Add files using upload-large-folder tool
Browse files- README.md +1420 -3
- checkpoint-1600/README.md +1412 -0
- checkpoint-1600/config.json +30 -0
- checkpoint-1600/modules.json +20 -0
- checkpoint-1600/tokenizer_config.json +58 -0
- checkpoint-1600/vocab.txt +0 -0
- checkpoint-1800/1_Pooling/config.json +10 -0
- checkpoint-1800/config.json +30 -0
- checkpoint-1800/modules.json +20 -0
- checkpoint-1800/rng_state.pth +3 -0
- checkpoint-1800/scheduler.pt +3 -0
- checkpoint-1800/tokenizer.json +0 -0
- checkpoint-1800/tokenizer_config.json +58 -0
- checkpoint-1800/trainer_state.json +0 -0
- checkpoint-1800/training_args.bin +3 -0
- checkpoint-1800/vocab.txt +0 -0
- checkpoint-2000/1_Pooling/config.json +10 -0
- checkpoint-2000/README.md +1416 -0
- checkpoint-2000/config.json +30 -0
- checkpoint-2000/config_sentence_transformers.json +10 -0
- checkpoint-2000/modules.json +20 -0
- checkpoint-2000/rng_state.pth +3 -0
- checkpoint-2000/scaler.pt +3 -0
- checkpoint-2000/scheduler.pt +3 -0
- checkpoint-2000/sentence_bert_config.json +4 -0
- checkpoint-2000/special_tokens_map.json +37 -0
- checkpoint-2000/tokenizer.json +0 -0
- checkpoint-2000/tokenizer_config.json +58 -0
- checkpoint-2000/trainer_state.json +0 -0
- checkpoint-2000/training_args.bin +3 -0
- checkpoint-2000/vocab.txt +0 -0
- checkpoint-2200/tokenizer_config.json +58 -0
- checkpoint-2200/vocab.txt +0 -0
- checkpoint-2400/1_Pooling/config.json +10 -0
- checkpoint-2400/README.md +1420 -0
- checkpoint-2400/config.json +30 -0
- checkpoint-2400/config_sentence_transformers.json +10 -0
- checkpoint-2400/modules.json +20 -0
- checkpoint-2400/sentence_bert_config.json +4 -0
- checkpoint-2400/special_tokens_map.json +37 -0
- checkpoint-2400/tokenizer.json +0 -0
- checkpoint-2400/tokenizer_config.json +58 -0
- checkpoint-2400/trainer_state.json +0 -0
- eval/Information-Retrieval_evaluation_full_de_results.csv +13 -0
- eval/Information-Retrieval_evaluation_full_en_results.csv +13 -0
- eval/Information-Retrieval_evaluation_full_es_results.csv +13 -0
- eval/Information-Retrieval_evaluation_full_zh_results.csv +13 -0
- eval/Information-Retrieval_evaluation_mix_de_results.csv +13 -0
- eval/Information-Retrieval_evaluation_mix_es_results.csv +13 -0
- eval/Information-Retrieval_evaluation_mix_zh_results.csv +13 -0
README.md
CHANGED
|
@@ -1,3 +1,1420 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:124788
|
| 8 |
+
- loss:GISTEmbedLoss
|
| 9 |
+
base_model: BAAI/bge-small-en-v1.5
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: 其他机械、设备和有形货物租赁服务代表
|
| 12 |
+
sentences:
|
| 13 |
+
- 其他机械和设备租赁服务工作人员
|
| 14 |
+
- 电子和电信设备及零部件物流经理
|
| 15 |
+
- 工业主厨
|
| 16 |
+
- source_sentence: 公交车司机
|
| 17 |
+
sentences:
|
| 18 |
+
- 表演灯光设计师
|
| 19 |
+
- 乙烯基地板安装工
|
| 20 |
+
- 国际巴士司机
|
| 21 |
+
- source_sentence: online communication manager
|
| 22 |
+
sentences:
|
| 23 |
+
- trades union official
|
| 24 |
+
- social media manager
|
| 25 |
+
- budget manager
|
| 26 |
+
- source_sentence: Projektmanagerin
|
| 27 |
+
sentences:
|
| 28 |
+
- Projektmanager/Projektmanagerin
|
| 29 |
+
- Category-Manager
|
| 30 |
+
- Infanterist
|
| 31 |
+
- source_sentence: Volksvertreter
|
| 32 |
+
sentences:
|
| 33 |
+
- Parlamentarier
|
| 34 |
+
- Oberbürgermeister
|
| 35 |
+
- Konsul
|
| 36 |
+
pipeline_tag: sentence-similarity
|
| 37 |
+
library_name: sentence-transformers
|
| 38 |
+
metrics:
|
| 39 |
+
- cosine_accuracy@1
|
| 40 |
+
- cosine_accuracy@20
|
| 41 |
+
- cosine_accuracy@50
|
| 42 |
+
- cosine_accuracy@100
|
| 43 |
+
- cosine_accuracy@150
|
| 44 |
+
- cosine_accuracy@200
|
| 45 |
+
- cosine_precision@1
|
| 46 |
+
- cosine_precision@20
|
| 47 |
+
- cosine_precision@50
|
| 48 |
+
- cosine_precision@100
|
| 49 |
+
- cosine_precision@150
|
| 50 |
+
- cosine_precision@200
|
| 51 |
+
- cosine_recall@1
|
| 52 |
+
- cosine_recall@20
|
| 53 |
+
- cosine_recall@50
|
| 54 |
+
- cosine_recall@100
|
| 55 |
+
- cosine_recall@150
|
| 56 |
+
- cosine_recall@200
|
| 57 |
+
- cosine_ndcg@1
|
| 58 |
+
- cosine_ndcg@20
|
| 59 |
+
- cosine_ndcg@50
|
| 60 |
+
- cosine_ndcg@100
|
| 61 |
+
- cosine_ndcg@150
|
| 62 |
+
- cosine_ndcg@200
|
| 63 |
+
- cosine_mrr@1
|
| 64 |
+
- cosine_mrr@20
|
| 65 |
+
- cosine_mrr@50
|
| 66 |
+
- cosine_mrr@100
|
| 67 |
+
- cosine_mrr@150
|
| 68 |
+
- cosine_mrr@200
|
| 69 |
+
- cosine_map@1
|
| 70 |
+
- cosine_map@20
|
| 71 |
+
- cosine_map@50
|
| 72 |
+
- cosine_map@100
|
| 73 |
+
- cosine_map@150
|
| 74 |
+
- cosine_map@200
|
| 75 |
+
- cosine_map@500
|
| 76 |
+
model-index:
|
| 77 |
+
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
|
| 78 |
+
results:
|
| 79 |
+
- task:
|
| 80 |
+
type: information-retrieval
|
| 81 |
+
name: Information Retrieval
|
| 82 |
+
dataset:
|
| 83 |
+
name: full en
|
| 84 |
+
type: full_en
|
| 85 |
+
metrics:
|
| 86 |
+
- type: cosine_accuracy@1
|
| 87 |
+
value: 0.6571428571428571
|
| 88 |
+
name: Cosine Accuracy@1
|
| 89 |
+
- type: cosine_accuracy@20
|
| 90 |
+
value: 0.9904761904761905
|
| 91 |
+
name: Cosine Accuracy@20
|
| 92 |
+
- type: cosine_accuracy@50
|
| 93 |
+
value: 0.9904761904761905
|
| 94 |
+
name: Cosine Accuracy@50
|
| 95 |
+
- type: cosine_accuracy@100
|
| 96 |
+
value: 0.9904761904761905
|
| 97 |
+
name: Cosine Accuracy@100
|
| 98 |
+
- type: cosine_accuracy@150
|
| 99 |
+
value: 0.9904761904761905
|
| 100 |
+
name: Cosine Accuracy@150
|
| 101 |
+
- type: cosine_accuracy@200
|
| 102 |
+
value: 0.9904761904761905
|
| 103 |
+
name: Cosine Accuracy@200
|
| 104 |
+
- type: cosine_precision@1
|
| 105 |
+
value: 0.6571428571428571
|
| 106 |
+
name: Cosine Precision@1
|
| 107 |
+
- type: cosine_precision@20
|
| 108 |
+
value: 0.5023809523809524
|
| 109 |
+
name: Cosine Precision@20
|
| 110 |
+
- type: cosine_precision@50
|
| 111 |
+
value: 0.30800000000000005
|
| 112 |
+
name: Cosine Precision@50
|
| 113 |
+
- type: cosine_precision@100
|
| 114 |
+
value: 0.18628571428571428
|
| 115 |
+
name: Cosine Precision@100
|
| 116 |
+
- type: cosine_precision@150
|
| 117 |
+
value: 0.1321904761904762
|
| 118 |
+
name: Cosine Precision@150
|
| 119 |
+
- type: cosine_precision@200
|
| 120 |
+
value: 0.10295238095238096
|
| 121 |
+
name: Cosine Precision@200
|
| 122 |
+
- type: cosine_recall@1
|
| 123 |
+
value: 0.0680237860830842
|
| 124 |
+
name: Cosine Recall@1
|
| 125 |
+
- type: cosine_recall@20
|
| 126 |
+
value: 0.5384852963395483
|
| 127 |
+
name: Cosine Recall@20
|
| 128 |
+
- type: cosine_recall@50
|
| 129 |
+
value: 0.7260449077992874
|
| 130 |
+
name: Cosine Recall@50
|
| 131 |
+
- type: cosine_recall@100
|
| 132 |
+
value: 0.8328530702930984
|
| 133 |
+
name: Cosine Recall@100
|
| 134 |
+
- type: cosine_recall@150
|
| 135 |
+
value: 0.8745262490032277
|
| 136 |
+
name: Cosine Recall@150
|
| 137 |
+
- type: cosine_recall@200
|
| 138 |
+
value: 0.9056960100263424
|
| 139 |
+
name: Cosine Recall@200
|
| 140 |
+
- type: cosine_ndcg@1
|
| 141 |
+
value: 0.6571428571428571
|
| 142 |
+
name: Cosine Ndcg@1
|
| 143 |
+
- type: cosine_ndcg@20
|
| 144 |
+
value: 0.6845256340390302
|
| 145 |
+
name: Cosine Ndcg@20
|
| 146 |
+
- type: cosine_ndcg@50
|
| 147 |
+
value: 0.7040452093638513
|
| 148 |
+
name: Cosine Ndcg@50
|
| 149 |
+
- type: cosine_ndcg@100
|
| 150 |
+
value: 0.758935932285001
|
| 151 |
+
name: Cosine Ndcg@100
|
| 152 |
+
- type: cosine_ndcg@150
|
| 153 |
+
value: 0.7774414598948007
|
| 154 |
+
name: Cosine Ndcg@150
|
| 155 |
+
- type: cosine_ndcg@200
|
| 156 |
+
value: 0.7892946240668293
|
| 157 |
+
name: Cosine Ndcg@200
|
| 158 |
+
- type: cosine_mrr@1
|
| 159 |
+
value: 0.6571428571428571
|
| 160 |
+
name: Cosine Mrr@1
|
| 161 |
+
- type: cosine_mrr@20
|
| 162 |
+
value: 0.8103174603174604
|
| 163 |
+
name: Cosine Mrr@20
|
| 164 |
+
- type: cosine_mrr@50
|
| 165 |
+
value: 0.8103174603174604
|
| 166 |
+
name: Cosine Mrr@50
|
| 167 |
+
- type: cosine_mrr@100
|
| 168 |
+
value: 0.8103174603174604
|
| 169 |
+
name: Cosine Mrr@100
|
| 170 |
+
- type: cosine_mrr@150
|
| 171 |
+
value: 0.8103174603174604
|
| 172 |
+
name: Cosine Mrr@150
|
| 173 |
+
- type: cosine_mrr@200
|
| 174 |
+
value: 0.8103174603174604
|
| 175 |
+
name: Cosine Mrr@200
|
| 176 |
+
- type: cosine_map@1
|
| 177 |
+
value: 0.6571428571428571
|
| 178 |
+
name: Cosine Map@1
|
| 179 |
+
- type: cosine_map@20
|
| 180 |
+
value: 0.5418235787800474
|
| 181 |
+
name: Cosine Map@20
|
| 182 |
+
- type: cosine_map@50
|
| 183 |
+
value: 0.5327215779103721
|
| 184 |
+
name: Cosine Map@50
|
| 185 |
+
- type: cosine_map@100
|
| 186 |
+
value: 0.565706253334091
|
| 187 |
+
name: Cosine Map@100
|
| 188 |
+
- type: cosine_map@150
|
| 189 |
+
value: 0.5733951147399983
|
| 190 |
+
name: Cosine Map@150
|
| 191 |
+
- type: cosine_map@200
|
| 192 |
+
value: 0.5771587776237981
|
| 193 |
+
name: Cosine Map@200
|
| 194 |
+
- type: cosine_map@500
|
| 195 |
+
value: 0.5813892452974444
|
| 196 |
+
name: Cosine Map@500
|
| 197 |
+
- task:
|
| 198 |
+
type: information-retrieval
|
| 199 |
+
name: Information Retrieval
|
| 200 |
+
dataset:
|
| 201 |
+
name: full es
|
| 202 |
+
type: full_es
|
| 203 |
+
metrics:
|
| 204 |
+
- type: cosine_accuracy@1
|
| 205 |
+
value: 0.12432432432432433
|
| 206 |
+
name: Cosine Accuracy@1
|
| 207 |
+
- type: cosine_accuracy@20
|
| 208 |
+
value: 1.0
|
| 209 |
+
name: Cosine Accuracy@20
|
| 210 |
+
- type: cosine_accuracy@50
