994
759
+ name: Cosine Mrr@100
760
+ - type: cosine_mrr@150
761
+ value: 0.3830666241433367
762
+ name: Cosine Mrr@150
763
+ - type: cosine_mrr@200
764
+ value: 0.3832429794087988
765
+ name: Cosine Mrr@200
766
+ - type: cosine_map@1
767
+ value: 0.29433177327093085
768
+ name: Cosine Map@1
769
+ - type: cosine_map@20
770
+ value: 0.3096720133634083
771
+ name: Cosine Map@20
772
+ - type: cosine_map@50
773
+ value: 0.31740714963039135
774
+ name: Cosine Map@50
775
+ - type: cosine_map@100
776
+ value: 0.31992557448195186
777
+ name: Cosine Map@100
778
+ - type: cosine_map@150
779
+ value: 0.3207379270967634
780
+ name: Cosine Map@150
781
+ - type: cosine_map@200
782
+ value: 0.3211962807999124
783
+ name: Cosine Map@200
784
+ - type: cosine_map@500
785
+ value: 0.3219246841517722
786
+ name: Cosine Map@500
787
+ - task:
788
+ type: information-retrieval
789
+ name: Information Retrieval
790
+ dataset:
791
+ name: mix zh
792
+ type: mix_zh
793
+ metrics:
794
+ - type: cosine_accuracy@1
795
+ value: 0.09707724425887265
796
+ name: Cosine Accuracy@1
797
+ - type: cosine_accuracy@20
798
+ value: 0.3585594989561587
799
+ name: Cosine Accuracy@20
800
+ - type: cosine_accuracy@50
801
+ value: 0.4900835073068894
802
+ name: Cosine Accuracy@50
803
+ - type: cosine_accuracy@100
804
+ value: 0.6002087682672234
805
+ name: Cosine Accuracy@100
806
+ - type: cosine_accuracy@150
807
+ value: 0.6612734864300627
808
+ name: Cosine Accuracy@150
809
+ - type: cosine_accuracy@200
810
+ value: 0.7061586638830898
811
+ name: Cosine Accuracy@200
812
+ - type: cosine_precision@1
813
+ value: 0.09707724425887265
814
+ name: Cosine Precision@1
815
+ - type: cosine_precision@20
816
+ value: 0.03144572025052192
817
+ name: Cosine Precision@20
818
+ - type: cosine_precision@50
819
+ value: 0.018486430062630482
820
+ name: Cosine Precision@50
821
+ - type: cosine_precision@100
822
+ value: 0.011612734864300627
823
+ name: Cosine Precision@100
824
+ - type: cosine_precision@150
825
+ value: 0.008688239387613084
826
+ name: Cosine Precision@150
827
+ - type: cosine_precision@200
828
+ value: 0.007132045929018789
829
+ name: Cosine Precision@200
830
+ - type: cosine_recall@1
831
+ value: 0.032868575405109846
832
+ name: Cosine Recall@1
833
+ - type: cosine_recall@20
834
+ value: 0.20912118500845014
835
+ name: Cosine Recall@20
836
+ - type: cosine_recall@50
837
+ value: 0.305353414852371
838
+ name: Cosine Recall@50
839
+ - type: cosine_recall@100
840
+ value: 0.3834696126188819
841
+ name: Cosine Recall@100
842
+ - type: cosine_recall@150
843
+ value: 0.43087740663419155
844
+ name: Cosine Recall@150
845
+ - type: cosine_recall@200
846
+ value: 0.4714567385757365
847
+ name: Cosine Recall@200
848
+ - type: cosine_ndcg@1
849
+ value: 0.09707724425887265
850
+ name: Cosine Ndcg@1
851
+ - type: cosine_ndcg@20
852
+ value: 0.13847583254619214
853
+ name: Cosine Ndcg@20
854
+ - type: cosine_ndcg@50
855
+ value: 0.16556220177827802
856
+ name: Cosine Ndcg@50
857
+ - type: cosine_ndcg@100
858
+ value: 0.1834871578549362
859
+ name: Cosine Ndcg@100
860
+ - type: cosine_ndcg@150
861
+ value: 0.1930615498205831
862
+ name: Cosine Ndcg@150
863
+ - type: cosine_ndcg@200
864
+ value: 0.20074882110420836
865
+ name: Cosine Ndcg@200
866
+ - type: cosine_mrr@1
867
+ value: 0.09707724425887265
868
+ name: Cosine Mrr@1
869
+ - type: cosine_mrr@20
870
+ value: 0.15220960831749397
871
+ name: Cosine Mrr@20
872
+ - type: cosine_mrr@50
873
+ value: 0.15642354470896513
874
+ name: Cosine Mrr@50
875
+ - type: cosine_mrr@100
876
+ value: 0.1580041495008456
877
+ name: Cosine Mrr@100
878
+ - type: cosine_mrr@150
879
+ value: 0.15850022553236756
880
+ name: Cosine Mrr@150
881
+ - type: cosine_mrr@200
882
+ value: 0.1587557913720219
883
+ name: Cosine Mrr@200
884
+ - type: cosine_map@1
885
+ value: 0.09707724425887265
886
+ name: Cosine Map@1
887
+ - type: cosine_map@20
888
+ value: 0.08751052569766739
889
+ name: Cosine Map@20
890
+ - type: cosine_map@50
891
+ value: 0.09304075210745723
892
+ name: Cosine Map@50
893
+ - type: cosine_map@100
894
+ value: 0.09500635866296525
895
+ name: Cosine Map@100
896
+ - type: cosine_map@150
897
+ value: 0.09570276054684158
898
+ name: Cosine Map@150
899
+ - type: cosine_map@200
900
+ value: 0.09614394028730197
901
+ name: Cosine Map@200
902
+ - type: cosine_map@500
903
+ value: 0.09706713378133278
904
+ name: Cosine Map@500
905
+ ---
906
+
907
+ # Job - Job matching BAAI/bge-small-en-v1.5
908
+
909
+ Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching
910
+
911
+ ## Model Details
912
+
913
+ ### Model Description
914
+ - **Model Type:** Sentence Transformer
915
+ - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
916
+ - **Maximum Sequence Length:** 512 tokens
917
+ - **Output Dimensionality:** 384 dimensions
918
+ - **Similarity Function:** Cosine Similarity
919
+ - **Training Datasets:**
920
+ - full_en
921
+ - full_de
922
+ - full_es
923
+ - full_zh
924
+ - mix
925
+ <!-- - **Language:** Unknown -->
926
+ <!-- - **License:** Unknown -->
927
+
928
+ ### Model Sources
929
+
930
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
931
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
932
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
933
+
934
+ ### Full Model Architecture
935
+
936
+ ```
937
+ SentenceTransformer(
938
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
939
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
940
+ (2): Normalize()
941
+ )
942
+ ```
943
+
944
+ ## Usage
945
+
946
+ ### Direct Usage (Sentence Transformers)
947
+
948
+ First install the Sentence Transformers library:
949
+
950
+ ```bash
951
+ pip install -U sentence-transformers
952
+ ```
953
+
954
+ Then you can load this model and run inference.
955
+ ```python
956
+ from sentence_transformers import SentenceTransformer
957
+
958
+ # Download from the 🤗 Hub
959
+ model = SentenceTransformer("sentence_transformers_model_id")
960
+ # Run inference
961
+ sentences = [
962
+ 'Volksvertreter',
963
+ 'Parlamentarier',
964
+ 'Oberbürgermeister',
965
+ ]
966
+ embeddings = model.encode(sentences)
967
+ print(embeddings.shape)
968
+ # [3, 384]
969
+
970
+ # Get the similarity scores for the embeddings
971
+ similarities = model.similarity(embeddings, embeddings)
972
+ print(similarities.shape)
973
+ # [3, 3]
974
+ ```
975
+
976
+ <!--
977
+ ### Direct Usage (Transformers)
978
+
979
+ <details><summary>Click to see the direct usage in Transformers</summary>
980
+
981
+ </details>
982
+ -->
983
+
984
+ <!--
985
+ ### Downstream Usage (Sentence Transformers)
986
+
987
+ You can finetune this model on your own dataset.
988
+
989
+ <details><summary>Click to expand</summary>
990
+
991
+ </details>
992
+ -->
993
+
994
+ <!--
995
+ ### Out-of-Scope Use
996
+
997
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
998
+ -->
999
+
1000
+ ## Evaluation
1001
+
1002
+ ### Metrics
1003
+
1004
+ #### Information Retrieval
1005
+
1006
+ * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
1007
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
1008
+
1009
+ | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
1010
+ |:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
1011
+ | cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
1012
+ | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9212 | 0.7379 | 0.7613 | 0.65 | 0.3586 |
1013
+ | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9655 | 0.8252 | 0.8523 | 0.7608 | 0.4901 |
1014
+ | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9754 | 0.8544 | 0.9121 | 0.8508 | 0.6002 |
1015
+ | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9852 | 0.9029 | 0.9418 | 0.8898 | 0.6613 |
1016
+ | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9852 | 0.9417 | 0.9548 | 0.9204 | 0.7062 |
1017
+ | cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
1018
+ | cosine_precision@20 | 0.5024 | 0.4897 | 0.4246 | 0.1733 | 0.0892 | 0.0731 | 0.0314 |
1019
+ | cosine_precision@50 | 0.308 | 0.3179 | 0.2814 | 0.0944 | 0.0418 | 0.0361 | 0.0185 |
1020
+ | cosine_precision@100 | 0.1863 | 0.1986 | 0.1801 | 0.0589 | 0.0229 | 0.0206 | 0.0116 |
1021
+ | cosine_precision@150 | 0.1322 | 0.1469 | 0.1362 | 0.0458 | 0.0159 | 0.0147 | 0.0087 |
1022
+ | cosine_precision@200 | 0.103 | 0.1179 | 0.1105 | 0.0385 | 0.0122 | 0.0116 | 0.0071 |
1023
+ | cosine_recall@1 | 0.068 | 0.0031 | 0.0111 | 0.0273 | 0.1565 | 0.1109 | 0.0329 |
1024
+ | cosine_recall@20 | 0.5385 | 0.3221 | 0.2614 | 0.1766 | 0.6594 | 0.5344 | 0.2091 |
1025
+ | cosine_recall@50 | 0.726 | 0.4638 | 0.3835 | 0.2393 | 0.7705 | 0.6585 | 0.3054 |
1026
+ | cosine_recall@100 | 0.8329 | 0.5438 | 0.4677 | 0.2863 | 0.8472 | 0.7525 | 0.3835 |
1027
+ | cosine_recall@150 | 0.8745 | 0.5825 | 0.5183 | 0.3287 | 0.8825 | 0.8026 | 0.4309 |
1028
+ | cosine_recall@200 | 0.9057 | 0.6147 | 0.5517 | 0.3631 | 0.9051 | 0.8418 | 0.4715 |
1029
+ | cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
1030
+ | cosine_ndcg@20 | 0.6845 | 0.5385 | 0.4601 | 0.2468 | 0.5117 | 0.3919 | 0.1385 |
1031
+ | cosine_ndcg@50 | 0.704 | 0.5012 | 0.4229 | 0.2394 | 0.542 | 0.4256 | 0.1656 |
1032
+ | cosine_ndcg@100 | 0.7589 | 0.5147 | 0.4371 | 0.2619 | 0.5588 | 0.4462 | 0.1835 |
1033
+ | cosine_ndcg@150 | 0.7774 | 0.5348 | 0.4629 | 0.2787 | 0.5656 | 0.4561 | 0.1931 |
1034
+ | **cosine_ndcg@200** | **0.7893** | **0.5505** | **0.4797** | **0.2919** | **0.5697** | **0.4632** | **0.2007** |
1035
+ | cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
1036
+ | cosine_mrr@20 | 0.8103 | 0.5515 | 0.4896 | 0.4485 | 0.4979 | 0.3779 | 0.1522 |
1037
+ | cosine_mrr@50 | 0.8103 | 0.5515 | 0.4909 | 0.4515 | 0.501 | 0.3815 | 0.1564 |
1038
+ | cosine_mrr@100 | 0.8103 | 0.5515 | 0.4911 | 0.4519 | 0.5018 | 0.3827 | 0.158 |
1039
+ | cosine_mrr@150 | 0.8103 | 0.5515 | 0.4912 | 0.4523 | 0.5021 | 0.3831 | 0.1585 |
1040
+ | cosine_mrr@200 | 0.8103 | 0.5515 | 0.4912 | 0.4525 | 0.5021 | 0.3832 | 0.1588 |
1041
+ | cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
1042
+ | cosine_map@20 | 0.5418 | 0.4028 | 0.3236 | 0.147 | 0.4264 | 0.3097 | 0.0875 |
1043
+ | cosine_map@50 | 0.5327 | 0.3422 | 0.2644 | 0.1267 | 0.4338 | 0.3174 | 0.093 |
1044
+ | cosine_map@100 | 0.5657 | 0.3395 | 0.2576 | 0.1326 | 0.436 | 0.3199 | 0.095 |
1045
+ | cosine_map@150 | 0.5734 | 0.3478 | 0.2669 | 0.1352 | 0.4366 | 0.3207 | 0.0957 |
1046
+ | cosine_map@200 | 0.5772 | 0.3534 | 0.2722 | 0.1368 | 0.4368 | 0.3212 | 0.0961 |
1047
+ | cosine_map@500 | 0.5814 | 0.3631 | 0.2833 | 0.1407 | 0.4373 | 0.3219 | 0.0971 |
1048
+
1049
+ <!--
1050
+ ## Bias, Risks and Limitations
1051
+
1052
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
1053
+ -->
1054
+
1055
+ <!--
1056
+ ### Recommendations
1057
+
1058
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
1059
+ -->
1060
+
1061
+ ## Training Details
1062
+
1063
+ ### Training Datasets
1064
+ <details><summary>full_en</summary>
1065
+
1066
+ #### full_en
1067
+
1068
+ * Dataset: full_en
1069
+ * Size: 28,880 training samples
1070
+ * Columns: <code>anchor</code> and <code>positive</code>
1071
+ * Approximate statistics based on the first 1000 samples:
1072
+ | | anchor | positive |
1073
+ |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1074
+ | type | string | string |
1075
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.0 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.01 tokens</li><li>max: 13 tokens</li></ul> |
1076
+ * Samples:
1077
+ | anchor | positive |
1078
+ |:-----------------------------------------|:-----------------------------------------|
1079
+ | <code>air commodore</code> | <code>flight lieutenant</code> |
1080
+ | <code>command and control officer</code> | <code>flight officer</code> |
1081
+ | <code>air commodore</code> | <code>command and control officer</code> |
1082
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1083
+ ```json
1084
+ {'guide': SentenceTransformer(
1085
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1086
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1087
+ (2): Normalize()
1088
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1089
+ ```
1090
+ </details>
1091
+ <details><summary>full_de</summary>
1092
+
1093
+ #### full_de
1094
+
1095
+ * Dataset: full_de
1096
+ * Size: 23,023 training samples
1097
+ * Columns: <code>anchor</code> and <code>positive</code>
1098
+ * Approximate statistics based on the first 1000 samples:
1099
+ | | anchor | positive |
1100
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1101
+ | type | string | string |
1102
+ | details | <ul><li>min: 3 tokens</li><li>mean: 11.05 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.43 tokens</li><li>max: 45 tokens</li></ul> |
1103
+ * Samples:
1104
+ | anchor | positive |
1105
+ |:----------------------------------|:-----------------------------------------------------|
1106
+ | <code>Staffelkommandantin</code> | <code>Kommodore</code> |
1107
+ | <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
1108
+ | <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
1109
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1110
+ ```json
1111
+ {'guide': SentenceTransformer(
1112
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1113
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1114
+ (2): Normalize()
1115
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1116
+ ```
1117
+ </details>
1118
+ <details><summary>full_es</summary>
1119
+
1120
+ #### full_es
1121
+
1122
+ * Dataset: full_es
1123
+ * Size: 20,724 training samples
1124
+ * Columns: <code>anchor</code> and <code>positive</code>
1125
+ * Approximate statistics based on the first 1000 samples:
1126
+ | | anchor | positive |
1127
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1128
+ | type | string | string |
1129
+ | details | <ul><li>min: 3 tokens</li><li>mean: 12.95 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.57 tokens</li><li>max: 50 tokens</li></ul> |
1130
+ * Samples:
1131
+ | anchor | positive |
1132
+ |:------------------------------------|:-------------------------------------------|
1133
+ | <code>jefe de escuadrón</code> | <code>instructor</code> |
1134
+ | <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
1135
+ | <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
1136
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1137
+ ```json
1138
+ {'guide': SentenceTransformer(
1139
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1140
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1141
+ (2): Normalize()
1142
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1143
+ ```
1144
+ </details>
1145
+ <details><summary>full_zh</summary>
1146
+
1147
+ #### full_zh
1148
+
1149
+ * Dataset: full_zh
1150
+ * Size: 30,401 training samples
1151
+ * Columns: <code>anchor</code> and <code>positive</code>
1152
+ * Approximate statistics based on the first 1000 samples:
1153
+ | | anchor | positive |
1154
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1155
+ | type | string | string |
1156
+ | details | <ul><li>min: 4 tokens</li><li>mean: 8.36 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.95 tokens</li><li>max: 27 tokens</li></ul> |
1157
+ * Samples:
1158
+ | anchor | positive |
1159
+ |:------------------|:---------------------|
1160
+ | <code>技术总监</code> | <code>技术和运营总监</code> |
1161
+ | <code>技术总监</code> | <code>技术主管</code> |
1162
+ | <code>技术总监</code> | <code>技术艺术总监</code> |
1163
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1164
+ ```json
1165
+ {'guide': SentenceTransformer(
1166
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1167
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1168
+ (2): Normalize()
1169
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1170
+ ```
1171
+ </details>
1172
+ <details><summary>mix</summary>
1173
+
1174
+ #### mix
1175
+
1176
+ * Dataset: mix
1177
+ * Size: 21,760 training samples
1178
+ * Columns: <code>anchor</code> and <code>positive</code>
1179
+ * Approximate statistics based on the first 1000 samples:
1180
+ | | anchor | positive |
1181
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1182
+ | type | string | string |
1183
+ | details | <ul><li>min: 2 tokens</li><li>mean: 5.65 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 10.08 tokens</li><li>max: 30 tokens</li></ul> |
1184
+ * Samples:
1185
+ | anchor | positive |
1186
+ |:------------------------------------------|:----------------------------------------------------------------|
1187
+ | <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
1188
+ | <code>head of technical</code> | <code>directora técnica</code> |
1189
+ | <code>head of technical department</code> | <code>技术艺术总监</code> |
1190
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1191
+ ```json
1192
+ {'guide': SentenceTransformer(
1193
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1194
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1195
+ (2): Normalize()
1196
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1197
+ ```
1198
+ </details>
1199
+
1200
+ ### Training Hyperparameters
1201
+ #### Non-Default Hyperparameters
1202
+
1203
+ - `eval_strategy`: steps
1204
+ - `per_device_train_batch_size`: 128
1205
+ - `per_device_eval_batch_size`: 128
1206
+ - `gradient_accumulation_steps`: 2
1207
+ - `num_train_epochs`: 5
1208
+ - `warmup_ratio`: 0.05
1209
+ - `log_on_each_node`: False
1210
+ - `fp16`: True
1211
+ - `dataloader_num_workers`: 4
1212
+ - `ddp_find_unused_parameters`: True
1213
+ - `batch_sampler`: no_duplicates
1214
+
1215
+ #### All Hyperparameters
1216
+ <details><summary>Click to expand</summary>
1217
+
1218
+ - `overwrite_output_dir`: False
1219
+ - `do_predict`: False
1220
+ - `eval_strategy`: steps
1221
+ - `prediction_loss_only`: True
1222
+ - `per_device_train_batch_size`: 128
1223
+ - `per_device_eval_batch_size`: 128
1224
+ - `per_gpu_train_batch_size`: None
1225
+ - `per_gpu_eval_batch_size`: None
1226
+ - `gradient_accumulation_steps`: 2
1227
+ - `eval_accumulation_steps`: None
1228
+ - `torch_empty_cache_steps`: None
1229
+ - `learning_rate`: 5e-05
1230
+ - `weight_decay`: 0.0
1231
+ - `adam_beta1`: 0.9
1232
+ - `adam_beta2`: 0.999
1233
+ - `adam_epsilon`: 1e-08
1234
+ - `max_grad_norm`: 1.0
1235
+ - `num_train_epochs`: 5
1236
+ - `max_steps`: -1
1237
+ - `lr_scheduler_type`: linear
1238
+ - `lr_scheduler_kwargs`: {}
1239
+ - `warmup_ratio`: 0.05
1240
+ - `warmup_steps`: 0
1241
+ - `log_level`: passive
1242
+ - `log_level_replica`: warning
1243
+ - `log_on_each_node`: False
1244
+ - `logging_nan_inf_filter`: True
1245
+ - `save_safetensors`: True
1246
+ - `save_on_each_node`: False
1247
+ - `save_only_model`: False
1248
+ - `restore_callback_states_from_checkpoint`: False
1249
+ - `no_cuda`: False
1250
+ - `use_cpu`: False
1251
+ - `use_mps_device`: False
1252
+ - `seed`: 42
1253
+ - `data_seed`: None
1254
+ - `jit_mode_eval`: False
1255
+ - `use_ipex`: False
1256
+ - `bf16`: False
1257
+ - `fp16`: True
1258
+ - `fp16_opt_level`: O1
1259
+ - `half_precision_backend`: auto
1260
+ - `bf16_full_eval`: False
1261
+ - `fp16_full_eval`: False
1262
+ - `tf32`: None
1263
+ - `local_rank`: 0
1264
+ - `ddp_backend`: None
1265
+ - `tpu_num_cores`: None
1266
+ - `tpu_metrics_debug`: False
1267
+ - `debug`: []
1268
+ - `dataloader_drop_last`: True
1269
+ - `dataloader_num_workers`: 4
1270
+ - `dataloader_prefetch_factor`: None
1271
+ - `past_index`: -1
1272
+ - `disable_tqdm`: False
1273
+ - `remove_unused_columns`: True
1274
+ - `label_names`: None
1275
+ - `load_best_model_at_end`: False
1276
+ - `ignore_data_skip`: False
1277
+ - `fsdp`: []
1278
+ - `fsdp_min_num_params`: 0
1279
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1280
+ - `tp_size`: 0
1281
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1282
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1283
+ - `deepspeed`: None
1284
+ - `label_smoothing_factor`: 0.0
1285
+ - `optim`: adamw_torch
1286
+ - `optim_args`: None
1287
+ - `adafactor`: False
1288
+ - `group_by_length`: False
1289
+ - `length_column_name`: length
1290
+ - `ddp_find_unused_parameters`: True
1291
+ - `ddp_bucket_cap_mb`: None
1292
+ - `ddp_broadcast_buffers`: False
1293
+ - `dataloader_pin_memory`: True
1294
+ - `dataloader_persistent_workers`: False
1295
+ - `skip_memory_metrics`: True
1296
+ - `use_legacy_prediction_loop`: False
1297
+ - `push_to_hub`: False
1298
+ - `resume_from_checkpoint`: None
1299
+ - `hub_model_id`: None
1300
+ - `hub_strategy`: every_save
1301
+ - `hub_private_repo`: None
1302
+ - `hub_always_push`: False
1303
+ - `gradient_checkpointing`: False
1304
+ - `gradient_checkpointing_kwargs`: None
1305
+ - `include_inputs_for_metrics`: False
1306
+ - `include_for_metrics`: []
1307
+ - `eval_do_concat_batches`: True
1308
+ - `fp16_backend`: auto
1309
+ - `push_to_hub_model_id`: None
1310
+ - `push_to_hub_organization`: None
1311
+ - `mp_parameters`:
1312
+ - `auto_find_batch_size`: False
1313
+ - `full_determinism`: False
1314
+ - `torchdynamo`: None
1315
+ - `ray_scope`: last
1316
+ - `ddp_timeout`: 1800
1317
+ - `torch_compile`: False
1318
+ - `torch_compile_backend`: None
1319
+ - `torch_compile_mode`: None
1320
+ - `include_tokens_per_second`: False
1321
+ - `include_num_input_tokens_seen`: False
1322
+ - `neftune_noise_alpha`: None
1323
+ - `optim_target_modules`: None
1324
+ - `batch_eval_metrics`: False
1325
+ - `eval_on_start`: False
1326
+ - `use_liger_kernel`: False
1327
+ - `eval_use_gather_object`: False
1328
+ - `average_tokens_across_devices`: False
1329
+ - `prompts`: None
1330
+ - `batch_sampler`: no_duplicates
1331
+ - `multi_dataset_batch_sampler`: proportional
1332
+
1333
+ </details>
1334
+
1335
+ ### Training Logs
1336
+ | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
1337
+ |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
1338
+ | -1 | -1 | - | 0.7322 | 0.4690 | 0.3853 | 0.2723 | 0.3209 | 0.2244 | 0.0919 |
1339
+ | 0.0021 | 1 | 23.8878 | - | - | - | - | - | - | - |