|
| 211 |
+
value: 1.0
|
| 212 |
+
name: Cosine Accuracy@50
|
| 213 |
+
- type: cosine_accuracy@100
|
| 214 |
+
value: 1.0
|
| 215 |
+
name: Cosine Accuracy@100
|
| 216 |
+
- type: cosine_accuracy@150
|
| 217 |
+
value: 1.0
|
| 218 |
+
name: Cosine Accuracy@150
|
| 219 |
+
- type: cosine_accuracy@200
|
| 220 |
+
value: 1.0
|
| 221 |
+
name: Cosine Accuracy@200
|
| 222 |
+
- type: cosine_precision@1
|
| 223 |
+
value: 0.12432432432432433
|
| 224 |
+
name: Cosine Precision@1
|
| 225 |
+
- type: cosine_precision@20
|
| 226 |
+
value: 0.4897297297297297
|
| 227 |
+
name: Cosine Precision@20
|
| 228 |
+
- type: cosine_precision@50
|
| 229 |
+
value: 0.31794594594594594
|
| 230 |
+
name: Cosine Precision@50
|
| 231 |
+
- type: cosine_precision@100
|
| 232 |
+
value: 0.19864864864864865
|
| 233 |
+
name: Cosine Precision@100
|
| 234 |
+
- type: cosine_precision@150
|
| 235 |
+
value: 0.14688288288288287
|
| 236 |
+
name: Cosine Precision@150
|
| 237 |
+
- type: cosine_precision@200
|
| 238 |
+
value: 0.11789189189189188
|
| 239 |
+
name: Cosine Precision@200
|
| 240 |
+
- type: cosine_recall@1
|
| 241 |
+
value: 0.003111544931768446
|
| 242 |
+
name: Cosine Recall@1
|
| 243 |
+
- type: cosine_recall@20
|
| 244 |
+
value: 0.32208664960961075
|
| 245 |
+
name: Cosine Recall@20
|
| 246 |
+
- type: cosine_recall@50
|
| 247 |
+
value: 0.46383117404893587
|
| 248 |
+
name: Cosine Recall@50
|
| 249 |
+
- type: cosine_recall@100
|
| 250 |
+
value: 0.5437537828683688
|
| 251 |
+
name: Cosine Recall@100
|
| 252 |
+
- type: cosine_recall@150
|
| 253 |
+
value: 0.5824968655076911
|
| 254 |
+
name: Cosine Recall@150
|
| 255 |
+
- type: cosine_recall@200
|
| 256 |
+
value: 0.6146962508233631
|
| 257 |
+
name: Cosine Recall@200
|
| 258 |
+
- type: cosine_ndcg@1
|
| 259 |
+
value: 0.12432432432432433
|
| 260 |
+
name: Cosine Ndcg@1
|
| 261 |
+
- type: cosine_ndcg@20
|
| 262 |
+
value: 0.5384577730264963
|
| 263 |
+
name: Cosine Ndcg@20
|
| 264 |
+
- type: cosine_ndcg@50
|
| 265 |
+
value: 0.5012455261232941
|
| 266 |
+
name: Cosine Ndcg@50
|
| 267 |
+
- type: cosine_ndcg@100
|
| 268 |
+
value: 0.5147486871284331
|
| 269 |
+
name: Cosine Ndcg@100
|
| 270 |
+
- type: cosine_ndcg@150
|
| 271 |
+
value: 0.5348194013794069
|
| 272 |
+
name: Cosine Ndcg@150
|
| 273 |
+
- type: cosine_ndcg@200
|
| 274 |
+
value: 0.5505397598095297
|
| 275 |
+
name: Cosine Ndcg@200
|
| 276 |
+
- type: cosine_mrr@1
|
| 277 |
+
value: 0.12432432432432433
|
| 278 |
+
name: Cosine Mrr@1
|
| 279 |
+
- type: cosine_mrr@20
|
| 280 |
+
value: 0.5515015015015016
|
| 281 |
+
name: Cosine Mrr@20
|
| 282 |
+
- type: cosine_mrr@50
|
| 283 |
+
value: 0.5515015015015016
|
| 284 |
+
name: Cosine Mrr@50
|
| 285 |
+
- type: cosine_mrr@100
|
| 286 |
+
value: 0.5515015015015016
|
| 287 |
+
name: Cosine Mrr@100
|
| 288 |
+
- type: cosine_mrr@150
|
| 289 |
+
value: 0.5515015015015016
|
| 290 |
+
name: Cosine Mrr@150
|
| 291 |
+
- type: cosine_mrr@200
|
| 292 |
+
value: 0.5515015015015016
|
| 293 |
+
name: Cosine Mrr@200
|
| 294 |
+
- type: cosine_map@1
|
| 295 |
+
value: 0.12432432432432433
|
| 296 |
+
name: Cosine Map@1
|
| 297 |
+
- type: cosine_map@20
|
| 298 |
+
value: 0.40280623036556984
|
| 299 |
+
name: Cosine Map@20
|
| 300 |
+
- type: cosine_map@50
|
| 301 |
+
value: 0.3421710529569103
|
| 302 |
+
name: Cosine Map@50
|
| 303 |
+
- type: cosine_map@100
|
| 304 |
+
value: 0.33947884152876345
|
| 305 |
+
name: Cosine Map@100
|
| 306 |
+
- type: cosine_map@150
|
| 307 |
+
value: 0.34777364049184706
|
| 308 |
+
name: Cosine Map@150
|
| 309 |
+
- type: cosine_map@200
|
| 310 |
+
value: 0.35339765423089375
|
| 311 |
+
name: Cosine Map@200
|
| 312 |
+
- type: cosine_map@500
|
| 313 |
+
value: 0.3631043007370563
|
| 314 |
+
name: Cosine Map@500
|
| 315 |
+
- task:
|
| 316 |
+
type: information-retrieval
|
| 317 |
+
name: Information Retrieval
|
| 318 |
+
dataset:
|
| 319 |
+
name: full de
|
| 320 |
+
type: full_de
|
| 321 |
+
metrics:
|
| 322 |
+
- type: cosine_accuracy@1
|
| 323 |
+
value: 0.2955665024630542
|
| 324 |
+
name: Cosine Accuracy@1
|
| 325 |
+
- type: cosine_accuracy@20
|
| 326 |
+
value: 0.9211822660098522
|
| 327 |
+
name: Cosine Accuracy@20
|
| 328 |
+
- type: cosine_accuracy@50
|
| 329 |
+
value: 0.9655172413793104
|
| 330 |
+
name: Cosine Accuracy@50
|
| 331 |
+
- type: cosine_accuracy@100
|
| 332 |
+
value: 0.9753694581280788
|
| 333 |
+
name: Cosine Accuracy@100
|
| 334 |
+
- type: cosine_accuracy@150
|
| 335 |
+
value: 0.9852216748768473
|
| 336 |
+
name: Cosine Accuracy@150
|
| 337 |
+
- type: cosine_accuracy@200
|
| 338 |
+
value: 0.9852216748768473
|
| 339 |
+
name: Cosine Accuracy@200
|
| 340 |
+
- type: cosine_precision@1
|
| 341 |
+
value: 0.2955665024630542
|
| 342 |
+
name: Cosine Precision@1
|
| 343 |
+
- type: cosine_precision@20
|
| 344 |
+
value: 0.4246305418719211
|
| 345 |
+
name: Cosine Precision@20
|
| 346 |
+
- type: cosine_precision@50
|
| 347 |
+
value: 0.2813793103448276
|
| 348 |
+
name: Cosine Precision@50
|
| 349 |
+
- type: cosine_precision@100
|
| 350 |
+
value: 0.1800985221674877
|
| 351 |
+
name: Cosine Precision@100
|
| 352 |
+
- type: cosine_precision@150
|
| 353 |
+
value: 0.1362233169129721
|
| 354 |
+
name: Cosine Precision@150
|
| 355 |
+
- type: cosine_precision@200
|
| 356 |
+
value: 0.11054187192118226
|
| 357 |
+
name: Cosine Precision@200
|
| 358 |
+
- type: cosine_recall@1
|
| 359 |
+
value: 0.01108543831680986
|
| 360 |
+
name: Cosine Recall@1
|
| 361 |
+
- type: cosine_recall@20
|
| 362 |
+
value: 0.26139377973111655
|
| 363 |
+
name: Cosine Recall@20
|
| 364 |
+
- type: cosine_recall@50
|
| 365 |
+
value: 0.3835171819041212
|
| 366 |
+
name: Cosine Recall@50
|
| 367 |
+
- type: cosine_recall@100
|
| 368 |
+
value: 0.4676892706124872
|
| 369 |
+
name: Cosine Recall@100
|
| 370 |
+
- type: cosine_recall@150
|
| 371 |
+
value: 0.5183014504752351
|
| 372 |
+
name: Cosine Recall@150
|
| 373 |
+
- type: cosine_recall@200
|
| 374 |
+
value: 0.551717511250073
|
| 375 |
+
name: Cosine Recall@200
|
| 376 |
+
- type: cosine_ndcg@1
|
| 377 |
+
value: 0.2955665024630542
|
| 378 |
+
name: Cosine Ndcg@1
|
| 379 |
+
- type: cosine_ndcg@20
|
| 380 |
+
value: 0.4600580109269636
|
| 381 |
+
name: Cosine Ndcg@20
|
| 382 |
+
- type: cosine_ndcg@50
|
| 383 |
+
value: 0.4229190542750304
|
| 384 |
+
name: Cosine Ndcg@50
|
| 385 |
+
- type: cosine_ndcg@100
|
| 386 |
+
value: 0.4370543021366767
|
| 387 |
+
name: Cosine Ndcg@100
|
| 388 |
+
- type: cosine_ndcg@150
|
| 389 |
+
value: 0.46289045418097646
|
| 390 |
+
name: Cosine Ndcg@150
|
| 391 |
+
- type: cosine_ndcg@200
|
| 392 |
+
value: 0.4796711024513544
|
| 393 |
+
name: Cosine Ndcg@200
|
| 394 |
+
- type: cosine_mrr@1
|
| 395 |
+
value: 0.2955665024630542
|
| 396 |
+
name: Cosine Mrr@1
|
| 397 |
+
- type: cosine_mrr@20
|
| 398 |
+
value: 0.48958320005117995
|
| 399 |
+
name: Cosine Mrr@20
|
| 400 |
+
- type: cosine_mrr@50
|
| 401 |
+
value: 0.49093477998292195
|
| 402 |
+
name: Cosine Mrr@50
|
| 403 |
+
- type: cosine_mrr@100
|
| 404 |
+
value: 0.4910841931964832
|
| 405 |
+
name: Cosine Mrr@100
|
| 406 |
+
- type: cosine_mrr@150
|
| 407 |
+
value: 0.4911623560854821
|
| 408 |
+
name: Cosine Mrr@150
|
| 409 |
+
- type: cosine_mrr@200
|
| 410 |
+
value: 0.4911623560854821
|
| 411 |
+
name: Cosine Mrr@200
|
| 412 |
+
- type: cosine_map@1
|
| 413 |
+
value: 0.2955665024630542
|
| 414 |
+
name: Cosine Map@1
|
| 415 |
+
- type: cosine_map@20
|
| 416 |
+
value: 0.32364842421740225
|
| 417 |
+
name: Cosine Map@20
|
| 418 |
+
- type: cosine_map@50
|
| 419 |
+
value: 0.2643813390551392
|
| 420 |
+
name: Cosine Map@50
|
| 421 |
+
- type: cosine_map@100
|
| 422 |
+
value: 0.2576413544507463
|
| 423 |
+
name: Cosine Map@100
|
| 424 |
+
- type: cosine_map@150
|
| 425 |
+
value: 0.2669126239698539
|
| 426 |
+
name: Cosine Map@150
|
| 427 |
+
- type: cosine_map@200
|
| 428 |
+
value: 0.27215799504041416
|
| 429 |
+
name: Cosine Map@200
|
| 430 |
+
- type: cosine_map@500
|
| 431 |
+
value: 0.28329484592874316
|
| 432 |
+
name: Cosine Map@500
|
| 433 |
+
- task:
|
| 434 |
+
type: information-retrieval
|
| 435 |
+
name: Information Retrieval
|
| 436 |
+
dataset:
|
| 437 |
+
name: full zh
|
| 438 |
+
type: full_zh
|
| 439 |
+
metrics:
|
| 440 |
+
- type: cosine_accuracy@1
|
| 441 |
+
value: 0.34951456310679613
|
| 442 |
+
name: Cosine Accuracy@1
|
| 443 |
+
- type: cosine_accuracy@20
|
| 444 |
+
value: 0.7378640776699029
|
| 445 |
+
name: Cosine Accuracy@20
|
| 446 |
+
- type: cosine_accuracy@50
|
| 447 |
+
value: 0.8252427184466019
|
| 448 |
+
name: Cosine Accuracy@50
|
| 449 |
+
- type: cosine_accuracy@100
|
| 450 |
+
value: 0.8543689320388349
|
| 451 |
+
name: Cosine Accuracy@100
|
| 452 |
+
- type: cosine_accuracy@150
|
| 453 |
+
value: 0.9029126213592233
|
| 454 |
+
name: Cosine Accuracy@150
|
| 455 |
+
- type: cosine_accuracy@200
|
| 456 |
+
value: 0.941747572815534
|
| 457 |
+
name: Cosine Accuracy@200
|
| 458 |
+
- type: cosine_precision@1
|
| 459 |
+
value: 0.34951456310679613
|
| 460 |
+
name: Cosine Precision@1
|
| 461 |
+
- type: cosine_precision@20
|
| 462 |
+
value: 0.17330097087378643
|
| 463 |
+
name: Cosine Precision@20
|
| 464 |
+
- type: cosine_precision@50
|
| 465 |
+
value: 0.09436893203883494
|
| 466 |
+
name: Cosine Precision@50
|