1340
+ | 0.2058 | 100 | 7.2098 | - | - | - | - | - | - | - |
1341
+ | 0.4115 | 200 | 4.2635 | 0.7800 | 0.5132 | 0.4268 | 0.2798 | 0.4372 | 0.2996 | 0.1447 |
1342
+ | 0.6173 | 300 | 4.1931 | - | - | - | - | - | - | - |
1343
+ | 0.8230 | 400 | 3.73 | 0.7863 | 0.5274 | 0.4451 | 0.2805 | 0.4762 | 0.3455 | 0.1648 |
1344
+ | 1.0309 | 500 | 3.3569 | - | - | - | - | - | - | - |
1345
+ | 1.2366 | 600 | 3.6464 | 0.7868 | 0.5372 | 0.4540 | 0.2813 | 0.5063 | 0.3794 | 0.1755 |
1346
+ | 1.4424 | 700 | 3.0772 | - | - | - | - | - | - | - |
1347
+ | 1.6481 | 800 | 3.114 | 0.7906 | 0.5391 | 0.4576 | 0.2832 | 0.5221 | 0.4047 | 0.1779 |
1348
+ | 1.8539 | 900 | 2.9246 | - | - | - | - | - | - | - |
1349
+ | 2.0617 | 1000 | 2.7479 | 0.7873 | 0.5423 | 0.4631 | 0.2871 | 0.5323 | 0.4143 | 0.1843 |
1350
+ | 2.2675 | 1100 | 3.049 | - | - | - | - | - | - | - |
1351
+ | 2.4733 | 1200 | 2.6137 | 0.7878 | 0.5418 | 0.4685 | 0.2870 | 0.5470 | 0.4339 | 0.1932 |
1352
+ | 2.6790 | 1300 | 2.8607 | - | - | - | - | - | - | - |
1353
+ | 2.8848 | 1400 | 2.7071 | 0.7889 | 0.5465 | 0.4714 | 0.2891 | 0.5504 | 0.4362 | 0.1944 |
1354
+ | 3.0926 | 1500 | 2.7012 | - | - | - | - | - | - | - |
1355
+ | 3.2984 | 1600 | 2.7423 | 0.7882 | 0.5471 | 0.4748 | 0.2868 | 0.5542 | 0.4454 | 0.1976 |
1356
+ | 3.5041 | 1700 | 2.5316 | - | - | - | - | - | - | - |
1357
+ | 3.7099 | 1800 | 2.6344 | 0.7900 | 0.5498 | 0.4763 | 0.2857 | 0.5639 | 0.4552 | 0.1954 |
1358
+ | 3.9156 | 1900 | 2.4983 | - | - | - | - | - | - | - |
1359
+ | 4.1235 | 2000 | 2.5423 | 0.7894 | 0.5499 | 0.4786 | 0.2870 | 0.5644 | 0.4576 | 0.1974 |
1360
+ | 4.3292 | 2100 | 2.5674 | - | - | - | - | - | - | - |
1361
+ | 4.5350 | 2200 | 2.6237 | 0.7899 | 0.5502 | 0.4802 | 0.2843 | 0.5674 | 0.4607 | 0.1993 |
1362
+ | 4.7407 | 2300 | 2.3776 | - | - | - | - | - | - | - |
1363
+ | 4.9465 | 2400 | 2.1116 | 0.7893 | 0.5505 | 0.4797 | 0.2919 | 0.5697 | 0.4632 | 0.2007 |
1364
+
1365
+
1366
+ ### Framework Versions
1367
+ - Python: 3.11.11
1368
+ - Sentence Transformers: 4.1.0
1369
+ - Transformers: 4.51.3
1370
+ - PyTorch: 2.6.0+cu124
1371
+ - Accelerate: 1.6.0
1372
+ - Datasets: 3.5.0
1373
+ - Tokenizers: 0.21.1
1374
+
1375
+ ## Citation
1376
+
1377
+ ### BibTeX
1378
+
1379
+ #### Sentence Transformers
1380
+ ```bibtex
1381
+ @inproceedings{reimers-2019-sentence-bert,
1382
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1383
+ author = "Reimers, Nils and Gurevych, Iryna",
1384
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1385
+ month = "11",
1386
+ year = "2019",
1387
+ publisher = "Association for Computational Linguistics",
1388
+ url = "https://arxiv.org/abs/1908.10084",
1389
+ }
1390
+ ```
1391
+
1392
+ #### GISTEmbedLoss
1393
+ ```bibtex
1394
+ @misc{solatorio2024gistembed,
1395
+ title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
1396
+ author={Aivin V. Solatorio},
1397
+ year={2024},
1398
+ eprint={2402.16829},
1399
+ archivePrefix={arXiv},
1400
+ primaryClass={cs.LG}
1401
+ }
1402
+ ```
1403
+
1404
+ <!--
1405
+ ## Glossary
1406
+
1407
+ *Clearly define terms in order to be accessible across audiences.*
1408
+ -->
1409
+
1410
+ <!--
1411
+ ## Model Card Authors
1412
+
1413
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1414
+ -->
1415
+
1416
+ <!--
1417
+ ## Model Card Contact
1418
+
1419
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1420
+ -->
checkpoint-2400/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 384,
10
+ "id2label": {
11
+ "0": "LABEL_0"
12
+ },
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 1536,
15
+ "label2id": {
16
+ "LABEL_0": 0
17
+ },
18
+ "layer_norm_eps": 1e-12,
19
+ "max_position_embeddings": 512,
20
+ "model_type": "bert",
21
+ "num_attention_heads": 12,
22
+ "num_hidden_layers": 12,
23
+ "pad_token_id": 0,
24
+ "position_embedding_type": "absolute",
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.51.3",
27
+ "type_vocab_size": 2,
28
+ "use_cache": true,
29
+ "vocab_size": 30522
30
+ }
checkpoint-2400/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-2400/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-2400/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
checkpoint-2400/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
checkpoint-2400/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2400/tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
checkpoint-2400/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
eval/Information-Retrieval_evaluation_full_de_results.csv ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
2
+ 0.411522633744856,200,0.2955665024630542,0.9014778325123153,0.9408866995073891,0.9605911330049262,0.9605911330049262,0.9704433497536946,0.2955665024630542,0.01108543831680986,0.4027093596059113,0.2397877981982046,0.2561576354679803,0.3397409314681747,0.16064039408866995,0.40636431912970855,0.11914614121510674,0.446007269889672,0.095,0.469718501934431,0.2955665024630542,0.48314407267609183,0.4844918996268316,0.48480164022781674,0.48480164022781674,0.4848592643725686,0.2955665024630542,0.43619754352310475,0.38888491873524683,0.3955441522908745,0.4150719496756774,0.42677964152696485,0.2955665024630542,0.3029422417780052,0.24132957923060117,0.23155516632805698,0.23829517563807467,0.24151893822757842,0.24866229273096108
3
+ 0.823045267489712,400,0.2955665024630542,0.9064039408866995,0.9359605911330049,0.9655172413793104,0.9704433497536946,0.9802955665024631,0.2955665024630542,0.01108543831680986,0.41182266009852214,0.24603315574847545,0.265024630541872,0.3559333178644535,0.16610837438423645,0.4239869245671403,0.12469622331691296,0.464226040675043,0.10002463054187193,0.49889192978503694,0.2955665024630542,0.4854539959219757,0.4864492293797279,0.4868486260728541,0.48688511576451626,0.48694330618535214,0.2955665024630542,0.44583022302558617,0.4019089233882443,0.4089732681691876,0.4299764699380707,0.44507642718195956,0.2955665024630542,0.31343527374238067,0.2511534690299019,0.24097108291056854,0.24906329181223558,0.25313724617084776,0.2612809613562446
4
+ 1.2366255144032923,600,0.2955665024630542,0.9014778325123153,0.9458128078817734,0.9753694581280788,0.9802955665024631,0.9802955665024631,0.2955665024630542,0.01108543831680986,0.4179802955665025,0.2507659677684014,0.26945812807881775,0.36139943218013776,0.1685221674876847,0.42975460445862856,0.12752052545155995,0.47859982335228407,0.10280788177339902,0.5110425468683738,0.2955665024630542,0.487974894563564,0.4895739950712001,0.48998399066079057,0.4900177311291083,0.4900177311291083,0.2955665024630542,0.4513590471633809,0.4072116394103669,0.41394876856390583,0.4383431554345573,0.4539611235077664,0.2955665024630542,0.32001984932782485,0.2558157694655061,0.2460951907888303,0.2545210602874976,0.2590743916287105,0.2682904028010859
5
+ 1.6481481481481481,800,0.2955665024630542,0.9014778325123153,0.9507389162561576,0.9753694581280788,0.9852216748768473,0.9852216748768473,0.2955665024630542,0.01108543831680986,0.41773399014778323,0.2494866605097815,0.27418719211822656,0.36928405234284817,0.17177339901477834,0.4412045266942434,0.1291297208538588,0.48510123264203986,0.10394088669950739,0.5176063882950653,0.2955665024630542,0.484464702607994,0.486173947904224,0.4865140569657979,0.4865886523211815,0.4865886523211815,0.2955665024630542,0.450579044037908,0.41170953475508176,0.41956590300215635,0.44235301040188246,0.45760233045594884,0.2955665024630542,0.3193150464209932,0.2585277060483647,0.24906832890040956,0.2576260716612884,0.26187572608350973,0.27163288456073703
6
+ 2.0617283950617282,1000,0.2955665024630542,0.916256157635468,0.9556650246305419,0.9753694581280788,0.9802955665024631,0.9852216748768473,0.2955665024630542,0.01108543831680986,0.41748768472906406,0.25155227497815463,0.27270935960591136,0.3705669929966589,0.17339901477832514,0.4487664022453661,0.1303448275862069,0.4934281669006011,0.10514778325123154,0.5278916684808911,0.2955665024630542,0.4855922881169181,0.4870116041237047,0.48730977573921297,0.4873447126780384,0.48736984588403015,0.2955665024630542,0.45183168265391493,0.41228492442192266,0.4240106061739794,0.447142422447027,0.46311004808573736,0.2955665024630542,0.3186993957078306,0.25751169524533646,0.2502256866267068,0.25876370173281255,0.26321632344495977,0.27325486205583915
7
+ 2.4732510288065845,1200,0.2955665024630542,0.9211822660098522,0.9655172413793104,0.9753694581280788,0.9802955665024631,0.9852216748768473,0.2955665024630542,0.01108543831680986,0.4206896551724138,0.25424626281255974,0.27448275862068966,0.37051189896088027,0.1755665024630542,0.4543389493160528,0.1322824302134647,0.503775023361744,0.10711822660098524,0.5364598132643672,0.2955665024630542,0.4871659060698465,0.48852868388849907,0.4886507814338861,0.4886963935484638,0.48872880215619,0.2955665024630542,0.4543570380262183,0.4136246995722192,0.42739450665515794,0.45221938702019715,0.46847956807533453,0.2955665024630542,0.3197938693485097,0.2583523807706544,0.25128698155203766,0.2599274644479043,0.264630021908868,0.2750223755540361
8
+ 2.8847736625514404,1400,0.2955665024630542,0.9211822660098522,0.9605911330049262,0.9753694581280788,0.9852216748768473,0.9901477832512315,0.2955665024630542,0.01108543831680986,0.42266009852216746,0.2564373935368352,0.2763546798029557,0.3738095021680649,0.17719211822660097,0.46032234824984203,0.1323152709359606,0.5026371227945337,0.10761083743842365,0.5417412938935923,0.2955665024630542,0.49028088769468026,0.4916502861761478,0.4918651506767266,0.4919484740988368,0.49197373619306445,0.2955665024630542,0.4573450562750204,0.41671754793582183,0.43141520005257894,0.45327373735898785,0.47141089815692283,0.2955665024630542,0.32232925377765026,0.26059467804150227,0.25363797712043784,0.26183022395215827,0.2668163004108936,0.2776190401766902
9
+ 3.2983539094650207,1600,0.2955665024630542,0.9261083743842364,0.9556650246305419,0.9802955665024631,0.9852216748768473,0.9852216748768473,0.2955665024630542,0.01108543831680986,0.4263546798029557,0.26014264456225006,0.2770443349753695,0.37472046766567035,0.17901477832512316,0.4638118170858238,0.13490968801313627,0.5124044299199141,0.10899014778325124,0.5445439134836504,0.2955665024630542,0.4892752997831232,0.4902771206282054,0.4906981997008054,0.4907366849224803,0.4907366849224803,0.2955665024630542,0.45965919662626975,0.41741219260743895,0.43399231095446933,0.45874970458896197,0.47478895069588406,0.2955665024630542,0.3232519233820698,0.26102657686588665,0.2553505082151027,0.2642642274892868,0.2691969880894716,0.2803112292648821
10
+ 3.7098765432098766,1800,0.2955665024630542,0.9211822660098522,0.9605911330049262,0.9753694581280788,0.9852216748768473,0.9852216748768473,0.2955665024630542,0.01108543831680986,0.4226600985221674,0.25787568646307335,0.2775369458128079,0.378544115518205,0.1787192118226601,0.4646991741198787,0.1349753694581281,0.514077820298434,0.10960591133004927,0.5479242719935129,0.2955665024630542,0.488501497777794,0.48978270334574775,0.4900376562912742,0.4901135143922775,0.4901135143922775,0.2955665024630542,0.4571806408684656,0.4186161244795668,0.43413691996468995,0.45936827865079527,0.4762742892652946,0.2955665024630542,0.3211048669539684,0.261888445835493,0.2558901722323677,0.2649913870834412,0.27010541031599244,0.28106938786931224
11
+ 4.1234567901234565,2000,0.2955665024630542,0.9211822660098522,0.9655172413793104,0.9753694581280788,0.9852216748768473,0.9852216748768473,0.2955665024630542,0.01108543831680986,0.4273399014778325,0.2624274710898933,0.2806896551724138,0.3816838951440551,0.17970443349753695,0.466648189283344,0.13536945812807882,0.5156350937800631,0.11017241379310345,0.5501200676805387,0.2955665024630542,0.4902263308667246,0.49157690165668283,0.491727421634789,0.49180457899033725,0.49180457899033725,0.2955665024630542,0.4612630794197783,0.4218308857158181,0.43630012299200127,0.4611671590034933,0.47859447889613466,0.2955665024630542,0.32403320158333687,0.263929499089501,0.2571656148623807,0.2662223711722934,0.2716128199441605,0.2826472699200774
12
+ 4.534979423868313,2200,0.2955665024630542,0.9211822660098522,0.9655172413793104,0.9753694581280788,0.9852216748768473,0.9852216748768473,0.2955665024630542,0.01108543831680986,0.424384236453202,0.2600945586038909,0.28167487684729065,0.3844030994839744,0.17995073891625615,0.4672649807153451,0.13589490968801315,0.5171228717670064,0.1108128078817734,0.5533299912627624,0.2955665024630542,0.4892678749821603,0.49065090899064223,0.49080251743966435,0.4908799208299932,0.4908799208299932,0.2955665024630542,0.4593107411252075,0.42313178566078624,0.4367043857530601,0.4621847371016286,0.48019099347834654,0.2955665024630542,0.3228620941051522,0.2644260812747752,0.2576011230547815,0.2666548881846307,0.27224102651692533,0.28312561300678324
13
+ 4.946502057613169,2400,0.2955665024630542,0.9211822660098522,0.9655172413793104,0.9753694581280788,0.9852216748768473,0.9852216748768473,0.2955665024630542,0.01108543831680986,0.4246305418719211,0.26139377973111655,0.2813793103448276,0.3835171819041212,0.1800985221674877,0.4676892706124872,0.1362233169129721,0.5183014504752351,0.11054187192118226,0.551717511250073,0.2955665024630542,0.48958320005117995,0.49093477998292195,0.4910841931964832,0.4911623560854821,0.4911623560854821,0.2955665024630542,0.4600580109269636,0.4229190542750304,0.4370543021366767,0.46289045418097646,0.4796711024513544,0.2955665024630542,0.32364842421740225,0.2643813390551392,0.2576413544507463,0.2669126239698539,0.27215799504041416,0.28329484592874316
eval/Information-Retrieval_evaluation_full_en_results.csv ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
2
+ 0.411522633744856,200,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.4976190476190476,0.5284680259485819,0.3038095238095238,0.7231230420308711,0.18314285714285714,0.8273335723253694,0.13130158730158728,0.8724347093582713,0.1020952380952381,0.90021334459974,0.6571428571428571,0.8067460317460319,0.8067460317460319,0.8067460317460319,0.8067460317460319,0.8067460317460319,0.6571428571428571,0.6737645346273887,0.695164234192003,0.7483799443505852,0.7691112574007344,0.7800405992410987,0.6571428571428571,0.5299397041187759,0.5220251726274289,0.5532709362996466,0.5618399524058404,0.5651515423425598,0.569668844878145
3
+ 0.823045267489712,400,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.5014285714285714,0.5375674892414365,0.3078095238095238,0.7347397365593289,0.18523809523809526,0.8276159955075398,0.13212698412698415,0.8777153749694616,0.10276190476190475,0.9011461596134613,0.6571428571428571,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.6571428571428571,0.6825167420372731,0.7048735083826516,0.7551270785607507,0.7761286809859862,0.7862859073246008,0.6571428571428571,0.5418719592514646,0.5324235947657433,0.5635993544994099,0.5718796948908037,0.5752611322019725,0.5796043727711822
4
+ 1.2366255144032923,600,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.5028571428571428,0.5398715085192946,0.30704761904761907,0.7308719325653078,0.1838095238095238,0.8262964541001024,0.132,0.8784584230637306,0.10223809523809524,0.9018073337568441,0.6571428571428571,0.8077097505668934,0.8077097505668934,0.8077097505668934,0.8077097505668934,0.8077097505668934,0.6571428571428571,0.6850767250883057,0.7044403449717462,0.7546986124195911,0.777254490797725,0.7867945884669394,0.6571428571428571,0.5457839795231701,0.5355773107388312,0.5656610155238299,0.5746370131719752,0.5777208746811918,0.5824501808632291
5
+ 1.6481481481481481,800,0.6476190476190476,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6476190476190476,0.06746356199344833,0.5061904761904762,0.541072327693301,0.30914285714285716,0.7327361037934382,0.186,0.8335321088015876,0.13333333333333333,0.8882026127864071,0.10347619047619047,0.9090716780714798,0.6476190476190476,0.8026984126984127,0.8026984126984127,0.8026984126984127,0.8026984126984127,0.8026984126984127,0.6476190476190476,0.6866463829861651,0.7064408019474654,0.7585381619488913,0.7812596240306533,0.790629112682048,0.6476190476190476,0.5461934071378476,0.5369545054652285,0.568147174753436,0.577055068259624,0.5803597622093143,0.5843536091323346
6
+ 2.0617283950617282,1000,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.5028571428571428,0.5388142633863466,0.30514285714285716,0.7268631415793363,0.18504761904761904,0.8331116117257217,0.13180952380952382,0.8761158516906827,0.10252380952380953,0.904349067709719,0.6571428571428571,0.8061904761904761,0.8061904761904761,0.8061904761904761,0.8061904761904761,0.8061904761904761,0.6571428571428571,0.6842699993599198,0.702010913891441,0.756934764230349,0.7762338594987468,0.7873198038947117,0.6571428571428571,0.543775747791129,0.5323645236649057,0.56496259506028,0.5732219755644478,0.5767502034938088,0.5811866422740818
7
+ 2.4732510288065845,1200,0.6666666666666666,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6666666666666666,0.06861902417832229,0.5038095238095238,0.5419002892127911,0.30704761904761907,0.7287885616142801,0.18571428571428575,0.8341958314686581,0.1319365079365079,0.8791111232735128,0.10242857142857144,0.9018490360567623,0.6666666666666666,0.8134920634920635,0.8134920634920635,0.8134920634920635,0.8134920634920635,0.8134920634920635,0.6666666666666666,0.6865928514549534,0.7044165269440101,0.758828543705718,0.7783015638083327,0.787833571926764,0.6666666666666666,0.5445384053598401,0.5340823226586825,0.5666498442765412,0.5744738971556304,0.577742003181827,0.582167426746285
8
+ 2.8847736625514404,1400,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.5023809523809523,0.5390314830248254,0.30666666666666664,0.7255588872812402,0.18552380952380954,0.8336098454332262,0.13206349206349205,0.8776420958977807,0.10252380952380953,0.905477018983423,0.6571428571428571,0.8098412698412698,0.8098412698412698,0.8098412698412698,0.8098412698412698,0.8098412698412698,0.6571428571428571,0.6853690691220163,0.7035568453723352,0.7587041215816165,0.7781119824366103,0.7888922672016271,0.6571428571428571,0.5440561935362748,0.533757182194697,0.5665381431756713,0.574674883501895,0.5781424170756677,0.5826908375984402
9
+ 3.2983539094650207,1600,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.5019047619047619,0.5375018845788361,0.3087619047619048,0.7285392134841354,0.18676190476190477,0.8322341922506664,0.13282539682539682,0.8801590338170654,0.10247619047619048,0.902805836843439,0.6571428571428571,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.6571428571428571,0.6842763252168604,0.7050658917677234,0.7592503116780603,0.7793217469818706,0.7881724081346186,0.6571428571428571,0.5422881048847362,0.5339554214943681,0.5668962932951893,0.5749918744199348,0.5778159227565198,0.5826470723639171
10
+ 3.7098765432098766,1800,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.5076190476190475,0.5459242543214992,0.3089523809523809,0.728483344815942,0.1872380952380952,0.8382149119179341,0.1321904761904762,0.8762032488748317,0.1027142857142857,0.9059964336434017,0.6571428571428571,0.8098412698412698,0.8098412698412698,0.8098412698412698,0.8098412698412698,0.8098412698412698,0.6571428571428571,0.6895375515490911,0.7060633068166344,0.7619501692018719,0.778798440383198,0.7899830993214225,0.6571428571428571,0.5464916843297755,0.5351890636433139,0.5685440196941911,0.5756567539581475,0.5791635361565666,0.5835322146366259
11
+ 4.1234567901234565,2000,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.5057142857142858,0.539814746481506,0.3085714285714286,0.7281788406466259,0.18685714285714286,0.8369695734692713,0.13263492063492063,0.8797734908498225,0.10261904761904762,0.9040821090543185,0.6571428571428571,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.6571428571428571,0.6871892352981543,0.7057435134474674,0.7611594394123498,0.7798336860589586,0.7894131768304745,0.6571428571428571,0.5458017299619246,0.5350568967293148,0.5681338314009312,0.5758337072896192,0.5788774324789392,0.5832951333498196
12
+ 4.534979423868313,2200,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.5047619047619047,0.539060339827615,0.30857142857142855,0.7269844521994231,0.18666666666666668,0.8337131628681403,0.13269841269841268,0.879935375805825,0.1029047619047619,0.9050529457831012,0.6571428571428571,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.6571428571428571,0.686462471196106,0.7052824081502371,0.7601614355798527,0.7798476891938094,0.7898871141566125,0.6571428571428571,0.5451065538458748,0.5347802076206865,0.567702602098158,0.5756725358487015,0.5789669196636947,0.5832808543489026
13
+ 4.946502057613169,2400,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.5023809523809524,0.5384852963395483,0.30800000000000005,0.7260449077992874,0.18628571428571428,0.8328530702930984,0.1321904761904762,0.8745262490032277,0.10295238095238096,0.9056960100263424,0.6571428571428571,0.8103174603174604,0.8103174603174604,0.8103174603174604,0.8103174603174604,0.8103174603174604,0.6571428571428571,0.6845256340390302,0.7040452093638513,0.758935932285001,0.7774414598948007,0.7892946240668293,0.6571428571428571,0.5418235787800474,0.5327215779103721,0.565706253334091,0.5733951147399983,0.5771587776237981,0.5813892452974444
eval/Information-Retrieval_evaluation_full_es_results.csv ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
2
+ 0.411522633744856,200,0.11891891891891893,1.0,1.0,1.0,1.0,1.0,0.11891891891891893,0.003024360973616746,0.4694594594594595,0.31053207088565277,0.2983783783783784,0.42614039588025415,0.18513513513513513,0.49901813152536034,0.1345945945945946,0.5346656868120796,0.10713513513513513,0.5592578750804021,0.11891891891891893,0.5490990990990992,0.5490990990990992,0.5490990990990992,0.5490990990990992,0.5490990990990992,0.11891891891891893,0.5218272350380521,0.4745212636441562,0.4842178173557756,0.5009132942819904,0.5131617481723315,0.11891891891891893,0.38346574954289603,0.31901962210798024,0.3135140561411267,0.31931399115014064,0.323326528706833,0.33235338808880366
3