| 467 |
+
- type: cosine_precision@100
|
| 468 |
+
value: 0.05893203883495146
|
| 469 |
+
name: Cosine Precision@100
|
| 470 |
+
- type: cosine_precision@150
|
| 471 |
+
value: 0.0458252427184466
|
| 472 |
+
name: Cosine Precision@150
|
| 473 |
+
- type: cosine_precision@200
|
| 474 |
+
value: 0.03854368932038834
|
| 475 |
+
name: Cosine Precision@200
|
| 476 |
+
- type: cosine_recall@1
|
| 477 |
+
value: 0.02726635297033844
|
| 478 |
+
name: Cosine Recall@1
|
| 479 |
+
- type: cosine_recall@20
|
| 480 |
+
value: 0.17661061398990294
|
| 481 |
+
name: Cosine Recall@20
|
| 482 |
+
- type: cosine_recall@50
|
| 483 |
+
value: 0.2392861843604663
|
| 484 |
+
name: Cosine Recall@50
|
| 485 |
+
- type: cosine_recall@100
|
| 486 |
+
value: 0.2862639658547104
|
| 487 |
+
name: Cosine Recall@100
|
| 488 |
+
- type: cosine_recall@150
|
| 489 |
+
value: 0.3286954340443375
|
| 490 |
+
name: Cosine Recall@150
|
| 491 |
+
- type: cosine_recall@200
|
| 492 |
+
value: 0.3630829587412431
|
| 493 |
+
name: Cosine Recall@200
|
| 494 |
+
- type: cosine_ndcg@1
|
| 495 |
+
value: 0.34951456310679613
|
| 496 |
+
name: Cosine Ndcg@1
|
| 497 |
+
- type: cosine_ndcg@20
|
| 498 |
+
value: 0.24683538489164747
|
| 499 |
+
name: Cosine Ndcg@20
|
| 500 |
+
- type: cosine_ndcg@50
|
| 501 |
+
value: 0.23936442282824424
|
| 502 |
+
name: Cosine Ndcg@50
|
| 503 |
+
- type: cosine_ndcg@100
|
| 504 |
+
value: 0.2618891246293786
|
| 505 |
+
name: Cosine Ndcg@100
|
| 506 |
+
- type: cosine_ndcg@150
|
| 507 |
+
value: 0.27867525817923894
|
| 508 |
+
name: Cosine Ndcg@150
|
| 509 |
+
- type: cosine_ndcg@200
|
| 510 |
+
value: 0.29190260238165355
|
| 511 |
+
name: Cosine Ndcg@200
|
| 512 |
+
- type: cosine_mrr@1
|
| 513 |
+
value: 0.34951456310679613
|
| 514 |
+
name: Cosine Mrr@1
|
| 515 |
+
- type: cosine_mrr@20
|
| 516 |
+
value: 0.44845699819699636
|
| 517 |
+
name: Cosine Mrr@20
|
| 518 |
+
- type: cosine_mrr@50
|
| 519 |
+
value: 0.4514515915598798
|
| 520 |
+
name: Cosine Mrr@50
|
| 521 |
+
- type: cosine_mrr@100
|
| 522 |
+
value: 0.451864194979824
|
| 523 |
+
name: Cosine Mrr@100
|
| 524 |
+
- type: cosine_mrr@150
|
| 525 |
+
value: 0.4522894025156287
|
| 526 |
+
name: Cosine Mrr@150
|
| 527 |
+
- type: cosine_mrr@200
|
| 528 |
+
value: 0.45250948321580986
|
| 529 |
+
name: Cosine Mrr@200
|
| 530 |
+
- type: cosine_map@1
|
| 531 |
+
value: 0.34951456310679613
|
| 532 |
+
name: Cosine Map@1
|
| 533 |
+
- type: cosine_map@20
|
| 534 |
+
value: 0.1470309927546457
|
| 535 |
+
name: Cosine Map@20
|
| 536 |
+
- type: cosine_map@50
|
| 537 |
+
value: 0.12671489844037503
|
| 538 |
+
name: Cosine Map@50
|
| 539 |
+
- type: cosine_map@100
|
| 540 |
+
value: 0.13257859039926595
|
| 541 |
+
name: Cosine Map@100
|
| 542 |
+
- type: cosine_map@150
|
| 543 |
+
value: 0.13523273342027425
|
| 544 |
+
name: Cosine Map@150
|
| 545 |
+
- type: cosine_map@200
|
| 546 |
+
value: 0.13679857663871084
|
| 547 |
+
name: Cosine Map@200
|
| 548 |
+
- type: cosine_map@500
|
| 549 |
+
value: 0.14069476480399515
|
| 550 |
+
name: Cosine Map@500
|
| 551 |
+
- task:
|
| 552 |
+
type: information-retrieval
|
| 553 |
+
name: Information Retrieval
|
| 554 |
+
dataset:
|
| 555 |
+
name: mix es
|
| 556 |
+
type: mix_es
|
| 557 |
+
metrics:
|
| 558 |
+
- type: cosine_accuracy@1
|
| 559 |
+
value: 0.41133645345813835
|
| 560 |
+
name: Cosine Accuracy@1
|
| 561 |
+
- type: cosine_accuracy@20
|
| 562 |
+
value: 0.7613104524180967
|
| 563 |
+
name: Cosine Accuracy@20
|
| 564 |
+
- type: cosine_accuracy@50
|
| 565 |
+
value: 0.8523140925637025
|
| 566 |
+
name: Cosine Accuracy@50
|
| 567 |
+
- type: cosine_accuracy@100
|
| 568 |
+
value: 0.9121164846593863
|
| 569 |
+
name: Cosine Accuracy@100
|
| 570 |
+
- type: cosine_accuracy@150
|
| 571 |
+
value: 0.9417576703068122
|
| 572 |
+
name: Cosine Accuracy@150
|
| 573 |
+
- type: cosine_accuracy@200
|
| 574 |
+
value: 0.9547581903276131
|
| 575 |
+
name: Cosine Accuracy@200
|
| 576 |
+
- type: cosine_precision@1
|
| 577 |
+
value: 0.41133645345813835
|
| 578 |
+
name: Cosine Precision@1
|
| 579 |
+
- type: cosine_precision@20
|
| 580 |
+
value: 0.08920956838273532
|
| 581 |
+
name: Cosine Precision@20
|
| 582 |
+
- type: cosine_precision@50
|
| 583 |
+
value: 0.04175767030681228
|
| 584 |
+
name: Cosine Precision@50
|
| 585 |
+
- type: cosine_precision@100
|
| 586 |
+
value: 0.02291731669266771
|
| 587 |
+
name: Cosine Precision@100
|
| 588 |
+
- type: cosine_precision@150
|
| 589 |
+
value: 0.015905702894782457
|
| 590 |
+
name: Cosine Precision@150
|
| 591 |
+
- type: cosine_precision@200
|
| 592 |
+
value: 0.012243889755590227
|
| 593 |
+
name: Cosine Precision@200
|
| 594 |
+
- type: cosine_recall@1
|
| 595 |
+
value: 0.15653988064284477
|
| 596 |
+
name: Cosine Recall@1
|
| 597 |
+
- type: cosine_recall@20
|
| 598 |
+
value: 0.6593678032835598
|
| 599 |
+
name: Cosine Recall@20
|
| 600 |
+
- type: cosine_recall@50
|
| 601 |
+
value: 0.7704838669737266
|
| 602 |
+
name: Cosine Recall@50
|
| 603 |
+
- type: cosine_recall@100
|
| 604 |
+
value: 0.847169601069757
|
| 605 |
+
name: Cosine Recall@100
|
| 606 |
+
- type: cosine_recall@150
|
| 607 |
+
value: 0.8825483495530297
|
| 608 |
+
name: Cosine Recall@150
|
| 609 |
+
- type: cosine_recall@200
|
| 610 |
+
value: 0.9050999182824455
|
| 611 |
+
name: Cosine Recall@200
|
| 612 |
+
- type: cosine_ndcg@1
|
| 613 |
+
value: 0.41133645345813835
|
| 614 |
+
name: Cosine Ndcg@1
|
| 615 |
+
- type: cosine_ndcg@20
|
| 616 |
+
value: 0.5116672519515115
|
| 617 |
+
name: Cosine Ndcg@20
|
| 618 |
+
- type: cosine_ndcg@50
|
| 619 |
+
value: 0.542000920569141
|
| 620 |
+
name: Cosine Ndcg@50
|
| 621 |
+
- type: cosine_ndcg@100
|
| 622 |
+
value: 0.558759964344595
|
| 623 |
+
name: Cosine Ndcg@100
|
| 624 |
+
- type: cosine_ndcg@150
|
| 625 |
+
value: 0.5655977162199296
|
| 626 |
+
name: Cosine Ndcg@150
|
| 627 |
+
- type: cosine_ndcg@200
|
| 628 |
+
value: 0.5697289878952349
|
| 629 |
+
name: Cosine Ndcg@200
|
| 630 |
+
- type: cosine_mrr@1
|
| 631 |
+
value: 0.41133645345813835
|
| 632 |
+
name: Cosine Mrr@1
|
| 633 |
+
- type: cosine_mrr@20
|
| 634 |
+
value: 0.4978677179556957
|
| 635 |
+
name: Cosine Mrr@20
|
| 636 |
+
- type: cosine_mrr@50
|
| 637 |
+
value: 0.5009543893008301
|
| 638 |
+
name: Cosine Mrr@50
|
| 639 |
+
- type: cosine_mrr@100
|
| 640 |
+
value: 0.5018183607581652
|
| 641 |
+
name: Cosine Mrr@100
|
| 642 |
+
- type: cosine_mrr@150
|
| 643 |
+
value: 0.5020589846475842
|
| 644 |
+
name: Cosine Mrr@150
|
| 645 |
+
- type: cosine_mrr@200
|
| 646 |
+
value: 0.5021321446410069
|
| 647 |
+
name: Cosine Mrr@200
|
| 648 |
+
- type: cosine_map@1
|
| 649 |
+
value: 0.41133645345813835
|
| 650 |
+
name: Cosine Map@1
|
| 651 |
+
- type: cosine_map@20
|
| 652 |
+
value: 0.4263681424556441
|
| 653 |
+
name: Cosine Map@20
|
| 654 |
+
- type: cosine_map@50
|
| 655 |
+
value: 0.4338209025376249
|
| 656 |
+
name: Cosine Map@50
|
| 657 |
+
- type: cosine_map@100
|
| 658 |
+
value: 0.4359939776007631
|
| 659 |
+
name: Cosine Map@100
|
| 660 |
+
- type: cosine_map@150
|
| 661 |
+
value: 0.43656970643226983
|
| 662 |
+
name: Cosine Map@150
|
| 663 |
+
- type: cosine_map@200
|
| 664 |
+
value: 0.4368426702726571
|
| 665 |
+
name: Cosine Map@200
|
| 666 |
+
- type: cosine_map@500
|
| 667 |
+
value: 0.43729529920887905
|
| 668 |
+
name: Cosine Map@500
|
| 669 |
+
- task:
|
| 670 |
+
type: information-retrieval
|
| 671 |
+
name: Information Retrieval
|
| 672 |
+
dataset:
|
| 673 |
+
name: mix de
|
| 674 |
+
type: mix_de
|
| 675 |
+
metrics:
|
| 676 |
+
- type: cosine_accuracy@1
|
| 677 |
+
value: 0.29433177327093085
|
| 678 |
+
name: Cosine Accuracy@1
|
| 679 |
+
- type: cosine_accuracy@20
|
| 680 |
+
value: 0.6500260010400416
|
| 681 |
+
name: Cosine Accuracy@20
|
| 682 |
+
- type: cosine_accuracy@50
|
| 683 |
+
value: 0.7607904316172647
|
| 684 |
+
name: Cosine Accuracy@50
|
| 685 |
+
- type: cosine_accuracy@100
|
| 686 |
+
value: 0.8507540301612064
|
| 687 |
+
name: Cosine Accuracy@100
|
| 688 |
+
- type: cosine_accuracy@150
|
| 689 |
+
value: 0.889755590223609
|
| 690 |
+
name: Cosine Accuracy@150
|
| 691 |
+
- type: cosine_accuracy@200
|
| 692 |
+
value: 0.9204368174726989
|
| 693 |
+
name: Cosine Accuracy@200
|
| 694 |
+
- type: cosine_precision@1
|
| 695 |
+
value: 0.29433177327093085
|
| 696 |
+
name: Cosine Precision@1
|
| 697 |
+
- type: cosine_precision@20
|
| 698 |
+
value: 0.07308892355694228
|
| 699 |
+
name: Cosine Precision@20
|
| 700 |
+
- type: cosine_precision@50
|
| 701 |
+
value: 0.036141445657826315
|
| 702 |
+
name: Cosine Precision@50
|
| 703 |
+
- type: cosine_precision@100
|
| 704 |
+
value: 0.020634425377015084
|
| 705 |
+
name: Cosine Precision@100
|
| 706 |
+
- type: cosine_precision@150
|
| 707 |
+
value: 0.014681920610157736
|
| 708 |
+
name: Cosine Precision@150
|
| 709 |
+
- type: cosine_precision@200
|
| 710 |
+
value: 0.011552262090483621
|
| 711 |
+
name: Cosine Precision@200
|
| 712 |
+
- type: cosine_recall@1
|
| 713 |
+
value: 0.1109031027907783
|
| 714 |
+
name: Cosine Recall@1
|
| 715 |
+
- type: cosine_recall@20
|
| 716 |
+
value: 0.534356040908303
|
| 717 |
+
name: Cosine Recall@20
|
| 718 |
+
- type: cosine_recall@50
|
| 719 |
+
value: 0.6584676720402148
|
| 720 |
+
name: Cosine Recall@50
|
| 721 |
+
- type: cosine_recall@100
|
| 722 |
+
value: 0.752470098803952
|
| 723 |
+
name: Cosine Recall@100
|
| 724 |
+
- type: cosine_recall@150
|
| 725 |
+
value: 0.8025567689374241
|
| 726 |
+
name: Cosine Recall@150
|
| 727 |
+
- type: cosine_recall@200
|
| 728 |
+
value: 0.8417663373201595
|
| 729 |
+
name: Cosine Recall@200
|
| 730 |
+
- type: cosine_ndcg@1
|
| 731 |
+
value: 0.29433177327093085
|
| 732 |
+
name: Cosine Ndcg@1
|
| 733 |
+
- type: cosine_ndcg@20
|
| 734 |
+
value: 0.3919428679123834
|
| 735 |
+
name: Cosine Ndcg@20
|
| 736 |
+
- type: cosine_ndcg@50
|
| 737 |
+
value: 0.425599899100406
|
| 738 |
+
name: Cosine Ndcg@50
|
| 739 |
+
- type: cosine_ndcg@100
|
| 740 |
+
value: 0.4462421162922913
|
| 741 |
+
name: Cosine Ndcg@100
|
| 742 |
+
- type: cosine_ndcg@150
|
| 743 |
+
value: 0.45606402272845137
|
| 744 |
+
name: Cosine Ndcg@150
|
| 745 |
+
- type: cosine_ndcg@200
|
| 746 |
+
value: 0.4632312746623382
|
| 747 |
+
name: Cosine Ndcg@200
|
| 748 |
+
- type: cosine_mrr@1
|
| 749 |
+
value: 0.29433177327093085
|
| 750 |
+
name: Cosine Mrr@1
|
| 751 |
+
- type: cosine_mrr@20
|
| 752 |
+
value: 0.37785395494554963
|
| 753 |
+
name: Cosine Mrr@20
|
| 754 |
+
- type: cosine_mrr@50
|
| 755 |
+
value: 0.38148321196953044
|
| 756 |
+
name: Cosine Mrr@50
|
| 757 |
+
- type: cosine_mrr@100
|
| 758 |
+
value: 0.38274724688611994
|
| 759 |
+
name: Cosine Mrr@100
|
| 760 |
+
- type: cosine_mrr@150
|
| 761 |
+
value: 0.3830666241433367
|
| 762 |
+
name: Cosine Mrr@150
|
| 763 |
+
- type: cosine_mrr@200
|
| 764 |
+
value: 0.3832429794087988
|
| 765 |
+
name: Cosine Mrr@200
|
| 766 |
+
- type: cosine_map@1
|
| 767 |
+
value: 0.29433177327093085
|
| 768 |
+
name: Cosine Map@1
|
| 769 |
+
- type: cosine_map@20
|
| 770 |
+
value: 0.3096720133634083
|
| 771 |
+
name: Cosine Map@20
|
| 772 |
+
- type: cosine_map@50
|
| 773 |
+
value: 0.31740714963039135
|
| 774 |
+
name: Cosine Map@50
|
| 775 |
+
- type: cosine_map@100
|
| 776 |
+
value: 0.31992557448195186
|
| 777 |
+
name: Cosine Map@100
|
| 778 |
+
- type: cosine_map@150
|
| 779 |
+
value: 0.3207379270967634
|
| 780 |
+
name: Cosine Map@150
|
| 781 |
+
- type: cosine_map@200
|
| 782 |
+
value: 0.3211962807999124
|
| 783 |
+
name: Cosine Map@200
|
| 784 |
+
- type: cosine_map@500
|
| 785 |
+
value: 0.3219246841517722
|
| 786 |
+
name: Cosine Map@500
|
| 787 |
+
- task:
|
| 788 |
+
type: information-retrieval
|
| 789 |
+
name: Information Retrieval
|
| 790 |
+
dataset:
|
| 791 |
+
name: mix zh
|
| 792 |
+
type: mix_zh
|
| 793 |
+
metrics:
|
| 794 |
+
- type: cosine_accuracy@1
|
| 795 |
+
value: 0.09707724425887265
|
| 796 |
+
name: Cosine Accuracy@1
|
| 797 |
+
- type: cosine_accuracy@20
|
| 798 |
+
value: 0.3585594989561587
|
| 799 |
+
name: Cosine Accuracy@20
|
| 800 |
+
- type: cosine_accuracy@50
|
| 801 |
+
value: 0.4900835073068894
|
| 802 |
+
name: Cosine Accuracy@50
|
| 803 |
+
- type: cosine_accuracy@100
|
| 804 |
+
value: 0.6002087682672234
|
| 805 |
+
name: Cosine Accuracy@100
|
| 806 |
+
- type: cosine_accuracy@150
|
| 807 |
+
value: 0.6612734864300627
|
| 808 |
+
name: Cosine Accuracy@150
|
| 809 |
+
- type: cosine_accuracy@200
|
| 810 |
+
value: 0.7061586638830898
|
| 811 |
+
name: Cosine Accuracy@200
|
| 812 |
+
- type: cosine_precision@1
|
| 813 |
+
value: 0.09707724425887265
|
| 814 |
+
name: Cosine Precision@1
|
| 815 |
+
- type: cosine_precision@20
|
| 816 |
+
value: 0.03144572025052192
|
| 817 |
+
name: Cosine Precision@20
|
| 818 |
+
- type: cosine_precision@50
|
| 819 |
+
value: 0.018486430062630482
|
| 820 |
+
name: Cosine Precision@50
|
| 821 |
+
- type: cosine_precision@100
|
| 822 |
+
value: 0.011612734864300627
|
| 823 |
+
name: Cosine Precision@100
|
| 824 |
+
- type: cosine_precision@150
|
| 825 |
+
value: 0.008688239387613084
|
| 826 |
+
name: Cosine Precision@150
|
| 827 |
+
- type: cosine_precision@200
|
| 828 |
+
value: 0.007132045929018789
|
| 829 |
+
name: Cosine Precision@200
|
| 830 |
+
- type: cosine_recall@1
|
| 831 |
+
value: 0.032868575405109846
|
| 832 |
+
name: Cosine Recall@1
|
| 833 |
+
- type: cosine_recall@20
|
| 834 |
+
value: 0.20912118500845014
|
| 835 |
+
name: Cosine Recall@20
|
| 836 |
+
- type: cosine_recall@50
|
| 837 |
+
value: 0.305353414852371
|
| 838 |
+
name: Cosine Recall@50
|
| 839 |
+
- type: cosine_recall@100
|
| 840 |
+
value: 0.3834696126188819
|
| 841 |
+
name: Cosine Recall@100
|
| 842 |
+
- type: cosine_recall@150
|
| 843 |
+
value: 0.43087740663419155
|
| 844 |
+
name: Cosine Recall@150
|
| 845 |
+
- type: cosine_recall@200
|
| 846 |
+
value: 0.4714567385757365
|
| 847 |
+
name: Cosine Recall@200
|
| 848 |
+
- type: cosine_ndcg@1
|
| 849 |
+
value: 0.09707724425887265
|
| 850 |
+
name: Cosine Ndcg@1
|
| 851 |
+
- type: cosine_ndcg@20
|
| 852 |
+
value: 0.13847583254619214
|
| 853 |
+
name: Cosine Ndcg@20
|
| 854 |
+
- type: cosine_ndcg@50
|
| 855 |
+
value: 0.16556220177827802
|
| 856 |
+
name: Cosine Ndcg@50
|
| 857 |
+
- type: cosine_ndcg@100
|
| 858 |
+
value: 0.1834871578549362
|
| 859 |
+
name: Cosine Ndcg@100
|
| 860 |
+
- type: cosine_ndcg@150
|
| 861 |
+
value: 0.1930615498205831
|
| 862 |
+
name: Cosine Ndcg@150
|
| 863 |
+
- type: cosine_ndcg@200
|
| 864 |
+
value: 0.20074882110420836
|
| 865 |
+
name: Cosine Ndcg@200
|
| 866 |
+
- type: cosine_mrr@1
|
| 867 |
+
value: 0.09707724425887265
|
| 868 |
+
name: Cosine Mrr@1
|
| 869 |
+
- type: cosine_mrr@20
|
| 870 |
+
value: 0.15220960831749397
|
| 871 |
+
name: Cosine Mrr@20
|
| 872 |
+
- type: cosine_mrr@50
|
| 873 |
+
value: 0.15642354470896513
|
| 874 |
+
name: Cosine Mrr@50
|
| 875 |
+
- type: cosine_mrr@100
|
| 876 |
+
value: 0.1580041495008456
|
| 877 |
+
name: Cosine Mrr@100
|
| 878 |
+
- type: cosine_mrr@150
|
| 879 |
+
value: 0.15850022553236756
|
| 880 |
+
name: Cosine Mrr@150
|
| 881 |
+
- type: cosine_mrr@200
|
| 882 |
+
value: 0.1587557913720219
|
| 883 |
+
name: Cosine Mrr@200
|
| 884 |
+
- type: cosine_map@1
|
| 885 |
+
value: 0.09707724425887265
|
| 886 |
+
name: Cosine Map@1
|
| 887 |
+
- type: cosine_map@20
|
| 888 |
+
value: 0.08751052569766739
|
| 889 |
+
name: Cosine Map@20
|
| 890 |
+
- type: cosine_map@50
|
| 891 |
+
value: 0.09304075210745723
|
| 892 |
+
name: Cosine Map@50
|
| 893 |
+
- type: cosine_map@100
|
| 894 |
+
value: 0.09500635866296525
|
| 895 |
+
name: Cosine Map@100
|
| 896 |
+
- type: cosine_map@150
|
| 897 |
+
value: 0.09570276054684158
|
| 898 |
+
name: Cosine Map@150
|
| 899 |
+
- type: cosine_map@200
|
| 900 |
+
value: 0.09614394028730197
|
| 901 |
+
name: Cosine Map@200
|
| 902 |
+
- type: cosine_map@500
|
| 903 |
+
value: 0.09706713378133278
|
| 904 |
+
name: Cosine Map@500
|
| 905 |
+
---
|
| 906 |
+
|
| 907 |
+
# Job - Job matching BAAI/bge-small-en-v1.5
|
| 908 |
+
|
| 909 |
+
Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching
|
| 910 |
+
|
| 911 |
+
## Model Details
|
| 912 |
+
|
| 913 |
+
### Model Description
|
| 914 |
+
- **Model Type:** Sentence Transformer
|
| 915 |
+
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
|
| 916 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 917 |
+
- **Output Dimensionality:** 384 dimensions
|
| 918 |
+
- **Similarity Function:** Cosine Similarity
|
| 919 |
+
- **Training Datasets:**
|
| 920 |
+
- full_en
|
| 921 |
+
- full_de
|
| 922 |
+
- full_es
|
| 923 |
+
- full_zh
|
| 924 |
+
- mix
|
| 925 |
+
<!-- - **Language:** Unknown -->
|
| 926 |
+
<!-- - **License:** Unknown -->
|
| 927 |
+
|
| 928 |
+
### Model Sources
|
| 929 |
+
|
| 930 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 931 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 932 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 933 |
+
|
| 934 |
+
### Full Model Architecture
|
| 935 |
+
|
| 936 |
+
```
|
| 937 |
+
SentenceTransformer(
|
| 938 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
| 939 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 940 |
+
(2): Normalize()
|
| 941 |
+
)
|
| 942 |
+
```
|
| 943 |
+
|
| 944 |
+
## Usage
|
| 945 |
+
|
| 946 |
+
### Direct Usage (Sentence Transformers)
|
| 947 |
+
|
| 948 |
+
First install the Sentence Transformers library:
|
| 949 |
+
|
| 950 |
+
```bash
|
| 951 |
+
pip install -U sentence-transformers
|
| 952 |
+
```
|
| 953 |
+
|
| 954 |
+
Then you can load this model and run inference.
|
| 955 |
+
```python
|
| 956 |
+
from sentence_transformers import SentenceTransformer
|
| 957 |
+
|
| 958 |
+
# Download from the 🤗 Hub
|
| 959 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 960 |
+
# Run inference
|
| 961 |
+
sentences = [
|
| 962 |
+
'Volksvertreter',
|
| 963 |
+
'Parlamentarier',
|
| 964 |
+
'Oberbürgermeister',
|
| 965 |
+
]
|
| 966 |
+
embeddings = model.encode(sentences)
|
| 967 |
+
print(embeddings.shape)
|
| 968 |
+
# [3, 384]
|
| 969 |
+
|
| 970 |
+
# Get the similarity scores for the embeddings
|
| 971 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 972 |
+
print(similarities.shape)
|
| 973 |
+
# [3, 3]
|
| 974 |
+
```
|
| 975 |
+
|
| 976 |
+
<!--
|
| 977 |
+
### Direct Usage (Transformers)
|
| 978 |
+
|
| 979 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 980 |
+
|
| 981 |
+
</details>
|
| 982 |
+
-->
|
| 983 |
+
|
| 984 |
+
<!--
|
| 985 |
+
### Downstream Usage (Sentence Transformers)
|
| 986 |
+
|
| 987 |
+
You can finetune this model on your own dataset.