+ 0.823045267489712,400,0.11891891891891893,1.0,1.0,1.0,1.0,1.0,0.11891891891891893,0.0030705981104143607,0.47513513513513517,0.31369448244619974,0.3050810810810811,0.43422222128156396,0.19135135135135134,0.5163336846189911,0.14111711711711714,0.5578170727727878,0.1118918918918919,0.5806474757962988,0.11891891891891893,0.548069498069498,0.548069498069498,0.548069498069498,0.548069498069498,0.548069498069498,0.11891891891891893,0.5269280959725181,0.4822554523152334,0.4958705525297187,0.5157505381453046,0.5273738468985321,0.11891891891891893,0.3896153097252675,0.32693675475694645,0.32215739067065347,0.32974102041397374,0.33399917893721415,0.343191350066819
4
+ 1.2366255144032923,600,0.11351351351351352,1.0,1.0,1.0,1.0,1.0,0.11351351351351352,0.0030021752571813805,0.4851351351351351,0.3190790134810421,0.30929729729729727,0.44553617281974717,0.19324324324324324,0.5245689118193608,0.14198198198198198,0.5657272960906738,0.1144054054054054,0.5971080490143961,0.11351351351351352,0.544924924924925,0.544924924924925,0.544924924924925,0.544924924924925,0.544924924924925,0.11351351351351352,0.5338448763613065,0.4892425039497285,0.5015633527777135,0.5215413480381466,0.5372195273357036,0.11351351351351352,0.3988008268766302,0.332404706941388,0.32803018571141285,0.3357274459586403,0.3413139528061142,0.35064145886476755
5
+ 1.6481481481481481,800,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0031407981806144307,0.4851351351351351,0.3200261877139411,0.311027027027027,0.4478400840884975,0.1931891891891892,0.5215255817225937,0.14356756756756758,0.5658052519787189,0.11554054054054054,0.5968945752329973,0.12432432432432433,0.5528528528528529,0.5528528528528529,0.5528528528528529,0.5528528528528529,0.5528528528528529,0.12432432432432433,0.5348068192120945,0.49147006896559786,0.5014723160699831,0.5233831169034301,0.5390631670416406,0.12432432432432433,0.3974731353090948,0.3342302101369714,0.32923944286104007,0.33786797525549667,0.3435560550531658,0.3521253975729619
6
+ 2.0617283950617282,1000,0.11891891891891893,1.0,1.0,1.0,1.0,1.0,0.11891891891891893,0.003072375327381451,0.48729729729729726,0.3208076411918978,0.31362162162162166,0.452475425213834,0.19491891891891894,0.5302819257482585,0.14436036036036037,0.571775166659582,0.11575675675675676,0.6005636184039903,0.11891891891891893,0.5485285285285286,0.5485285285285286,0.5485285285285286,0.5485285285285286,0.5485285285285286,0.11891891891891893,0.5367147104901926,0.49525767983820224,0.5066734906037516,0.5276121894183949,0.5422861265314998,0.11891891891891893,0.4007661220413231,0.3384329191359384,0.33408457998935936,0.3422187777075813,0.34770328660083977,0.357376707071446
7
+ 2.4732510288065845,1200,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0031004765290395817,0.48081081081081084,0.31925138814015436,0.31243243243243246,0.45297033989113944,0.19637837837837838,0.5345696157187881,0.14515315315315316,0.5748030281430117,0.1158918918918919,0.6021356203629022,0.12432432432432433,0.5483998283998284,0.5483998283998284,0.5483998283998284,0.5483998283998284,0.5483998283998284,0.12432432432432433,0.5312640826009923,0.4933463182499906,0.5077266226967593,0.5279816661347473,0.5418401524093559,0.12432432432432433,0.39460510323628073,0.33539349047963,0.3326834908024987,0.3407696388796233,0.34597355552430814,0.35562081371928916
8
+ 2.8847736625514404,1400,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0031799677850014264,0.4905405405405405,0.3231032000550234,0.312972972972973,0.45487821593662775,0.19632432432432437,0.5360488739655589,0.14544144144144144,0.5759583907003805,0.11670270270270271,0.6073796968887161,0.12972972972972974,0.5545259545259545,0.5545259545259545,0.5545259545259545,0.5545259545259545,0.5545259545259545,0.12972972972972974,0.5398849946110597,0.4964476931902315,0.5105371458072688,0.5309424575860822,0.5465013975504048,0.12972972972972974,0.4041376579147856,0.33910871999084424,0.3362432946078908,0.3446367578836471,0.35002496631252933,0.3591722266720399
9
+ 3.2983539094650207,1600,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.003237252034219735,0.48837837837837833,0.3208378102445782,0.31416216216216214,0.4567910906819754,0.19681081081081084,0.5381915850001637,0.1451891891891892,0.5773791795052656,0.11681081081081081,0.6089669618204154,0.12972972972972974,0.5546546546546548,0.5546546546546548,0.5546546546546548,0.5546546546546548,0.5546546546546548,0.12972972972972974,0.5381393612536364,0.497412740756737,0.5113652855488736,0.5312098014018798,0.5471404882139521,0.12972972972972974,0.4042978961401532,0.33937321205124016,0.3368552825005167,0.34453705443740057,0.35018165521941574,0.360079205985487
10
+ 3.7098765432098766,1800,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.003111544931768446,0.4924324324324324,0.3235933309332048,0.31686486486486487,0.4622883553307717,0.19843243243243244,0.5424114301447981,0.14702702702702705,0.5822792579944903,0.11762162162162161,0.612586126212026,0.12432432432432433,0.5516816816816817,0.5516816816816817,0.5516816816816817,0.5516816816816817,0.5516816816816817,0.12432432432432433,0.5406828319866788,0.500776817925352,0.5143442473922782,0.5349751306205418,0.5498255219419508,0.12432432432432433,0.4061591888137979,0.3426196432849601,0.3398108870028267,0.3482007813358776,0.3534583367060008,0.36353547903357536
11
+ 4.1234567901234565,2000,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.003111544931768446,0.49054054054054047,0.3226281360780687,0.3163243243243243,0.460233186838451,0.19794594594594597,0.541868009988165,0.1476036036036036,0.5852603494024129,0.11764864864864866,0.6129186722388266,0.12432432432432433,0.54987987987988,0.54987987987988,0.54987987987988,0.54987987987988,0.54987987987988,0.12432432432432433,0.539216162208845,0.4996835226060237,0.5137905428062277,0.5360687473286022,0.5499397431446335,0.12432432432432433,0.4038320848933988,0.34180322548979025,0.33919520921684143,0.34836248453935964,0.3534621616433109,0.36317607366795296
12
+ 4.534979423868313,2200,0.11351351351351352,1.0,1.0,1.0,1.0,1.0,0.11351351351351352,0.002992884071419607,0.4913513513513514,0.32341666838263944,0.316972972972973,0.4630260221149236,0.19843243243243244,0.5419804526017848,0.146990990990991,0.5826718468403144,0.11778378378378378,0.6149262657286421,0.11351351351351352,0.5444744744744745,0.5444744744744745,0.5444744744744745,0.5444744744744745,0.5444744744744745,0.11351351351351352,0.5389058089458943,0.5002442028172164,0.5138591255215345,0.5346372349516221,0.5502474315848075,0.11351351351351352,0.40352984921129137,0.3418539578142162,0.339373689987275,0.3478760829213016,0.3533435915341769,0.363222785830563
13
+ 4.946502057613169,2400,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.003111544931768446,0.4897297297297297,0.32208664960961075,0.31794594594594594,0.46383117404893587,0.19864864864864865,0.5437537828683688,0.14688288288288287,0.5824968655076911,0.11789189189189188,0.6146962508233631,0.12432432432432433,0.5515015015015016,0.5515015015015016,0.5515015015015016,0.5515015015015016,0.5515015015015016,0.12432432432432433,0.5384577730264963,0.5012455261232941,0.5147486871284331,0.5348194013794069,0.5505397598095297,0.12432432432432433,0.40280623036556984,0.3421710529569103,0.33947884152876345,0.34777364049184706,0.35339765423089375,0.3631043007370563
eval/Information-Retrieval_evaluation_full_zh_results.csv ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
2
+ 0.411522633744856,200,0.3106796116504854,0.6796116504854369,0.8446601941747572,0.9029126213592233,0.912621359223301,0.9320388349514563,0.3106796116504854,0.023462987244705715,0.16553398058252428,0.17783905741297326,0.09165048543689318,0.23592266427434708,0.05572815533980582,0.2754646962507602,0.04368932038834952,0.3117128999509392,0.03762135922330097,0.3466143491908374,0.3106796116504854,0.4147590004386121,0.42017917902528507,0.4210179476119375,0.42111313131648725,0.42122928943021815,0.3106796116504854,0.23632560619511656,0.23124988593204537,0.24989384741752022,0.2654638343682191,0.2798254309209333,0.3106796116504854,0.1401386342102764,0.12171575399150504,0.12609494695732792,0.12864672987762527,0.13051492431706083,0.13391587019094656
3
+ 0.823045267489712,400,0.30097087378640774,0.6796116504854369,0.8155339805825242,0.8640776699029126,0.912621359223301,0.941747572815534,0.30097087378640774,0.02113522350080538,0.16893203883495148,0.1745090483426694,0.09417475728155338,0.23733304712823766,0.05766990291262136,0.2796051909812124,0.04517799352750809,0.32046823576498035,0.03815533980582524,0.35372016437047055,0.30097087378640774,0.41292572044999226,0.417491067865597,0.41811942101585403,0.41849921440759563,0.41865101229565255,0.30097087378640774,0.23661276930229252,0.23089474861642684,0.2507126789225508,0.26732986263815484,0.28046874437286684,0.30097087378640774,0.14201550651611927,0.12258545505833383,0.12738698832154322,0.12975328354084065,0.13144344690302204,0.13501788595120554
4
+ 1.2366255144032923,600,0.2912621359223301,0.6893203883495146,0.7961165048543689,0.8932038834951457,0.9223300970873787,0.9320388349514563,0.2912621359223301,0.0237790011692411,0.17281553398058253,0.1780146591791834,0.09320388349514563,0.2353460713837157,0.05757281553398058,0.28003072679866114,0.04550161812297734,0.3201209220124462,0.0383495145631068,0.35197000288987207,0.2912621359223301,0.402749626584503,0.40637174235857404,0.40775766889852083,0.4079930674304089,0.4080485459324894,0.2912621359223301,0.23932847479881703,0.2304987127816453,0.25132779075972356,0.2684264546177072,0.28127288770020226,0.2912621359223301,0.14390317064591093,0.12336899531215392,0.1280979795498092,0.1307661431084446,0.13236443731787242,0.13619205369616966
5
+ 1.6481481481481481,800,0.30097087378640774,0.6796116504854369,0.8058252427184466,0.8932038834951457,0.912621359223301,0.9223300970873787,0.30097087378640774,0.024519703098877212,0.16893203883495148,0.17456569026683885,0.09242718446601939,0.234580459268595,0.05776699029126213,0.278741199301444,0.045889967637540455,0.3253706444260417,0.03830097087378641,0.35803096403174617,0.30097087378640774,0.4059668795890955,0.4100950456028066,0.41130354468386193,0.4114770246615091,0.4115325031635896,0.30097087378640774,0.23745513681411046,0.2305748865491843,0.25179987312705016,0.27076524218225806,0.2832040382120035,0.30097087378640774,0.14326296371560157,0.12335213931312632,0.1281463494319185,0.13101897050674394,0.13266951269795274,0.1365110920424697
6
+ 2.0617283950617282,1000,0.32038834951456313,0.6893203883495146,0.8252427184466019,0.8543689320388349,0.912621359223301,0.941747572815534,0.32038834951456313,0.025076400657044622,0.1694174757281554,0.17464818886103456,0.09417475728155338,0.23941957930187088,0.05854368932038835,0.285793749394471,0.04543689320388349,0.3248692502981408,0.03854368932038835,0.3594061933485738,0.32038834951456313,0.4322736853989672,0.4368880444493252,0.43729572738128003,0.43778572199583954,0.4379375198838964,0.32038834951456313,0.24024120500004684,0.23579057547653665,0.2573094710053012,0.27339364167426483,0.2870700158411852,0.32038834951456313,0.14312567487234693,0.12473920484974475,0.1299884370802636,0.1322736537535619,0.13400922896235773,0.13757526057084069