|
| 988 |
+
|
| 989 |
+
<details><summary>Click to expand</summary>
|
| 990 |
+
|
| 991 |
+
</details>
|
| 992 |
+
-->
|
| 993 |
+
|
| 994 |
+
<!--
|
| 995 |
+
### Out-of-Scope Use
|
| 996 |
+
|
| 997 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 998 |
+
-->
|
| 999 |
+
|
| 1000 |
+
## Evaluation
|
| 1001 |
+
|
| 1002 |
+
### Metrics
|
| 1003 |
+
|
| 1004 |
+
#### Information Retrieval
|
| 1005 |
+
|
| 1006 |
+
* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
|
| 1007 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
| 1008 |
+
|
| 1009 |
+
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
|
| 1010 |
+
|:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
|
| 1011 |
+
| cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
|
| 1012 |
+
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9212 | 0.7379 | 0.7613 | 0.65 | 0.3586 |
|
| 1013 |
+
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9655 | 0.8252 | 0.8523 | 0.7608 | 0.4901 |
|
| 1014 |
+
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9754 | 0.8544 | 0.9121 | 0.8508 | 0.6002 |
|
| 1015 |
+
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9852 | 0.9029 | 0.9418 | 0.8898 | 0.6613 |
|
| 1016 |
+
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9852 | 0.9417 | 0.9548 | 0.9204 | 0.7062 |
|
| 1017 |
+
| cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
|
| 1018 |
+
| cosine_precision@20 | 0.5024 | 0.4897 | 0.4246 | 0.1733 | 0.0892 | 0.0731 | 0.0314 |
|
| 1019 |
+
| cosine_precision@50 | 0.308 | 0.3179 | 0.2814 | 0.0944 | 0.0418 | 0.0361 | 0.0185 |
|
| 1020 |
+
| cosine_precision@100 | 0.1863 | 0.1986 | 0.1801 | 0.0589 | 0.0229 | 0.0206 | 0.0116 |
|
| 1021 |
+
| cosine_precision@150 | 0.1322 | 0.1469 | 0.1362 | 0.0458 | 0.0159 | 0.0147 | 0.0087 |
|
| 1022 |
+
| cosine_precision@200 | 0.103 | 0.1179 | 0.1105 | 0.0385 | 0.0122 | 0.0116 | 0.0071 |
|
| 1023 |
+
| cosine_recall@1 | 0.068 | 0.0031 | 0.0111 | 0.0273 | 0.1565 | 0.1109 | 0.0329 |
|
| 1024 |
+
| cosine_recall@20 | 0.5385 | 0.3221 | 0.2614 | 0.1766 | 0.6594 | 0.5344 | 0.2091 |
|
| 1025 |
+
| cosine_recall@50 | 0.726 | 0.4638 | 0.3835 | 0.2393 | 0.7705 | 0.6585 | 0.3054 |
|
| 1026 |
+
| cosine_recall@100 | 0.8329 | 0.5438 | 0.4677 | 0.2863 | 0.8472 | 0.7525 | 0.3835 |
|
| 1027 |
+
| cosine_recall@150 | 0.8745 | 0.5825 | 0.5183 | 0.3287 | 0.8825 | 0.8026 | 0.4309 |
|
| 1028 |
+
| cosine_recall@200 | 0.9057 | 0.6147 | 0.5517 | 0.3631 | 0.9051 | 0.8418 | 0.4715 |
|
| 1029 |
+
| cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
|
| 1030 |
+
| cosine_ndcg@20 | 0.6845 | 0.5385 | 0.4601 | 0.2468 | 0.5117 | 0.3919 | 0.1385 |
|
| 1031 |
+
| cosine_ndcg@50 | 0.704 | 0.5012 | 0.4229 | 0.2394 | 0.542 | 0.4256 | 0.1656 |
|
| 1032 |
+
| cosine_ndcg@100 | 0.7589 | 0.5147 | 0.4371 | 0.2619 | 0.5588 | 0.4462 | 0.1835 |
|
| 1033 |
+
| cosine_ndcg@150 | 0.7774 | 0.5348 | 0.4629 | 0.2787 | 0.5656 | 0.4561 | 0.1931 |
|
| 1034 |
+
| **cosine_ndcg@200** | **0.7893** | **0.5505** | **0.4797** | **0.2919** | **0.5697** | **0.4632** | **0.2007** |
|
| 1035 |
+
| cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
|
| 1036 |
+
| cosine_mrr@20 | 0.8103 | 0.5515 | 0.4896 | 0.4485 | 0.4979 | 0.3779 | 0.1522 |
|
| 1037 |
+
| cosine_mrr@50 | 0.8103 | 0.5515 | 0.4909 | 0.4515 | 0.501 | 0.3815 | 0.1564 |
|
| 1038 |
+
| cosine_mrr@100 | 0.8103 | 0.5515 | 0.4911 | 0.4519 | 0.5018 | 0.3827 | 0.158 |
|
| 1039 |
+
| cosine_mrr@150 | 0.8103 | 0.5515 | 0.4912 | 0.4523 | 0.5021 | 0.3831 | 0.1585 |
|
| 1040 |
+
| cosine_mrr@200 | 0.8103 | 0.5515 | 0.4912 | 0.4525 | 0.5021 | 0.3832 | 0.1588 |
|
| 1041 |
+
| cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
|
| 1042 |
+
| cosine_map@20 | 0.5418 | 0.4028 | 0.3236 | 0.147 | 0.4264 | 0.3097 | 0.0875 |
|
| 1043 |
+
| cosine_map@50 | 0.5327 | 0.3422 | 0.2644 | 0.1267 | 0.4338 | 0.3174 | 0.093 |
|
| 1044 |
+
| cosine_map@100 | 0.5657 | 0.3395 | 0.2576 | 0.1326 | 0.436 | 0.3199 | 0.095 |
|
| 1045 |
+
| cosine_map@150 | 0.5734 | 0.3478 | 0.2669 | 0.1352 | 0.4366 | 0.3207 | 0.0957 |
|
| 1046 |
+
| cosine_map@200 | 0.5772 | 0.3534 | 0.2722 | 0.1368 | 0.4368 | 0.3212 | 0.0961 |
|
| 1047 |
+
| cosine_map@500 | 0.5814 | 0.3631 | 0.2833 | 0.1407 | 0.4373 | 0.3219 | 0.0971 |
|
| 1048 |
+
|
| 1049 |
+
<!--
|
| 1050 |
+
## Bias, Risks and Limitations
|
| 1051 |
+
|
| 1052 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 1053 |
+
-->
|
| 1054 |
+
|
| 1055 |
+
<!--
|
| 1056 |
+
### Recommendations
|
| 1057 |
+
|
| 1058 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 1059 |
+
-->
|
| 1060 |
+
|
| 1061 |
+
## Training Details
|
| 1062 |
+
|
| 1063 |
+
### Training Datasets
|
| 1064 |
+
<details><summary>full_en</summary>
|
| 1065 |
+
|
| 1066 |
+
#### full_en
|
| 1067 |
+
|
| 1068 |
+
* Dataset: full_en
|
| 1069 |
+
* Size: 28,880 training samples
|
| 1070 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1071 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1072 |
+
| | anchor | positive |
|
| 1073 |
+
|:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1074 |
+
| type | string | string |
|
| 1075 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 5.0 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.01 tokens</li><li>max: 13 tokens</li></ul> |
|
| 1076 |
+
* Samples:
|
| 1077 |
+
| anchor | positive |
|
| 1078 |
+
|:-----------------------------------------|:-----------------------------------------|
|
| 1079 |
+
| <code>air commodore</code> | <code>flight lieutenant</code> |
|
| 1080 |
+
| <code>command and control officer</code> | <code>flight officer</code> |
|
| 1081 |
+
| <code>air commodore</code> | <code>command and control officer</code> |
|
| 1082 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1083 |
+
```json
|
| 1084 |
+
{'guide': SentenceTransformer(
|
| 1085 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1086 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1087 |
+
(2): Normalize()
|
| 1088 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1089 |
+
```
|
| 1090 |
+
</details>
|
| 1091 |
+
<details><summary>full_de</summary>
|
| 1092 |
+
|
| 1093 |
+
#### full_de
|
| 1094 |
+
|
| 1095 |
+
* Dataset: full_de
|
| 1096 |
+
* Size: 23,023 training samples
|
| 1097 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1098 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1099 |
+
| | anchor | positive |
|
| 1100 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1101 |
+
| type | string | string |
|
| 1102 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 11.05 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.43 tokens</li><li>max: 45 tokens</li></ul> |
|
| 1103 |
+
* Samples:
|
| 1104 |
+
| anchor | positive |
|
| 1105 |
+
|:----------------------------------|:-----------------------------------------------------|
|
| 1106 |
+
| <code>Staffelkommandantin</code> | <code>Kommodore</code> |
|
| 1107 |
+
| <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
|
| 1108 |
+
| <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
|
| 1109 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1110 |
+
```json
|
| 1111 |
+
{'guide': SentenceTransformer(
|
| 1112 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1113 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1114 |
+
(2): Normalize()
|
| 1115 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1116 |
+
```
|
| 1117 |
+
</details>
|
| 1118 |
+
<details><summary>full_es</summary>
|
| 1119 |
+
|
| 1120 |
+
#### full_es
|
| 1121 |
+
|
| 1122 |
+
* Dataset: full_es
|
| 1123 |
+
* Size: 20,724 training samples
|
| 1124 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1125 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1126 |
+
| | anchor | positive |
|
| 1127 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1128 |
+
| type | string | string |
|
| 1129 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 12.95 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.57 tokens</li><li>max: 50 tokens</li></ul> |
|
| 1130 |
+
* Samples:
|
| 1131 |
+
| anchor | positive |
|
| 1132 |
+
|:------------------------------------|:-------------------------------------------|
|
| 1133 |
+
| <code>jefe de escuadrón</code> | <code>instructor</code> |
|
| 1134 |
+
| <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
|
| 1135 |
+
| <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
|
| 1136 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1137 |
+
```json
|
| 1138 |
+
{'guide': SentenceTransformer(
|
| 1139 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1140 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1141 |
+
(2): Normalize()
|
| 1142 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1143 |
+
```
|
| 1144 |
+
</details>
|
| 1145 |
+
<details><summary>full_zh</summary>
|
| 1146 |
+
|
| 1147 |
+
#### full_zh
|
| 1148 |
+
|
| 1149 |
+
* Dataset: full_zh
|
| 1150 |
+
* Size: 30,401 training samples
|
| 1151 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1152 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1153 |
+
| | anchor | positive |
|
| 1154 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1155 |
+
| type | string | string |
|
| 1156 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 8.36 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.95 tokens</li><li>max: 27 tokens</li></ul> |
|
| 1157 |
+
* Samples:
|
| 1158 |
+
| anchor | positive |
|
| 1159 |
+
|:------------------|:---------------------|
|
| 1160 |
+
| <code>技术总监</code> | <code>技术和运营总监</code> |
|
| 1161 |
+
| <code>技术总监</code> | <code>技术主管</code> |
|
| 1162 |
+
| <code>技术总监</code> | <code>技术艺术总监</code> |
|
| 1163 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1164 |
+
```json
|
| 1165 |
+
{'guide': SentenceTransformer(
|
| 1166 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1167 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1168 |
+
(2): Normalize()
|
| 1169 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1170 |
+
```
|
| 1171 |
+
</details>
|
| 1172 |
+
<details><summary>mix</summary>
|
| 1173 |
+
|
| 1174 |
+
#### mix
|
| 1175 |
+
|
| 1176 |
+
* Dataset: mix
|
| 1177 |
+
* Size: 21,760 training samples
|
| 1178 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1179 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1180 |
+
| | anchor | positive |
|
| 1181 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1182 |
+
| type | string | string |
|
| 1183 |
+
| details | <ul><li>min: 2 tokens</li><li>mean: 5.65 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 10.08 tokens</li><li>max: 30 tokens</li></ul> |
|
| 1184 |
+
* Samples:
|
| 1185 |
+
| anchor | positive |
|
| 1186 |
+
|:------------------------------------------|:----------------------------------------------------------------|
|
| 1187 |
+
| <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
|
| 1188 |
+
| <code>head of technical</code> | <code>directora técnica</code> |
|
| 1189 |
+
| <code>head of technical department</code> | <code>技术艺术总监</code> |
|
| 1190 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1191 |
+
```json
|
| 1192 |
+
{'guide': SentenceTransformer(
|
| 1193 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1194 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1195 |
+
(2): Normalize()
|
| 1196 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1197 |
+
```
|
| 1198 |
+
</details>
|
| 1199 |
+
|
| 1200 |
+
### Training Hyperparameters
|
| 1201 |
+
#### Non-Default Hyperparameters
|
| 1202 |
+
|
| 1203 |
+
- `eval_strategy`: steps
|
| 1204 |
+
- `per_device_train_batch_size`: 128
|
| 1205 |
+
- `per_device_eval_batch_size`: 128
|
| 1206 |
+
- `gradient_accumulation_steps`: 2
|
| 1207 |
+
- `num_train_epochs`: 5
|
| 1208 |
+
- `warmup_ratio`: 0.05
|
| 1209 |
+
- `log_on_each_node`: False
|
| 1210 |
+
- `fp16`: True
|
| 1211 |
+
- `dataloader_num_workers`: 4
|
| 1212 |
+
- `ddp_find_unused_parameters`: True
|
| 1213 |
+
- `batch_sampler`: no_duplicates
|
| 1214 |
+
|
| 1215 |
+
#### All Hyperparameters
|
| 1216 |
+
<details><summary>Click to expand</summary>
|
| 1217 |
+
|
| 1218 |
+
- `overwrite_output_dir`: False
|
| 1219 |
+
- `do_predict`: False
|
| 1220 |
+
- `eval_strategy`: steps
|
| 1221 |
+
- `prediction_loss_only`: True
|
| 1222 |
+
- `per_device_train_batch_size`: 128
|
| 1223 |
+
- `per_device_eval_batch_size`: 128
|
| 1224 |
+
- `per_gpu_train_batch_size`: None
|
| 1225 |
+
- `per_gpu_eval_batch_size`: None
|
| 1226 |
+
- `gradient_accumulation_steps`: 2
|
| 1227 |
+
- `eval_accumulation_steps`: None
|
| 1228 |
+
- `torch_empty_cache_steps`: None
|
| 1229 |
+
- `learning_rate`: 5e-05
|
| 1230 |
+
- `weight_decay`: 0.0
|
| 1231 |
+
- `adam_beta1`: 0.9
|
| 1232 |
+
- `adam_beta2`: 0.999
|
| 1233 |
+
- `adam_epsilon`: 1e-08
|
| 1234 |
+
- `max_grad_norm`: 1.0
|
| 1235 |
+
- `num_train_epochs`: 5
|
| 1236 |
+
- `max_steps`: -1
|
| 1237 |
+
- `lr_scheduler_type`: linear
|
| 1238 |
+
- `lr_scheduler_kwargs`: {}
|
| 1239 |
+
- `warmup_ratio`: 0.05
|
| 1240 |
+
- `warmup_steps`: 0
|
| 1241 |
+
- `log_level`: passive
|
| 1242 |
+
- `log_level_replica`: warning
|
| 1243 |
+
- `log_on_each_node`: False
|
| 1244 |
+
- `logging_nan_inf_filter`: True
|
| 1245 |
+
- `save_safetensors`: True
|
| 1246 |
+
- `save_on_each_node`: False
|
| 1247 |
+
- `save_only_model`: False
|
| 1248 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 1249 |
+
- `no_cuda`: False
|
| 1250 |
+
- `use_cpu`: False
|
| 1251 |
+
- `use_mps_device`: False
|
| 1252 |
+
- `seed`: 42
|
| 1253 |
+
- `data_seed`: None
|
| 1254 |
+
- `jit_mode_eval`: False
|
| 1255 |
+
- `use_ipex`: False
|
| 1256 |
+
- `bf16`: False
|
| 1257 |
+
- `fp16`: True
|
| 1258 |
+
- `fp16_opt_level`: O1
|
| 1259 |
+
- `half_precision_backend`: auto
|
| 1260 |
+
- `bf16_full_eval`: False
|
| 1261 |
+
- `fp16_full_eval`: False
|
| 1262 |
+
- `tf32`: None
|
| 1263 |
+
- `local_rank`: 0
|
| 1264 |
+
- `ddp_backend`: None
|
| 1265 |
+
- `tpu_num_cores`: None
|
| 1266 |
+
- `tpu_metrics_debug`: False
|
| 1267 |
+
- `debug`: []
|
| 1268 |
+
- `dataloader_drop_last`: True
|
| 1269 |
+
- `dataloader_num_workers`: 4
|
| 1270 |
+
- `dataloader_prefetch_factor`: None
|
| 1271 |
+
- `past_index`: -1
|
| 1272 |
+
- `disable_tqdm`: False
|
| 1273 |
+
- `remove_unused_columns`: True
|
| 1274 |
+
- `label_names`: None
|
| 1275 |
+
- `load_best_model_at_end`: False
|
| 1276 |
+
- `ignore_data_skip`: False
|
| 1277 |
+
- `fsdp`: []
|
| 1278 |
+
- `fsdp_min_num_params`: 0
|
| 1279 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 1280 |
+
- `tp_size`: 0
|
| 1281 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 1282 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 1283 |
+
- `deepspeed`: None
|
| 1284 |
+
- `label_smoothing_factor`: 0.0
|
| 1285 |
+
- `optim`: adamw_torch
|
| 1286 |
+
- `optim_args`: None
|
| 1287 |
+
- `adafactor`: False
|
| 1288 |
+
- `group_by_length`: False
|
| 1289 |
+
- `length_column_name`: length
|
| 1290 |
+
- `ddp_find_unused_parameters`: True
|
| 1291 |
+
- `ddp_bucket_cap_mb`: None
|
| 1292 |
+
- `ddp_broadcast_buffers`: False
|
| 1293 |
+
- `dataloader_pin_memory`: True
|
| 1294 |
+
- `dataloader_persistent_workers`: False
|
| 1295 |
+
- `skip_memory_metrics`: True
|
| 1296 |
+
- `use_legacy_prediction_loop`: False
|
| 1297 |
+
- `push_to_hub`: False
|
| 1298 |
+
- `resume_from_checkpoint`: None
|
| 1299 |
+
- `hub_model_id`: None
|
| 1300 |
+
- `hub_strategy`: every_save
|
| 1301 |
+
- `hub_private_repo`: None
|
| 1302 |
+
- `hub_always_push`: False
|
| 1303 |
+
- `gradient_checkpointing`: False
|
| 1304 |
+
- `gradient_checkpointing_kwargs`: None
|
| 1305 |
+
- `include_inputs_for_metrics`: False
|
| 1306 |
+
- `include_for_metrics`: []
|
| 1307 |
+
- `eval_do_concat_batches`: True
|
| 1308 |
+
- `fp16_backend`: auto
|
| 1309 |
+
- `push_to_hub_model_id`: None
|
| 1310 |
+
- `push_to_hub_organization`: None
|
| 1311 |
+
- `mp_parameters`:
|
| 1312 |
+
- `auto_find_batch_size`: False
|
| 1313 |
+
- `full_determinism`: False
|
| 1314 |
+
- `torchdynamo`: None
|
| 1315 |
+
- `ray_scope`: last
|
| 1316 |
+
- `ddp_timeout`: 1800
|
| 1317 |
+
- `torch_compile`: False
|
| 1318 |
+
- `torch_compile_backend`: None
|
| 1319 |
+
- `torch_compile_mode`: None
|
| 1320 |
+
- `include_tokens_per_second`: False
|
| 1321 |
+
- `include_num_input_tokens_seen`: False
|
| 1322 |
+
- `neftune_noise_alpha`: None
|
| 1323 |
+
- `optim_target_modules`: None
|
| 1324 |
+
- `batch_eval_metrics`: False
|
| 1325 |
+
- `eval_on_start`: False
|
| 1326 |
+
- `use_liger_kernel`: False
|
| 1327 |
+
- `eval_use_gather_object`: False
|
| 1328 |
+
- `average_tokens_across_devices`: False
|
| 1329 |
+
- `prompts`: None
|
| 1330 |
+
- `batch_sampler`: no_duplicates
|
| 1331 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 1332 |
+
|
| 1333 |
+
</details>
|
| 1334 |
+
|
| 1335 |
+
### Training Logs
|
| 1336 |
+
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|
| 1337 |
+
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
|
| 1338 |
+
| -1 | -1 | - | 0.7322 | 0.4690 | 0.3853 | 0.2723 | 0.3209 | 0.2244 | 0.0919 |
|
| 1339 |
+
| 0.0021 | 1 | 23.8878 | - | - | - | - | - | - | - |
|
| 1340 |
+
| 0.2058 | 100 | 7.2098 | - | - | - | - | - | - | - |
|
| 1341 |
+
| 0.4115 | 200 | 4.2635 | 0.7800 | 0.5132 | 0.4268 | 0.2798 | 0.4372 | 0.2996 | 0.1447 |
|
| 1342 |
+
| 0.6173 | 300 | 4.1931 | - | - | - | - | - | - | - |
|
| 1343 |
+
| 0.8230 | 400 | 3.73 | 0.7863 | 0.5274 | 0.4451 | 0.2805 | 0.4762 | 0.3455 | 0.1648 |
|
| 1344 |
+
| 1.0309 | 500 | 3.3569 | - | - | - | - | - | - | - |
|
| 1345 |
+
| 1.2366 | 600 | 3.6464 | 0.7868 | 0.5372 | 0.4540 | 0.2813 | 0.5063 | 0.3794 | 0.1755 |
|
| 1346 |
+
| 1.4424 | 700 | 3.0772 | - | - | - | - | - | - | - |
|
| 1347 |
+
| 1.6481 | 800 | 3.114 | 0.7906 | 0.5391 | 0.4576 | 0.2832 | 0.5221 | 0.4047 | 0.1779 |
|
| 1348 |
+
| 1.8539 | 900 | 2.9246 | - | - | - | - | - | - | - |
|
| 1349 |
+
| 2.0617 | 1000 | 2.7479 | 0.7873 | 0.5423 | 0.4631 | 0.2871 | 0.5323 | 0.4143 | 0.1843 |
|
| 1350 |
+
| 2.2675 | 1100 | 3.049 | - | - | - | - | - | - | - |
|
| 1351 |
+
| 2.4733 | 1200 | 2.6137 | 0.7878 | 0.5418 | 0.4685 | 0.2870 | 0.5470 | 0.4339 | 0.1932 |
|
| 1352 |
+
| 2.6790 | 1300 | 2.8607 | - | - | - | - | - | - | - |
|
| 1353 |
+
| 2.8848 | 1400 | 2.7071 | 0.7889 | 0.5465 | 0.4714 | 0.2891 | 0.5504 | 0.4362 | 0.1944 |
|
| 1354 |
+
| 3.0926 | 1500 | 2.7012 | - | - | - | - | - | - | - |
|
| 1355 |
+
| 3.2984 | 1600 | 2.7423 | 0.7882 | 0.5471 | 0.4748 | 0.2868 | 0.5542 | 0.4454 | 0.1976 |
|
| 1356 |
+
| 3.5041 | 1700 | 2.5316 | - | - | - | - | - | - | - |
|
| 1357 |
+
| 3.7099 | 1800 | 2.6344 | 0.7900 | 0.5498 | 0.4763 | 0.2857 | 0.5639 | 0.4552 | 0.1954 |
|
| 1358 |
+
| 3.9156 | 1900 | 2.4983 | - | - | - | - | - | - | - |
|
| 1359 |
+
| 4.1235 | 2000 | 2.5423 | 0.7894 | 0.5499 | 0.4786 | 0.2870 | 0.5644 | 0.4576 | 0.1974 |
|
| 1360 |
+
| 4.3292 | 2100 | 2.5674 | - | - | - | - | - | - | - |
|
| 1361 |
+
| 4.5350 | 2200 | 2.6237 | 0.7899 | 0.5502 | 0.4802 | 0.2843 | 0.5674 | 0.4607 | 0.1993 |
|
| 1362 |
+
| 4.7407 | 2300 | 2.3776 | - | - | - | - | - | - | - |
|
| 1363 |
+
| 4.9465 | 2400 | 2.1116 | 0.7893 | 0.5505 | 0.4797 | 0.2919 | 0.5697 | 0.4632 | 0.2007 |
|
| 1364 |
+
|
| 1365 |
+
|
| 1366 |
+
### Framework Versions
|
| 1367 |
+
- Python: 3.11.11
|
| 1368 |
+
- Sentence Transformers: 4.1.0
|
| 1369 |
+
- Transformers: 4.51.3
|
| 1370 |
+
- PyTorch: 2.6.0+cu124
|
| 1371 |
+
- Accelerate: 1.6.0
|
| 1372 |
+
- Datasets: 3.5.0
|
| 1373 |
+
- Tokenizers: 0.21.1
|
| 1374 |
+
|
| 1375 |
+
## Citation
|
| 1376 |
+
|
| 1377 |
+
### BibTeX
|
| 1378 |
+
|
| 1379 |
+
#### Sentence Transformers
|
| 1380 |
+
```bibtex
|
| 1381 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1382 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1383 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1384 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1385 |
+
month = "11",
|
| 1386 |
+
year = "2019",
|
| 1387 |
+
publisher = "Association for Computational Linguistics",
|
| 1388 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1389 |
+
}
|
| 1390 |
+
```
|
| 1391 |
+
|
| 1392 |
+
#### GISTEmbedLoss
|
| 1393 |
+
```bibtex
|
| 1394 |
+
@misc{solatorio2024gistembed,
|
| 1395 |
+
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
|
| 1396 |
+
author={Aivin V. Solatorio},
|
| 1397 |
+
year={2024},
|
| 1398 |
+
eprint={2402.16829},
|
| 1399 |
+
archivePrefix={arXiv},
|
| 1400 |
+
primaryClass={cs.LG}
|
| 1401 |
+
}
|
| 1402 |
+
```
|
| 1403 |
+
|
| 1404 |
+
<!--
|
| 1405 |
+
## Glossary
|
| 1406 |
+
|
| 1407 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1408 |
+
-->
|
| 1409 |
+
|
| 1410 |
+
<!--
|
| 1411 |
+
## Model Card Authors
|
| 1412 |
+
|
| 1413 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1414 |
+
-->
|
| 1415 |
+
|
| 1416 |
+
<!--
|
| 1417 |
+
## Model Card Contact
|
| 1418 |
+
|
| 1419 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1420 |
+
-->
|
checkpoint-1600/README.md
ADDED
|
@@ -0,0 +1,1412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:124788
|
| 8 |
+
- loss:GISTEmbedLoss
|
| 9 |
+
base_model: BAAI/bge-small-en-v1.5
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: 其他机械、设备和有形货物租赁服务代表
|
| 12 |
+
sentences:
|
| 13 |
+
- 其他机械和设备租赁服务工作人员
|
| 14 |
+
- 电子和电信设备及零部件物流经理
|
| 15 |
+
- 工业主厨
|
| 16 |
+
- source_sentence: 公交车司机
|
| 17 |
+
sentences:
|
| 18 |
+
- 表演灯光设计师
|
| 19 |
+
- 乙烯基地板安装工
|
| 20 |
+
- 国际巴士司机
|
| 21 |
+
- source_sentence: online communication manager
|
| 22 |
+
sentences:
|
| 23 |
+
- trades union official
|
| 24 |
+
- social media manager
|
| 25 |
+
- budget manager
|
| 26 |
+
- source_sentence: Projektmanagerin
|
| 27 |
+
sentences:
|
| 28 |
+
- Projektmanager/Projektmanagerin
|
| 29 |
+
- Category-Manager
|
| 30 |
+
- Infanterist
|
| 31 |
+
- source_sentence: Volksvertreter