7
+ 2.4732510288065845,1200,0.3106796116504854,0.6893203883495146,0.8252427184466019,0.8737864077669902,0.912621359223301,0.941747572815534,0.3106796116504854,0.024775196200563468,0.16796116504854372,0.17522051503262265,0.0928155339805825,0.23501537825752356,0.05786407766990292,0.2812014337133314,0.04530744336569579,0.32256653770358384,0.03859223300970874,0.3606190556658867,0.3106796116504854,0.4316099258632098,0.4363728027493244,0.43698795374438265,0.4372936132320186,0.43744541112007557,0.3106796116504854,0.2403594219494374,0.23377838497716172,0.2555796449390854,0.27244290951747213,0.2870306982800111,0.3106796116504854,0.14295031585571616,0.12373690032744442,0.12919405589193667,0.1317494418602855,0.13338926763104872,0.13718598500826484
8
+ 2.8847736625514404,1400,0.32038834951456313,0.6601941747572816,0.8252427184466019,0.8737864077669902,0.912621359223301,0.941747572815534,0.32038834951456313,0.02531918584688107,0.1684466019417476,0.17328694510972953,0.09398058252427183,0.236600780086018,0.05873786407766991,0.28617705374072966,0.04563106796116504,0.3250376201519803,0.038834951456310676,0.3633754409058577,0.32038834951456313,0.4314141889084028,0.4369283020982786,0.4375351123956591,0.43785398652235735,0.43800578441041427,0.32038834951456313,0.24136499998719202,0.235847725345262,0.25862767157162764,0.27455689155757557,0.2891050802662493,0.32038834951456313,0.14624703558912305,0.1257115171690142,0.13123392963701538,0.13359145914665888,0.1353959454814316,0.1389928822140075
9
+ 3.2983539094650207,1600,0.32038834951456313,0.7281553398058253,0.8155339805825242,0.8640776699029126,0.912621359223301,0.941747572815534,0.32038834951456313,0.02471280462494792,0.17233009708737868,0.18281935756329049,0.09378640776699028,0.23610648880680668,0.057475728155339814,0.2817401925500015,0.04543689320388349,0.32445039777652873,0.038252427184466024,0.3579914968024133,0.32038834951456313,0.43991789706080797,0.44280457808819257,0.4434266046741581,0.44385297519656264,0.44401312541610144,0.32038834951456313,0.24485074137633345,0.23539725480038964,0.25621007342179275,0.2738226067489134,0.28679471829998743,0.32038834951456313,0.1447951005144368,0.12441013252369439,0.12937320652986672,0.13203408286028803,0.13359947484648899,0.1374353051856652
10
+ 3.7098765432098766,1800,0.30097087378640774,0.7087378640776699,0.8252427184466019,0.8543689320388349,0.912621359223301,0.941747572815534,0.30097087378640774,0.024446152054452382,0.16844660194174763,0.17513112391433697,0.09436893203883494,0.23948897590045773,0.05844660194174757,0.2859906000645493,0.04601941747572815,0.32910264724851107,0.038203883495145634,0.36304017348331746,0.30097087378640774,0.4211010881954553,0.4249525777196882,0.42539460155740233,0.42587488715939736,0.4260266850474542,0.30097087378640774,0.23848199480652515,0.23417872356945213,0.2558557487315817,0.27344459654855646,0.28574499658549296,0.30097087378640774,0.14164601531439067,0.12333195286802508,0.12884550949445583,0.13149151347084506,0.1329204280861929,0.13684460640814028
11
+ 4.1234567901234565,2000,0.30097087378640774,0.6990291262135923,0.8446601941747572,0.883495145631068,0.941747572815534,0.941747572815534,0.30097087378640774,0.02386287516726942,0.16504854368932043,0.1765726567124355,0.0932038834951456,0.23652817418030478,0.05825242718446601,0.2843496525793469,0.04601941747572816,0.3277225727000478,0.038834951456310676,0.3596812771438104,0.30097087378640774,0.4190465134339312,0.4240176433261117,0.4245497320288698,0.4250484654944024,0.4250484654944024,0.30097087378640774,0.23858136398044388,0.23394297561992747,0.25614039865630267,0.2739893276218014,0.2869614126642384,0.30097087378640774,0.1429307444790631,0.12440485302105762,0.12975707309312245,0.1324151603536725,0.13400586423473068,0.13792557615284717
12
+ 4.534979423868313,2200,0.3300970873786408,0.7184466019417476,0.8155339805825242,0.8932038834951457,0.9223300970873787,0.9320388349514563,0.3300970873786408,0.02573649124630195,0.16796116504854372,0.17402459309945448,0.09262135922330093,0.23816219248808224,0.05815533980582525,0.28291725637657983,0.04563106796116505,0.32619122038725784,0.03771844660194174,0.3543394793587958,0.3300970873786408,0.43064643766798927,0.43374387043765733,0.4348781442268605,0.4351279925655956,0.4351822313246128,0.3300970873786408,0.23956118764265208,0.2341910409667355,0.2559822552765659,0.27344655996496936,0.28432223965649855,0.3300970873786408,0.14301006319225865,0.12425793473074002,0.12962575663735706,0.13242860022521366,0.13374255185989983,0.13779434547799502
13
+ 4.946502057613169,2400,0.34951456310679613,0.7378640776699029,0.8252427184466019,0.8543689320388349,0.9029126213592233,0.941747572815534,0.34951456310679613,0.02726635297033844,0.17330097087378643,0.17661061398990294,0.09436893203883494,0.2392861843604663,0.05893203883495146,0.2862639658547104,0.0458252427184466,0.3286954340443375,0.03854368932038834,0.3630829587412431,0.34951456310679613,0.44845699819699636,0.4514515915598798,0.451864194979824,0.4522894025156287,0.45250948321580986,0.34951456310679613,0.24683538489164747,0.23936442282824424,0.2618891246293786,0.27867525817923894,0.29190260238165355,0.34951456310679613,0.1470309927546457,0.12671489844037503,0.13257859039926595,0.13523273342027425,0.13679857663871084,0.14069476480399515
eval/Information-Retrieval_evaluation_mix_de_results.csv ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
2
+ 0.411522633744856,200,0.1981279251170047,0.4300572022880915,0.5267810712428497,0.6068642745709828,0.6541861674466979,0.7020280811232449,0.1981279251170047,0.07334026694401108,0.045111804472178885,0.32932917316692667,0.022433697347893918,0.4094730455884902,0.013125325013000521,0.48012653839486913,0.009616918010053736,0.5271017507366962,0.007787311492459699,0.5684347373894956,0.1981279251170047,0.24936915812802668,0.25240815031462344,0.25353947481775135,0.25392824976220707,0.25420582867535996,0.1981279251170047,0.24564540855524686,0.267286311641879,0.28273714053246746,0.2919723078214969,0.29956641267725875,0.1981279251170047,0.19180782513140002,0.1962749706053975,0.19803531491406634,0.1987580832571362,0.19919879493222836,0.20020191528610837
3
+ 0.823045267489712,400,0.22152886115444617,0.48569942797711907,0.5923036921476859,0.6885075403016121,0.7524700988039521,0.7888715548621945,0.22152886115444617,0.08254463511873808,0.0515080603224129,0.37629571849540644,0.025949037961518463,0.47381695267810714,0.015455018200728029,0.5636418790084936,0.011464725255676893,0.6273704281504593,0.009160166406656267,0.6674033628011787,0.22152886115444617,0.2795436747486559,0.28287038489783145,0.284246403459463,0.2847685281647116,0.2849825945568509,0.22152886115444617,0.27968506550620525,0.3058805067348632,0.3256964511132948,0.3381244039775933,0.3455041003597478,0.22152886115444617,0.2190070366990419,0.22462661639353262,0.22693516798544222,0.2279024088922963,0.22835490710858075,0.22937477848391208
4
+ 1.2366255144032923,600,0.24076963078523142,0.5392615704628185,0.6510660426417056,0.7451898075923037,0.7919916796671866,0.8315132605304212,0.24076963078523142,0.08978159126365054,0.057514300572022885,0.4208961691801006,0.028861154446177848,0.5279944531114578,0.01706708268330733,0.6236176113711215,0.012438897555902237,0.6805512220488819,0.009945397815912636,0.7248483272664239,0.24076963078523142,0.30574206502407386,0.3092582065472375,0.31057458089353496,0.3109581662931957,0.3111859623149172,0.24076963078523142,0.31012124397512125,0.33894722487590406,0.3600401872839375,0.3712549559582106,0.3793846476191155,0.24076963078523142,0.24280216039368124,0.2491040511722396,0.2516632832742125,0.2526192678896798,0.2531238162054126,0.2541152558211349
5
+ 1.6481481481481481,800,0.2574102964118565,0.5725429017160687,0.6838273530941238,0.7706708268330733,0.8252730109204368,0.8642745709828393,0.2574102964118565,0.09667186687467498,0.06209048361934478,0.456049575316346,0.03094123764950598,0.5656179580516554,0.01809152366094644,0.6604264170566823,0.013180793898422602,0.7214161899809326,0.010491419656786271,0.7658519674120299,0.2574102964118565,0.326511947249185,0.3299996673311145,0.3312205961883565,0.33167243978514876,0.33189721927516885,0.2574102964118565,0.3340038592250485,0.363696006087991,0.38465837471801473,0.39659537389860006,0.4046956530816971,0.2574102964118565,0.2617702375633599,0.2683743271170459,0.2710235535395128,0.27198263772401476,0.2724761068752751,0.27336248147369696
6
+ 2.0617283950617282,1000,0.2579303172126885,0.592823712948518,0.7020280811232449,0.7888715548621945,0.8382735309412377,0.8814352574102964,0.2579303172126885,0.09647252556768937,0.06523660946437858,0.47890448951291387,0.03211648465938638,0.5869388108857688,0.01872594903796152,0.6823106257583638,0.013569076096377187,0.7413589876928411,0.010769630785231412,0.7856387588836886,0.2579303172126885,0.3313982190071335,0.3348965339304826,0.33612441957547085,0.33653122814722086,0.33677811012915093,0.2579303172126885,0.3442016094418496,0.3735657529127402,0.39465480938211644,0.4062423896248422,0.4142538964149005,0.2579303172126885,0.2673342452869632,0.2738465483514978,0.27651346921512704,0.2774801777535139,0.2779568533393845,0.2787917724063549
7
+ 2.4732510288065845,1200,0.27249089963598544,0.6209048361934477,0.7202288091523661,0.8148725949037962,0.8663546541861674,0.8959958398335933,0.27249089963598544,0.10240942971052176,0.06866874674987,0.5036661466458658,0.03344773790951638,0.6103397469232102,0.01947477899115965,0.7091523660946438,0.014089096897209222,0.7695441150979372,0.01106604264170567,0.8066736002773445,0.27249089963598544,0.35128196320629806,0.35436004134401633,0.35570962695193414,0.3561337866615028,0.35630620535104285,0.27249089963598544,0.36459707698561655,0.39343635135156824,0.41529870597710383,0.4271129638867166,0.4338542362088321,0.27249089963598544,0.2845957030676952,0.2910603880750198,0.2937336078161298,0.29471472008234617,0.29514010455194895,0.2959679176074096
8
+ 2.8847736625514404,1400,0.2719708788351534,0.6219448777951118,0.7280291211648466,0.8216328653146125,0.8663546541861674,0.8970358814352574,0.2719708788351534,0.10201941410989772,0.06929277171086844,0.5074969665453285,0.033936557462298504,0.6184347373894956,0.019604784191367654,0.7150806032241289,0.014127231755936902,0.7722308892355694,0.011138845553822154,0.8127665106604264,0.2719708788351534,0.35184585409140184,0.35521053332044367,0.356551321735229,0.3569175223872725,0.3570970648250785,0.2719708788351534,0.3662132046795461,0.3962811615035259,0.4175795552280441,0.4288278198828397,0.43616171894109024,0.2719708788351534,0.2851842024821843,0.2919416855447693,0.29457421907062104,0.2955242367376335,0.2959856272577734,0.29682907865900887
9
+ 3.2983539094650207,1600,0.27769110764430577,0.6349453978159126,0.7399895995839834,0.8273530941237649,0.87467498699948,0.9053562142485699,0.27769110764430577,0.10457618304732187,0.07090483619344773,0.5190240942971052,0.03469578783151326,0.6331426590396949,0.020046801872074884,0.7301352054082164,0.014331773270930834,0.7834720055468886,0.011263650546021842,0.821043508407003,0.27769110764430577,0.35976204370795134,0.36312305918627735,0.3643486184027757,0.36473033595438964,0.36490983745143385,0.27769110764430577,0.37573520751288797,0.40663904775077114,0.428125197732266,0.43851431587679784,0.44538466038255,0.27769110764430577,0.29406713368898557,0.30113502054518276,0.30386818472766647,0.3047008515614112,0.3051359976327236,0.3059525328830033
10
+ 3.7098765432098766,1800,0.29017160686427457,0.6484659386375455,0.7540301612064483,0.8419136765470618,0.8788351534061363,0.9089963598543942,0.29017160686427457,0.10890968972092217,0.07251690067602704,0.5299011960478419,0.0355486219448778,0.647191887675507,0.02041601664066563,0.7442624371641533,0.014505113537874847,0.7928583810019068,0.01137545501820073,0.8289478245796498,0.29017160686427457,0.37232551415227233,0.375685507642469,0.3769348294784883,0.377239930826995,0.3774183771765249,0.29017160686427457,0.38598145754556046,0.41773491829410075,0.43906545567486005,0.4485955578737219,0.45520732213321263,0.29017160686427457,0.30311022602590254,0.31036427264538485,0.31304585670015317,0.3138396622777036,0.31426372512191,0.3150399864057635
11
+ 4.1234567901234565,2000,0.28965158606344255,0.6453458138325533,0.7514300572022881,0.8424336973478939,0.8840353614144566,0.9131565262610505,0.28965158606344255,0.10873634945397814,0.07230889235569424,0.5285491419656786,0.035559022360894435,0.6476772404229503,0.02045241809672387,0.7456058242329694,0.014543248396602529,0.7947564569249437,0.011443057722308895,0.8333680013867221,0.28965158606344255,0.37323361269727506,0.37671986743715985,0.37799876590389947,0.3783355727887503,0.37850251063580587,0.28965158606344255,0.3869439859976832,0.419340853881164,0.4408718349726106,0.4505012036387736,0.4575667024678089,0.28965158606344255,0.3048226727334811,0.3123006074016708,0.3150058759399239,0.31578258870027714,0.31623339353875296,0.3169966358324732
12
+ 4.534979423868313,2200,0.2912116484659386,0.6526261050442018,0.7550702028081123,0.8460738429537181,0.8876755070202809,0.9173166926677067,0.2912116484659386,0.10977639105564223,0.07308892355694228,0.5342520367481365,0.03583983359334374,0.6529207834980065,0.02058242329693188,0.7505633558675681,0.014609117698041255,0.7989166233315999,0.011515860634425378,0.8393482405962905,0.2912116484659386,0.37544207546115405,0.37870409367323543,0.37999194359776256,0.3803335431113417,0.3805079454038972,0.2912116484659386,0.39027078330836906,0.4224011615840446,0.4438393956774872,0.45327900259303716,0.4606831999024183,0.2912116484659386,0.3075927383942124,0.31502827814698436,0.31767149302992986,0.31842095656425334,0.3189017921904424,0.31963709557315734
13
+ 4.946502057613169,2400,0.29433177327093085,0.6500260010400416,0.7607904316172647,0.8507540301612064,0.889755590223609,0.9204368174726989,0.29433177327093085,0.1109031027907783,0.07308892355694228,0.534356040908303,0.036141445657826315,0.6584676720402148,0.020634425377015084,0.752470098803952,0.014681920610157736,0.8025567689374241,0.011552262090483621,0.8417663373201595,0.29433177327093085,0.37785395494554963,0.38148321196953044,0.38274724688611994,0.3830666241433367,0.3832429794087988,0.29433177327093085,0.3919428679123834,0.425599899100406,0.4462421162922913,0.45606402272845137,0.4632312746623382,0.29433177327093085,0.3096720133634083,0.31740714963039135,0.31992557448195186,0.3207379270967634,0.3211962807999124,0.3219246841517722
eval/Information-Retrieval_evaluation_mix_es_results.csv ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
2
+ 0.411522633744856,200,0.30213208528341134,0.6203848153926157,0.7098283931357254,0.781071242849714,0.8174726989079563,0.8481539261570463,0.30213208528341134,0.11382017185449322,0.06833073322932917,0.5067837951613302,0.032397295891835674,0.5996595101899314,0.018268330733229334,0.6776638684595003,0.012969318772750909,0.7214877547482851,0.010208008320332815,0.7576500012381446,0.30213208528341134,0.37624536690642546,0.3791230245669684,0.38018035757789376,0.38047170599829533,0.38064941679605535,0.30213208528341134,0.38016850579550676,0.4051851614003381,0.4221921973271435,0.4307023039200337,0.4372318855282071,0.30213208528341134,0.30423498249896824,0.30990926563894405,0.31199819476576857,0.312679771425861,0.3130945627121421,0.313931308036428
3
+ 0.823045267489712,400,0.3374934997399896,0.6640665626625065,0.7576703068122725,0.8179927197087884,0.860114404576183,0.8850754030161206,0.3374934997399896,0.12766139216997252,0.07347893915756631,0.5467387266919248,0.03523660946437858,0.6527548720996459,0.019641185647425896,0.7282012232870269,0.013971225515687292,0.7769407919173908,0.010871034841393656,0.8055887378352277,0.3374934997399896,0.4132584281967503,0.4163214874291682,0.4171728377443751,0.4175175014521313,0.41766146607074733,0.3374934997399896,0.4163844208372033,0.445066264506209,0.4615439022347602,0.471010840935464,0.4762442101294051,0.3374934997399896,0.3381226108439558,0.34475287387507586,0.34684361195227975,0.34761423703876665,0.3479432846917458,0.3486888395737178
4
+ 1.2366255144032923,600,0.3577743109724389,0.6973478939157566,0.7763910556422257,0.8507540301612064,0.891315652626105,0.9199167966718669,0.3577743109724389,0.1352710298888146,0.07886115444617786,0.5856969516875912,0.03683827353094124,0.6804806477973404,0.020639625585023403,0.7649406928658099,0.014588316866007972,0.8114129708045464,0.011401456058242332,0.8455783374192111,0.3577743109724389,0.43829879302776303,0.44084529806067074,0.44192760304884215,0.442262133057051,0.4424277096196022,0.3577743109724389,0.44681544963436026,0.4726481268158083,0.49106458681972126,0.5000627035915306,0.5062623468675652,0.3577743109724389,0.3654389827879655,0.3717104289858826,0.37401601066356505,0.3747530541949902,0.37514030265122744,0.3758164163221179
5
+ 1.6481481481481481,800,0.37285491419656785,0.703068122724909,0.8039521580863235,0.8684347373894956,0.9022360894435777,0.9266770670826833,0.37285491419656785,0.14132927221850777,0.08052522100884035,0.5963313770646065,0.03834633385335414,0.7112832132332912,0.02135205408216329,0.7903919966322461,0.01500086670133472,0.832730356833321,0.011658866354654188,0.8628776960602234,0.37285491419656785,0.4535506816383259,0.45673799621320993,0.4576802222193709,0.45796620614021427,0.45810810930233126,0.37285491419656785,0.4600645056109687,0.4908387998878199,0.5083488704283956,0.5166175530513689,0.5220900467731159,0.37285491419656785,0.3784582567838623,0.3856660044520993,0.38792895456495546,0.38861563491524675,0.38895926483897736,0.389571989863755
6
+ 2.0617283950617282,1000,0.3837753510140406,0.7165886635465418,0.8122724908996359,0.8777951118044722,0.9084763390535622,0.9349973998959958,0.3837753510140406,0.14535943342495602,0.08255330213208528,0.6110702523339029,0.039147165886635464,0.7240583909070648,0.02166406656266251,0.8015414902310379,0.01516727335760097,0.841296832825694,0.011781071242849715,0.8718047198078399,0.3837753510140406,0.46304126564072634,0.466170530721476,0.4671384743911976,0.46739037287326474,0.4675485210211105,0.3837753510140406,0.47145052441992824,0.5019250982212344,0.5189834372219126,0.5267472617975066,0.5322772198388991,0.3837753510140406,0.3889228164549333,0.3961437534457393,0.3983391616068335,0.39900108642174664,0.39934604809222224,0.3999054154762101
7
+ 2.4732510288065845,1200,0.39729589183567343,0.733749349973999,0.8294331773270931,0.8939157566302652,0.9251170046801872,0.9433177327093084,0.39729589183567343,0.151148998340886,0.0845553822152886,0.6262164772305179,0.040062402496099846,0.7401530346928162,0.0221216848673947,0.8185028353515094,0.015489686254116829,0.8589740732486443,0.01198127925117005,0.886243964044276,0.39729589183567343,0.4784446780392674,0.4815078826970145,0.4824293629456037,0.48268777361327,0.4827933131346441,0.39729589183567343,0.48617297590573705,0.517013995021804,0.5341653528246599,0.5420976929391493,0.547021727900728,0.39729589183567343,0.4029815933405254,0.41035415769736866,0.4125509183296373,0.4132338991905356,0.41355508594246726,0.41404960944992747
8
+ 2.8847736625514404,1400,0.39365574622984917,0.7405096203848154,0.8403536141445658,0.9006760270410816,0.9303172126885075,0.9479979199167967,0.39365574622984917,0.15008295569918034,0.08556942277691108,0.6332367580417503,0.04062402496099844,0.750726790976401,0.022350494019760792,0.8269754599707798,0.015604090830299875,0.8663930366738478,0.012085283411336457,0.8937322635762573,0.39365574622984917,0.47865733219922946,0.4819794352235569,0.4828274289532764,0.48307346317849986,0.48317521807727926,0.39365574622984917,0.4891633580678844,0.5210348137488535,0.5377704085063164,0.5454257403567558,0.5504409931909128,0.39365574622984917,0.40462483371485203,0.41223380645143365,0.4144450266421713,0.4150997091391954,0.41543130662233696,0.4159141359187564
9
+ 3.2983539094650207,1600,0.39417576703068125,0.749869994799792,0.8387935517420697,0.9011960478419136,0.9313572542901716,0.9453978159126365,0.39417576703068125,0.14977961023202832,0.0872854914196568,0.6446252135799717,0.040842433697347906,0.7537131961468935,0.022449297971918882,0.8297142361884952,0.015697694574449642,0.8701891885199218,0.012098283931357257,0.8944221578386945,0.39417576703068125,0.48161375643951787,0.48456339112411073,0.48546449697579613,0.4857120835710493,0.48579472848118294,0.39417576703068125,0.49564845544675695,0.5252351899067441,0.5419194834352565,0.549799901314173,0.5541820214452097,0.39417576703068125,0.4098891006090195,0.41704940718756184,0.4192177736540712,0.41989349138490134,0.4201792836237905,0.42068145332288714
10
+ 3.7098765432098766,1800,0.40717628705148207,0.7581903276131046,0.8455538221528861,0.9048361934477379,0.9370774830993239,0.9547581903276131,0.40717628705148207,0.1547198078399326,0.08819552782111284,0.652070178045217,0.04139365574622985,0.7639576059232845,0.022704108164326574,0.8390052744966942,0.015822499566649332,0.877764158185375,0.012189287571502862,0.9016677809969541,0.40717628705148207,0.49319826751048873,0.49612329710657893,0.4969826860284758,0.49724671253026886,0.49734552981578295,0.40717628705148207,0.5052212563002627,0.5356805472279078,0.5521009256440798,0.5595924746165437,0.5639157869620031,0.40717628705148207,0.419614969499609,0.427088485280225,0.4292014145714,0.4298202694277485,0.4300980044671579,0.43055010151569684
11
+ 4.1234567901234565,2000,0.40561622464898595,0.7555902236089443,0.8465938637545501,0.9053562142485699,0.9391575663026521,0.9521580863234529,0.40561622464898595,0.15422578807914222,0.08801352054082164,0.6504234455092489,0.0414560582423297,0.7645209617908526,0.02274050962038482,0.8407386771661344,0.01580863234529381,0.8772614714112373,0.012181487259490382,0.9011477601961221,0.40561622464898595,0.49193080862589195,0.49497073018920573,0.4958131715411002,0.4960911044064609,0.49616673564150066,0.40561622464898595,0.5052527283785204,0.5363668402911114,0.5529351239282845,0.5600105253735999,0.5643581500059056,0.40561622464898595,0.42113760176243775,0.4288029559186059,0.4309354633228117,0.43151233276792966,0.4318026647046382,0.4322791851958394