|
| 32 |
+
sentences:
|
| 33 |
+
- Parlamentarier
|
| 34 |
+
- Oberbürgermeister
|
| 35 |
+
- Konsul
|
| 36 |
+
pipeline_tag: sentence-similarity
|
| 37 |
+
library_name: sentence-transformers
|
| 38 |
+
metrics:
|
| 39 |
+
- cosine_accuracy@1
|
| 40 |
+
- cosine_accuracy@20
|
| 41 |
+
- cosine_accuracy@50
|
| 42 |
+
- cosine_accuracy@100
|
| 43 |
+
- cosine_accuracy@150
|
| 44 |
+
- cosine_accuracy@200
|
| 45 |
+
- cosine_precision@1
|
| 46 |
+
- cosine_precision@20
|
| 47 |
+
- cosine_precision@50
|
| 48 |
+
- cosine_precision@100
|
| 49 |
+
- cosine_precision@150
|
| 50 |
+
- cosine_precision@200
|
| 51 |
+
- cosine_recall@1
|
| 52 |
+
- cosine_recall@20
|
| 53 |
+
- cosine_recall@50
|
| 54 |
+
- cosine_recall@100
|
| 55 |
+
- cosine_recall@150
|
| 56 |
+
- cosine_recall@200
|
| 57 |
+
- cosine_ndcg@1
|
| 58 |
+
- cosine_ndcg@20
|
| 59 |
+
- cosine_ndcg@50
|
| 60 |
+
- cosine_ndcg@100
|
| 61 |
+
- cosine_ndcg@150
|
| 62 |
+
- cosine_ndcg@200
|
| 63 |
+
- cosine_mrr@1
|
| 64 |
+
- cosine_mrr@20
|
| 65 |
+
- cosine_mrr@50
|
| 66 |
+
- cosine_mrr@100
|
| 67 |
+
- cosine_mrr@150
|
| 68 |
+
- cosine_mrr@200
|
| 69 |
+
- cosine_map@1
|
| 70 |
+
- cosine_map@20
|
| 71 |
+
- cosine_map@50
|
| 72 |
+
- cosine_map@100
|
| 73 |
+
- cosine_map@150
|
| 74 |
+
- cosine_map@200
|
| 75 |
+
- cosine_map@500
|
| 76 |
+
model-index:
|
| 77 |
+
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
|
| 78 |
+
results:
|
| 79 |
+
- task:
|
| 80 |
+
type: information-retrieval
|
| 81 |
+
name: Information Retrieval
|
| 82 |
+
dataset:
|
| 83 |
+
name: full en
|
| 84 |
+
type: full_en
|
| 85 |
+
metrics:
|
| 86 |
+
- type: cosine_accuracy@1
|
| 87 |
+
value: 0.6571428571428571
|
| 88 |
+
name: Cosine Accuracy@1
|
| 89 |
+
- type: cosine_accuracy@20
|
| 90 |
+
value: 0.9904761904761905
|
| 91 |
+
name: Cosine Accuracy@20
|
| 92 |
+
- type: cosine_accuracy@50
|
| 93 |
+
value: 0.9904761904761905
|
| 94 |
+
name: Cosine Accuracy@50
|
| 95 |
+
- type: cosine_accuracy@100
|
| 96 |
+
value: 0.9904761904761905
|
| 97 |
+
name: Cosine Accuracy@100
|
| 98 |
+
- type: cosine_accuracy@150
|
| 99 |
+
value: 0.9904761904761905
|
| 100 |
+
name: Cosine Accuracy@150
|
| 101 |
+
- type: cosine_accuracy@200
|
| 102 |
+
value: 0.9904761904761905
|
| 103 |
+
name: Cosine Accuracy@200
|
| 104 |
+
- type: cosine_precision@1
|
| 105 |
+
value: 0.6571428571428571
|
| 106 |
+
name: Cosine Precision@1
|
| 107 |
+
- type: cosine_precision@20
|
| 108 |
+
value: 0.5019047619047619
|
| 109 |
+
name: Cosine Precision@20
|
| 110 |
+
- type: cosine_precision@50
|
| 111 |
+
value: 0.3087619047619048
|
| 112 |
+
name: Cosine Precision@50
|
| 113 |
+
- type: cosine_precision@100
|
| 114 |
+
value: 0.18676190476190477
|
| 115 |
+
name: Cosine Precision@100
|
| 116 |
+
- type: cosine_precision@150
|
| 117 |
+
value: 0.13282539682539682
|
| 118 |
+
name: Cosine Precision@150
|
| 119 |
+
- type: cosine_precision@200
|
| 120 |
+
value: 0.10247619047619048
|
| 121 |
+
name: Cosine Precision@200
|
| 122 |
+
- type: cosine_recall@1
|
| 123 |
+
value: 0.0680237860830842
|
| 124 |
+
name: Cosine Recall@1
|
| 125 |
+
- type: cosine_recall@20
|
| 126 |
+
value: 0.5375018845788361
|
| 127 |
+
name: Cosine Recall@20
|
| 128 |
+
- type: cosine_recall@50
|
| 129 |
+
value: 0.7285392134841354
|
| 130 |
+
name: Cosine Recall@50
|
| 131 |
+
- type: cosine_recall@100
|
| 132 |
+
value: 0.8322341922506664
|
| 133 |
+
name: Cosine Recall@100
|
| 134 |
+
- type: cosine_recall@150
|
| 135 |
+
value: 0.8801590338170654
|
| 136 |
+
name: Cosine Recall@150
|
| 137 |
+
- type: cosine_recall@200
|
| 138 |
+
value: 0.902805836843439
|
| 139 |
+
name: Cosine Recall@200
|
| 140 |
+
- type: cosine_ndcg@1
|
| 141 |
+
value: 0.6571428571428571
|
| 142 |
+
name: Cosine Ndcg@1
|
| 143 |
+
- type: cosine_ndcg@20
|
| 144 |
+
value: 0.6842763252168604
|
| 145 |
+
name: Cosine Ndcg@20
|
| 146 |
+
- type: cosine_ndcg@50
|
| 147 |
+
value: 0.7050658917677234
|
| 148 |
+
name: Cosine Ndcg@50
|
| 149 |
+
- type: cosine_ndcg@100
|
| 150 |
+
value: 0.7592503116780603
|
| 151 |
+
name: Cosine Ndcg@100
|
| 152 |
+
- type: cosine_ndcg@150
|
| 153 |
+
value: 0.7793217469818706
|
| 154 |
+
name: Cosine Ndcg@150
|
| 155 |
+
- type: cosine_ndcg@200
|
| 156 |
+
value: 0.7881724081346186
|
| 157 |
+
name: Cosine Ndcg@200
|
| 158 |
+
- type: cosine_mrr@1
|
| 159 |
+
value: 0.6571428571428571
|
| 160 |
+
name: Cosine Mrr@1
|
| 161 |
+
- type: cosine_mrr@20
|
| 162 |
+
value: 0.8095238095238095
|
| 163 |
+
name: Cosine Mrr@20
|
| 164 |
+
- type: cosine_mrr@50
|
| 165 |
+
value: 0.8095238095238095
|
| 166 |
+
name: Cosine Mrr@50
|
| 167 |
+
- type: cosine_mrr@100
|
| 168 |
+
value: 0.8095238095238095
|
| 169 |
+
name: Cosine Mrr@100
|
| 170 |
+
- type: cosine_mrr@150
|
| 171 |
+
value: 0.8095238095238095
|
| 172 |
+
name: Cosine Mrr@150
|
| 173 |
+
- type: cosine_mrr@200
|
| 174 |
+
value: 0.8095238095238095
|
| 175 |
+
name: Cosine Mrr@200
|
| 176 |
+
- type: cosine_map@1
|
| 177 |
+
value: 0.6571428571428571
|
| 178 |
+
name: Cosine Map@1
|
| 179 |
+
- type: cosine_map@20
|
| 180 |
+
value: 0.5422881048847362
|
| 181 |
+
name: Cosine Map@20
|
| 182 |
+
- type: cosine_map@50
|
| 183 |
+
value: 0.5339554214943681
|
| 184 |
+
name: Cosine Map@50
|
| 185 |
+
- type: cosine_map@100
|
| 186 |
+
value: 0.5668962932951893
|
| 187 |
+
name: Cosine Map@100
|
| 188 |
+
- type: cosine_map@150
|
| 189 |
+
value: 0.5749918744199348
|
| 190 |
+
name: Cosine Map@150
|
| 191 |
+
- type: cosine_map@200
|
| 192 |
+
value: 0.5778159227565198
|
| 193 |
+
name: Cosine Map@200
|
| 194 |
+
- type: cosine_map@500
|
| 195 |
+
value: 0.5826470723639171
|
| 196 |
+
name: Cosine Map@500
|
| 197 |
+
- task:
|
| 198 |
+
type: information-retrieval
|
| 199 |
+
name: Information Retrieval
|
| 200 |
+
dataset:
|
| 201 |
+
name: full es
|
| 202 |
+
type: full_es
|
| 203 |
+
metrics:
|
| 204 |
+
- type: cosine_accuracy@1
|
| 205 |
+
value: 0.12972972972972974
|
| 206 |
+
name: Cosine Accuracy@1
|
| 207 |
+
- type: cosine_accuracy@20
|
| 208 |
+
value: 1.0
|
| 209 |
+
name: Cosine Accuracy@20
|
| 210 |
+
- type: cosine_accuracy@50
|
| 211 |
+
value: 1.0
|
| 212 |
+
name: Cosine Accuracy@50
|
| 213 |
+
- type: cosine_accuracy@100
|
| 214 |
+
value: 1.0
|
| 215 |
+
name: Cosine Accuracy@100
|
| 216 |
+
- type: cosine_accuracy@150
|
| 217 |
+
value: 1.0
|
| 218 |
+
name: Cosine Accuracy@150
|
| 219 |
+
- type: cosine_accuracy@200
|
| 220 |
+
value: 1.0
|
| 221 |
+
name: Cosine Accuracy@200
|
| 222 |
+
- type: cosine_precision@1
|
| 223 |
+
value: 0.12972972972972974
|
| 224 |
+
name: Cosine Precision@1
|
| 225 |
+
- type: cosine_precision@20
|
| 226 |
+
value: 0.48837837837837833
|
| 227 |
+
name: Cosine Precision@20
|
| 228 |
+
- type: cosine_precision@50
|
| 229 |
+
value: 0.31416216216216214
|
| 230 |
+
name: Cosine Precision@50
|
| 231 |
+
- type: cosine_precision@100
|
| 232 |
+
value: 0.19681081081081084
|
| 233 |
+
name: Cosine Precision@100
|
| 234 |
+
- type: cosine_precision@150
|
| 235 |
+
value: 0.1451891891891892
|
| 236 |
+
name: Cosine Precision@150
|
| 237 |
+
- type: cosine_precision@200
|
| 238 |
+
value: 0.11681081081081081
|
| 239 |
+
name: Cosine Precision@200
|
| 240 |
+
- type: cosine_recall@1
|
| 241 |
+
value: 0.003237252034219735
|
| 242 |
+
name: Cosine Recall@1
|
| 243 |
+
- type: cosine_recall@20
|
| 244 |
+
value: 0.3208378102445782
|
| 245 |
+
name: Cosine Recall@20
|
| 246 |
+
- type: cosine_recall@50
|
| 247 |
+
value: 0.4567910906819754
|
| 248 |
+
name: Cosine Recall@50
|
| 249 |
+
- type: cosine_recall@100
|
| 250 |
+
value: 0.5381915850001637
|
| 251 |
+
name: Cosine Recall@100
|
| 252 |
+
- type: cosine_recall@150
|
| 253 |
+
value: 0.5773791795052656
|
| 254 |
+
name: Cosine Recall@150
|
| 255 |
+
- type: cosine_recall@200
|
| 256 |
+
value: 0.6089669618204154
|
| 257 |
+
name: Cosine Recall@200
|
| 258 |
+
- type: cosine_ndcg@1
|
| 259 |
+
value: 0.12972972972972974
|
| 260 |
+
name: Cosine Ndcg@1
|
| 261 |
+
- type: cosine_ndcg@20
|
| 262 |
+
value: 0.5381393612536364
|
| 263 |
+
name: Cosine Ndcg@20
|
| 264 |
+
- type: cosine_ndcg@50
|
| 265 |
+
value: 0.497412740756737
|
| 266 |
+
name: Cosine Ndcg@50
|
| 267 |
+
- type: cosine_ndcg@100
|
| 268 |
+
value: 0.5113652855488736
|
| 269 |
+
name: Cosine Ndcg@100
|
| 270 |
+
- type: cosine_ndcg@150
|
| 271 |
+
value: 0.5312098014018798
|
| 272 |
+
name: Cosine Ndcg@150
|
| 273 |
+
- type: cosine_ndcg@200
|
| 274 |
+
value: 0.5471404882139521
|
| 275 |
+
name: Cosine Ndcg@200
|
| 276 |
+
- type: cosine_mrr@1
|
| 277 |
+
value: 0.12972972972972974
|
| 278 |
+
name: Cosine Mrr@1
|
| 279 |
+
- type: cosine_mrr@20
|
| 280 |
+
value: 0.5546546546546548
|
| 281 |
+
name: Cosine Mrr@20
|
| 282 |
+
- type: cosine_mrr@50
|
| 283 |
+
value: 0.5546546546546548
|
| 284 |
+
name: Cosine Mrr@50
|
| 285 |
+
- type: cosine_mrr@100
|
| 286 |
+
value: 0.5546546546546548
|
| 287 |
+
name: Cosine Mrr@100
|
| 288 |
+
- type: cosine_mrr@150
|
| 289 |
+
value: 0.5546546546546548
|
| 290 |
+
name: Cosine Mrr@150
|
| 291 |
+
- type: cosine_mrr@200
|
| 292 |
+
value: 0.5546546546546548
|
| 293 |
+
name: Cosine Mrr@200
|
| 294 |
+
- type: cosine_map@1
|
| 295 |
+
value: 0.12972972972972974
|
| 296 |
+
name: Cosine Map@1
|
| 297 |
+
- type: cosine_map@20
|
| 298 |
+
value: 0.4042978961401532
|
| 299 |
+
name: Cosine Map@20
|
| 300 |
+
- type: cosine_map@50
|
| 301 |
+
value: 0.33937321205124016
|
| 302 |
+
name: Cosine Map@50
|
| 303 |
+
- type: cosine_map@100
|
| 304 |
+
value: 0.3368552825005167
|
| 305 |
+
name: Cosine Map@100
|
| 306 |
+
- type: cosine_map@150
|
| 307 |
+
value: 0.34453705443740057
|
| 308 |
+
name: Cosine Map@150
|
| 309 |
+
- type: cosine_map@200
|
| 310 |
+
value: 0.35018165521941574
|
| 311 |
+
name: Cosine Map@200
|
| 312 |
+
- type: cosine_map@500
|
| 313 |
+
value: 0.360079205985487
|
| 314 |
+
name: Cosine Map@500
|
| 315 |
+
- task:
|
| 316 |
+
type: information-retrieval
|
| 317 |
+
name: Information Retrieval
|
| 318 |
+
dataset:
|
| 319 |
+
name: full de
|
| 320 |
+
type: full_de
|
| 321 |
+
metrics:
|
| 322 |
+
- type: cosine_accuracy@1
|
| 323 |
+
value: 0.2955665024630542
|
| 324 |
+
name: Cosine Accuracy@1
|
| 325 |
+
- type: cosine_accuracy@20
|
| 326 |
+
value: 0.9261083743842364
|
| 327 |
+
name: Cosine Accuracy@20
|
| 328 |
+
- type: cosine_accuracy@50
|
| 329 |
+
value: 0.9556650246305419
|
| 330 |
+
name: Cosine Accuracy@50
|
| 331 |
+
- type: cosine_accuracy@100
|
| 332 |
+
value: 0.9802955665024631
|
| 333 |
+
name: Cosine Accuracy@100
|
| 334 |
+
- type: cosine_accuracy@150
|
| 335 |
+
value: 0.9852216748768473
|
| 336 |
+
name: Cosine Accuracy@150
|
| 337 |
+
- type: cosine_accuracy@200
|
| 338 |
+
value: 0.9852216748768473
|
| 339 |
+
name: Cosine Accuracy@200
|
| 340 |
+
- type: cosine_precision@1
|
| 341 |
+
value: 0.2955665024630542
|
| 342 |
+
name: Cosine Precision@1
|
| 343 |