12
+ 4.534979423868313,2200,0.40977639105564223,0.7618304732189287,0.8512740509620385,0.9105564222568903,0.9381175247009881,0.9542381695267811,0.40977639105564223,0.15567317930812472,0.0890015600624025,0.6574783943738703,0.04168486739469579,0.7691404799049105,0.022854914196567863,0.8454015303469281,0.01585370081469925,0.8795148948815096,0.012220488819552783,0.9035051878265606,0.40977639105564223,0.4963374711503733,0.49930745416180927,0.5001571935146001,0.5003842041203103,0.5004783417497985,0.40977639105564223,0.5094055696124096,0.5398029704628499,0.5563939454831869,0.5630335952477792,0.5674217099859529,0.40977639105564223,0.4236549905504724,0.4311498037279026,0.43327838927965695,0.4338451382952763,0.4341307997461715,0.4345995592976099
13
+ 4.946502057613169,2400,0.41133645345813835,0.7613104524180967,0.8523140925637025,0.9121164846593863,0.9417576703068122,0.9547581903276131,0.41133645345813835,0.15653988064284477,0.08920956838273532,0.6593678032835598,0.04175767030681228,0.7704838669737266,0.02291731669266771,0.847169601069757,0.015905702894782457,0.8825483495530297,0.012243889755590227,0.9050999182824455,0.41133645345813835,0.4978677179556957,0.5009543893008301,0.5018183607581652,0.5020589846475842,0.5021321446410069,0.41133645345813835,0.5116672519515115,0.542000920569141,0.558759964344595,0.5655977162199296,0.5697289878952349,0.41133645345813835,0.4263681424556441,0.4338209025376249,0.4359939776007631,0.43656970643226983,0.4368426702726571,0.43729529920887905
eval/Information-Retrieval_evaluation_mix_zh_results.csv ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
2
+ 0.411522633744856,200,0.05271398747390397,0.2578288100208768,0.3757828810020877,0.48173277661795405,0.5448851774530271,0.5913361169102297,0.05271398747390397,0.019137091162143353,0.02092901878914405,0.14023138482950592,0.013319415448851775,0.22045929018789143,0.008971816283924842,0.29615518441196936,0.006927627000695895,0.3430381581999536,0.005709812108559499,0.3773370447691951,0.05271398747390397,0.09556056072532532,0.09930368347374303,0.10081071540637217,0.10132227028022825,0.10159341696099079,0.05271398747390397,0.08881687976564442,0.11141055101423608,0.12877084407419526,0.13826321499195837,0.14474109558009463,0.05271398747390397,0.0530248520731265,0.05750306475672631,0.05939735438758803,0.06007002753858139,0.06041410153935675,0.0612616045534631
3
+ 0.823045267489712,400,0.06576200417536535,0.2980167014613779,0.42745302713987476,0.535490605427975,0.5970772442588727,0.656054279749478,0.06576200417536535,0.0232428670842032,0.025443632567849688,0.16946764091858035,0.015427974947807935,0.2554801670146138,0.00997912317327766,0.3308214865626139,0.0075574112734864305,0.3754631010372138,0.006291753653444677,0.41669483381383177,0.06576200417536535,0.11235704150596755,0.11652128120776886,0.11804025040306476,0.11853682693823762,0.1188759370659957,0.06576200417536535,0.10653755817702598,0.13073562376188436,0.1479022120374964,0.15696526994526416,0.16477061568962684,0.06576200417536535,0.06451328746393485,0.06933044178863315,0.07119061084500962,0.07181702436281326,0.07222975531305806,0.07304511070814222
4
+ 1.2366255144032923,600,0.0767223382045929,0.32411273486430064,0.45041753653444677,0.5615866388308977,0.6116910229645094,0.6617954070981211,0.0767223382045929,0.026765831593597772,0.02727035490605428,0.18139352818371604,0.016586638830897706,0.27481359976140773,0.010615866388308977,0.35095022699406836,0.007915796798886569,0.392343506644133,0.006484864300626305,0.42834112072107894,0.0767223382045929,0.12598049203118863,0.13000993091579688,0.1316122865033852,0.1320283348956683,0.1323174505954342,0.0767223382045929,0.11656756752344836,0.142736897860521,0.16027100070331385,0.16869827506693647,0.17552832130920326,0.0767223382045929,0.07152375953219589,0.07692616022630434,0.07884732581375235,0.0794713797550218,0.07984087325239508,0.08070697194940042
5
+ 1.6481481481481481,800,0.08298538622129437,0.3246346555323591,0.45668058455114824,0.5610647181628392,0.6247390396659708,0.6691022964509394,0.08298538622129437,0.02889700765483646,0.027583507306889354,0.1843945720250522,0.01675365344467641,0.2775101898797097,0.010574112734864301,0.34997597508035916,0.007943632567849686,0.3945629121516387,0.006492693110647181,0.4297503065248368,0.08298538622129437,0.13082780820141615,0.13503888003814143,0.13652811025277245,0.13704978839849483,0.1373079705490806,0.08298538622129437,0.11941535673334294,0.14558892169636672,0.1621555415579131,0.17118806672216993,0.1778736644103507,0.08298538622129437,0.07375856353556162,0.07905869690345838,0.08081531252917848,0.08144614456783997,0.08181721303487892,0.08266895746562458
6
+ 2.0617283950617282,1000,0.07933194154488518,0.3246346555323591,0.4613778705636743,0.5683716075156576,0.6304801670146137,0.6837160751565762,0.07933194154488518,0.027331245650661095,0.02828810020876827,0.18833507306889355,0.0174321503131524,0.28794860324087884,0.010960334029227558,0.36197890777744635,0.008204592901878915,0.4063210392020413,0.006714509394572025,0.44356877754581303,0.07933194154488518,0.13427438712380335,0.13868437701863284,0.1402611455320935,0.14076928815404088,0.14107699567160387,0.07933194154488518,0.1231515835151623,0.15119039063682807,0.16820374063132443,0.177205511733624,0.18425859303661765,0.07933194154488518,0.07669853006375293,0.08242821394664819,0.08427859654883654,0.08491738034307154,0.08529528775248019,0.08621346468383274
7
+ 2.4732510288065845,1200,0.08924843423799582,0.3455114822546973,0.4754697286012526,0.5960334029227558,0.6524008350730689,0.6978079331941545,0.08924843423799582,0.030854210160055667,0.03003653444676409,0.19960855949895615,0.01781837160751566,0.2947596679590416,0.011461377870563675,0.3785933823773073,0.008653444676409185,0.42900719090698214,0.007019832985386221,0.464184643934122,0.08924843423799582,0.1438694259756465,0.14796630788350965,0.14970431884529528,0.150157575450279,0.15041628309356259,0.08924843423799582,0.1304446664530369,0.1571014914813751,0.17638739208394963,0.1865731356749295,0.1932168144705724,0.08924843423799582,0.08065909089146879,0.08609331519458653,0.08818546993655318,0.08896673947185972,0.08933010821121676,0.09023018861885118
8
+ 2.8847736625514404,1400,0.09029227557411273,0.34916492693110646,0.48173277661795405,0.5918580375782881,0.6591858037578288,0.6998956158663883,0.09029227557411273,0.031228253305497562,0.030140918580375778,0.20077915299731583,0.01823590814196242,0.30093448652947613,0.011430062630480168,0.3776191304635981,0.008688239387613084,0.4305294595221526,0.007053757828810021,0.4662984226397588,0.09029227557411273,0.14336088613781903,0.14756949454073856,0.14913405152461043,0.1496922228441261,0.14992535322486242,0.09029227557411273,0.1311830673444814,0.1593514410099947,0.1768598075045411,0.18762130889604253,0.19437250124374303,0.09029227557411273,0.08197943711425079,0.08776780524028141,0.08964869225330131,0.09044677981509988,0.09082973714886453,0.09175129729258544
9
+ 3.2983539094650207,1600,0.09394572025052192,0.35386221294363257,0.4869519832985386,0.5955114822546973,0.662839248434238,0.7009394572025052,0.09394572025052192,0.03218510786360473,0.0308455114822547,0.2054242469430361,0.01838204592901879,0.3032918282135401,0.011565762004175365,0.3818466878748716,0.008764787752261655,0.4343829737879842,0.0070720250521920675,0.46733356529807474,0.09394572025052192,0.1486268139347834,0.15284573002617868,0.15439034982296526,0.1549448592625029,0.15516529379486205,0.09394572025052192,0.13526182724058286,0.16273403880201556,0.180685476350191,0.1913175060746284,0.19756360996316394,0.09394572025052192,0.08491818175758956,0.09052948294713963,0.09248066772963609,0.09326228290776101,0.09361529404962608,0.09455859576932324
10
+ 3.7098765432098766,1800,0.09394572025052192,0.35281837160751567,0.48329853862212946,0.5918580375782881,0.6649269311064718,0.7004175365344467,0.09394572025052192,0.03185455810716771,0.030897703549060546,0.20592877025549258,0.018204592901878917,0.30069837956059253,0.011362212943632568,0.3754792557245584,0.008639526791927627,0.4282591046160983,0.007019832985386221,0.46372361401067036,0.09394572025052192,0.14710513443845905,0.15122849766144658,0.15275090014884107,0.1533445728241347,0.1535456563541225,0.09394572025052192,0.13433471892252347,0.16091824243484512,0.1780017996510726,0.1886875211403746,0.19541417908856412,0.09394572025052192,0.083759101073897,0.08908800548950695,0.09092612397080438,0.09168814149038751,0.09208168156532727,0.09301554391402207
11
+ 4.1234567901234565,2000,0.09551148225469729,0.34812108559498955,0.4932150313152401,0.5970772442588727,0.6623173277661796,0.7035490605427975,0.09551148225469729,0.03220250521920668,0.030480167014613778,0.20316259071478276,0.018402922755741128,0.3040399145044239,0.01144572025052192,0.37823300858269543,0.00861864996520529,0.4274327302250057,0.0070720250521920675,0.467568429598701,0.09551148225469729,0.148796848074501,0.15342712486814447,0.15489924735195337,0.15543781318663716,0.15567492413016254,0.09551148225469729,0.13449413074843178,0.16281375869650408,0.1798079117342116,0.18976873702750593,0.19737879358914515,0.09551148225469729,0.08472355170504958,0.09038650929811239,0.0922515804329945,0.09296251507722719,0.09340391507908284,0.09434895514443004
12
+ 4.534979423868313,2200,0.09498956158663883,0.35281837160751567,0.48851774530271397,0.5960334029227558,0.657098121085595,0.7025052192066806,0.09498956158663883,0.03218510786360473,0.03102818371607516,0.20682473406899293,0.018528183716075158,0.30616239188786165,0.011550104384133612,0.38175970109686186,0.008601252609603338,0.4266063558339132,0.007074634655532359,0.4677598005103224,0.09498956158663883,0.15082760305134044,0.1552139914541245,0.1567682757261486,0.1572599746321091,0.15752063728764779,0.09498956158663883,0.13726194438538974,0.16515347653846224,0.18245718935168395,0.1915123607890909,0.1993072789458329,0.09498956158663883,0.08696228866764828,0.0925585898977933,0.09443690504503688,0.09508196706389692,0.09552658777692054,0.09647934265199021
13
+ 4.946502057613169,2400,0.09707724425887265,0.3585594989561587,0.4900835073068894,0.6002087682672234,0.6612734864300627,0.7061586638830898,0.09707724425887265,0.032868575405109846,0.03144572025052192,0.20912118500845014,0.018486430062630482,0.305353414852371,0.011612734864300627,0.3834696126188819,0.008688239387613084,0.43087740663419155,0.007132045929018789,0.4714567385757365,0.09707724425887265,0.15220960831749397,0.15642354470896513,0.1580041495008456,0.15850022553236756,0.1587557913720219,0.09707724425887265,0.13847583254619214,0.16556220177827802,0.1834871578549362,0.1930615498205831,0.20074882110420836,0.09707724425887265,0.08751052569766739,0.09304075210745723,0.09500635866296525,0.09570276054684158,0.09614394028730197,0.09706713378133278