+
- type: cosine_precision@20
|
| 344 |
+
value: 0.4263546798029557
|
| 345 |
+
name: Cosine Precision@20
|
| 346 |
+
- type: cosine_precision@50
|
| 347 |
+
value: 0.2770443349753695
|
| 348 |
+
name: Cosine Precision@50
|
| 349 |
+
- type: cosine_precision@100
|
| 350 |
+
value: 0.17901477832512316
|
| 351 |
+
name: Cosine Precision@100
|
| 352 |
+
- type: cosine_precision@150
|
| 353 |
+
value: 0.13490968801313627
|
| 354 |
+
name: Cosine Precision@150
|
| 355 |
+
- type: cosine_precision@200
|
| 356 |
+
value: 0.10899014778325124
|
| 357 |
+
name: Cosine Precision@200
|
| 358 |
+
- type: cosine_recall@1
|
| 359 |
+
value: 0.01108543831680986
|
| 360 |
+
name: Cosine Recall@1
|
| 361 |
+
- type: cosine_recall@20
|
| 362 |
+
value: 0.26014264456225006
|
| 363 |
+
name: Cosine Recall@20
|
| 364 |
+
- type: cosine_recall@50
|
| 365 |
+
value: 0.37472046766567035
|
| 366 |
+
name: Cosine Recall@50
|
| 367 |
+
- type: cosine_recall@100
|
| 368 |
+
value: 0.4638118170858238
|
| 369 |
+
name: Cosine Recall@100
|
| 370 |
+
- type: cosine_recall@150
|
| 371 |
+
value: 0.5124044299199141
|
| 372 |
+
name: Cosine Recall@150
|
| 373 |
+
- type: cosine_recall@200
|
| 374 |
+
value: 0.5445439134836504
|
| 375 |
+
name: Cosine Recall@200
|
| 376 |
+
- type: cosine_ndcg@1
|
| 377 |
+
value: 0.2955665024630542
|
| 378 |
+
name: Cosine Ndcg@1
|
| 379 |
+
- type: cosine_ndcg@20
|
| 380 |
+
value: 0.45965919662626975
|
| 381 |
+
name: Cosine Ndcg@20
|
| 382 |
+
- type: cosine_ndcg@50
|
| 383 |
+
value: 0.41741219260743895
|
| 384 |
+
name: Cosine Ndcg@50
|
| 385 |
+
- type: cosine_ndcg@100
|
| 386 |
+
value: 0.43399231095446933
|
| 387 |
+
name: Cosine Ndcg@100
|
| 388 |
+
- type: cosine_ndcg@150
|
| 389 |
+
value: 0.45874970458896197
|
| 390 |
+
name: Cosine Ndcg@150
|
| 391 |
+
- type: cosine_ndcg@200
|
| 392 |
+
value: 0.47478895069588406
|
| 393 |
+
name: Cosine Ndcg@200
|
| 394 |
+
- type: cosine_mrr@1
|
| 395 |
+
value: 0.2955665024630542
|
| 396 |
+
name: Cosine Mrr@1
|
| 397 |
+
- type: cosine_mrr@20
|
| 398 |
+
value: 0.4892752997831232
|
| 399 |
+
name: Cosine Mrr@20
|
| 400 |
+
- type: cosine_mrr@50
|
| 401 |
+
value: 0.4902771206282054
|
| 402 |
+
name: Cosine Mrr@50
|
| 403 |
+
- type: cosine_mrr@100
|
| 404 |
+
value: 0.4906981997008054
|
| 405 |
+
name: Cosine Mrr@100
|
| 406 |
+
- type: cosine_mrr@150
|
| 407 |
+
value: 0.4907366849224803
|
| 408 |
+
name: Cosine Mrr@150
|
| 409 |
+
- type: cosine_mrr@200
|
| 410 |
+
value: 0.4907366849224803
|
| 411 |
+
name: Cosine Mrr@200
|
| 412 |
+
- type: cosine_map@1
|
| 413 |
+
value: 0.2955665024630542
|
| 414 |
+
name: Cosine Map@1
|
| 415 |
+
- type: cosine_map@20
|
| 416 |
+
value: 0.3232519233820698
|
| 417 |
+
name: Cosine Map@20
|
| 418 |
+
- type: cosine_map@50
|
| 419 |
+
value: 0.26102657686588665
|
| 420 |
+
name: Cosine Map@50
|
| 421 |
+
- type: cosine_map@100
|
| 422 |
+
value: 0.2553505082151027
|
| 423 |
+
name: Cosine Map@100
|
| 424 |
+
- type: cosine_map@150
|
| 425 |
+
value: 0.2642642274892868
|
| 426 |
+
name: Cosine Map@150
|
| 427 |
+
- type: cosine_map@200
|
| 428 |
+
value: 0.2691969880894716
|
| 429 |
+
name: Cosine Map@200
|
| 430 |
+
- type: cosine_map@500
|
| 431 |
+
value: 0.2803112292648821
|
| 432 |
+
name: Cosine Map@500
|
| 433 |
+
- task:
|
| 434 |
+
type: information-retrieval
|
| 435 |
+
name: Information Retrieval
|
| 436 |
+
dataset:
|
| 437 |
+
name: full zh
|
| 438 |
+
type: full_zh
|
| 439 |
+
metrics:
|
| 440 |
+
- type: cosine_accuracy@1
|
| 441 |
+
value: 0.32038834951456313
|
| 442 |
+
name: Cosine Accuracy@1
|
| 443 |
+
- type: cosine_accuracy@20
|
| 444 |
+
value: 0.7281553398058253
|
| 445 |
+
name: Cosine Accuracy@20
|
| 446 |
+
- type: cosine_accuracy@50
|
| 447 |
+
value: 0.8155339805825242
|
| 448 |
+
name: Cosine Accuracy@50
|
| 449 |
+
- type: cosine_accuracy@100
|
| 450 |
+
value: 0.8640776699029126
|
| 451 |
+
name: Cosine Accuracy@100
|
| 452 |
+
- type: cosine_accuracy@150
|
| 453 |
+
value: 0.912621359223301
|
| 454 |
+
name: Cosine Accuracy@150
|
| 455 |
+
- type: cosine_accuracy@200
|
| 456 |
+
value: 0.941747572815534
|
| 457 |
+
name: Cosine Accuracy@200
|
| 458 |
+
- type: cosine_precision@1
|
| 459 |
+
value: 0.32038834951456313
|
| 460 |
+
name: Cosine Precision@1
|
| 461 |
+
- type: cosine_precision@20
|
| 462 |
+
value: 0.17233009708737868
|
| 463 |
+
name: Cosine Precision@20
|
| 464 |
+
- type: cosine_precision@50
|
| 465 |
+
value: 0.09378640776699028
|
| 466 |
+
name: Cosine Precision@50
|
| 467 |
+
- type: cosine_precision@100
|
| 468 |
+
value: 0.057475728155339814
|
| 469 |
+
name: Cosine Precision@100
|
| 470 |
+
- type: cosine_precision@150
|
| 471 |
+
value: 0.04543689320388349
|
| 472 |
+
name: Cosine Precision@150
|
| 473 |
+
- type: cosine_precision@200
|
| 474 |
+
value: 0.038252427184466024
|
| 475 |
+
name: Cosine Precision@200
|
| 476 |
+
- type: cosine_recall@1
|
| 477 |
+
value: 0.02471280462494792
|
| 478 |
+
name: Cosine Recall@1
|
| 479 |
+
- type: cosine_recall@20
|
| 480 |
+
value: 0.18281935756329049
|
| 481 |
+
name: Cosine Recall@20
|
| 482 |
+
- type: cosine_recall@50
|
| 483 |
+
value: 0.23610648880680668
|
| 484 |
+
name: Cosine Recall@50
|
| 485 |
+
- type: cosine_recall@100
|
| 486 |
+
value: 0.2817401925500015
|
| 487 |
+
name: Cosine Recall@100
|
| 488 |
+
- type: cosine_recall@150
|
| 489 |
+
value: 0.32445039777652873
|
| 490 |
+
name: Cosine Recall@150
|
| 491 |
+
- type: cosine_recall@200
|
| 492 |
+
value: 0.3579914968024133
|
| 493 |
+
name: Cosine Recall@200
|
| 494 |
+
- type: cosine_ndcg@1
|
| 495 |
+
value: 0.32038834951456313
|
| 496 |
+
name: Cosine Ndcg@1
|
| 497 |
+
- type: cosine_ndcg@20
|
| 498 |
+
value: 0.24485074137633345
|
| 499 |
+
name: Cosine Ndcg@20
|
| 500 |
+
- type: cosine_ndcg@50
|
| 501 |
+
value: 0.23539725480038964
|
| 502 |
+
name: Cosine Ndcg@50
|
| 503 |
+
- type: cosine_ndcg@100
|
| 504 |
+
value: 0.25621007342179275
|
| 505 |
+
name: Cosine Ndcg@100
|
| 506 |
+
- type: cosine_ndcg@150
|
| 507 |
+
value: 0.2738226067489134
|
| 508 |
+
name: Cosine Ndcg@150
|
| 509 |
+
- type: cosine_ndcg@200
|
| 510 |
+
value: 0.28679471829998743
|
| 511 |
+
name: Cosine Ndcg@200
|
| 512 |
+
- type: cosine_mrr@1
|
| 513 |
+
value: 0.32038834951456313
|
| 514 |
+
name: Cosine Mrr@1
|
| 515 |
+
- type: cosine_mrr@20
|
| 516 |
+
value: 0.43991789706080797
|
| 517 |
+
name: Cosine Mrr@20
|
| 518 |
+
- type: cosine_mrr@50
|
| 519 |
+
value: 0.44280457808819257
|
| 520 |
+
name: Cosine Mrr@50
|
| 521 |
+
- type: cosine_mrr@100
|
| 522 |
+
value: 0.4434266046741581
|
| 523 |
+
name: Cosine Mrr@100
|
| 524 |
+
- type: cosine_mrr@150
|
| 525 |
+
value: 0.44385297519656264
|
| 526 |
+
name: Cosine Mrr@150
|
| 527 |
+
- type: cosine_mrr@200
|
| 528 |
+
value: 0.44401312541610144
|
| 529 |
+
name: Cosine Mrr@200
|
| 530 |
+
- type: cosine_map@1
|
| 531 |
+
value: 0.32038834951456313
|
| 532 |
+
name: Cosine Map@1
|
| 533 |
+
- type: cosine_map@20
|
| 534 |
+
value: 0.1447951005144368
|
| 535 |
+
name: Cosine Map@20
|
| 536 |
+
- type: cosine_map@50
|
| 537 |
+
value: 0.12441013252369439
|
| 538 |
+
name: Cosine Map@50
|
| 539 |
+
- type: cosine_map@100
|
| 540 |
+
value: 0.12937320652986672
|
| 541 |
+
name: Cosine Map@100
|
| 542 |
+
- type: cosine_map@150
|
| 543 |
+
value: 0.13203408286028803
|
| 544 |
+
name: Cosine Map@150
|
| 545 |
+
- type: cosine_map@200
|
| 546 |
+
value: 0.13359947484648899
|
| 547 |
+
name: Cosine Map@200
|
| 548 |
+
- type: cosine_map@500
|
| 549 |
+
value: 0.1374353051856652
|
| 550 |
+
name: Cosine Map@500
|
| 551 |
+
- task:
|
| 552 |
+
type: information-retrieval
|
| 553 |
+
name: Information Retrieval
|
| 554 |
+
dataset:
|
| 555 |
+
name: mix es
|
| 556 |
+
type: mix_es
|
| 557 |
+
metrics:
|
| 558 |
+
- type: cosine_accuracy@1
|
| 559 |
+
value: 0.39417576703068125
|
| 560 |
+
name: Cosine Accuracy@1
|
| 561 |
+
- type: cosine_accuracy@20
|
| 562 |
+
value: 0.749869994799792
|
| 563 |
+
name: Cosine Accuracy@20
|
| 564 |
+
- type: cosine_accuracy@50
|
| 565 |
+
value: 0.8387935517420697
|
| 566 |
+
name: Cosine Accuracy@50
|
| 567 |
+
- type: cosine_accuracy@100
|
| 568 |
+
value: 0.9011960478419136
|
| 569 |
+
name: Cosine Accuracy@100
|
| 570 |
+
- type: cosine_accuracy@150
|
| 571 |
+
value: 0.9313572542901716
|
| 572 |
+
name: Cosine Accuracy@150
|
| 573 |
+
- type: cosine_accuracy@200
|
| 574 |
+
value: 0.9453978159126365
|
| 575 |
+
name: Cosine Accuracy@200
|
| 576 |
+
- type: cosine_precision@1
|
| 577 |
+
value: 0.39417576703068125
|
| 578 |
+
name: Cosine Precision@1
|
| 579 |
+
- type: cosine_precision@20
|
| 580 |
+
value: 0.0872854914196568
|
| 581 |
+
name: Cosine Precision@20
|
| 582 |
+
- type: cosine_precision@50
|
| 583 |
+
value: 0.040842433697347906
|
| 584 |
+
name: Cosine Precision@50
|
| 585 |
+
- type: cosine_precision@100
|
| 586 |
+
value: 0.022449297971918882
|
| 587 |
+
name: Cosine Precision@100
|
| 588 |
+
- type: cosine_precision@150
|
| 589 |
+
value: 0.015697694574449642
|
| 590 |
+
name: Cosine Precision@150
|
| 591 |
+
- type: cosine_precision@200
|
| 592 |
+
value: 0.012098283931357257
|
| 593 |
+
name: Cosine Precision@200
|
| 594 |
+
- type: cosine_recall@1
|
| 595 |
+
value: 0.14977961023202832
|
| 596 |
+
name: Cosine Recall@1
|
| 597 |
+
- type: cosine_recall@20
|
| 598 |
+
value: 0.6446252135799717
|
| 599 |
+
name: Cosine Recall@20
|
| 600 |
+
- type: cosine_recall@50
|
| 601 |
+
value: 0.7537131961468935
|
| 602 |
+
name: Cosine Recall@50
|
| 603 |
+
- type: cosine_recall@100
|
| 604 |
+
value: 0.8297142361884952
|
| 605 |
+
name: Cosine Recall@100
|
| 606 |
+
- type: cosine_recall@150
|
| 607 |
+
value: 0.8701891885199218
|
| 608 |
+
name: Cosine Recall@150
|
| 609 |
+
- type: cosine_recall@200
|
| 610 |
+
value: 0.8944221578386945
|
| 611 |
+
name: Cosine Recall@200
|
| 612 |
+
- type: cosine_ndcg@1
|
| 613 |
+
value: 0.39417576703068125
|
| 614 |
+
name: Cosine Ndcg@1
|
| 615 |
+
- type: cosine_ndcg@20
|
| 616 |
+
value: 0.49564845544675695
|
| 617 |
+
name: Cosine Ndcg@20
|
| 618 |
+
- type: cosine_ndcg@50
|
| 619 |
+
value: 0.5252351899067441
|
| 620 |
+
name: Cosine Ndcg@50
|
| 621 |
+
- type: cosine_ndcg@100
|
| 622 |
+
value: 0.5419194834352565
|
| 623 |
+
name: Cosine Ndcg@100
|
| 624 |
+
- type: cosine_ndcg@150
|
| 625 |
+
value: 0.549799901314173
|
| 626 |
+
name: Cosine Ndcg@150
|
| 627 |
+
- type: cosine_ndcg@200
|
| 628 |
+
value: 0.5541820214452097
|
| 629 |
+
name: Cosine Ndcg@200
|
| 630 |
+
- type: cosine_mrr@1
|
| 631 |
+
value: 0.39417576703068125
|
| 632 |
+
name: Cosine Mrr@1
|
| 633 |
+
- type: cosine_mrr@20
|
| 634 |
+
value: 0.48161375643951787
|
| 635 |
+
name: Cosine Mrr@20
|
| 636 |
+
- type: cosine_mrr@50
|
| 637 |
+
value: 0.48456339112411073
|
| 638 |
+
name: Cosine Mrr@50
|
| 639 |
+
- type: cosine_mrr@100
|
| 640 |
+
value: 0.48546449697579613
|
| 641 |
+
name: Cosine Mrr@100
|
| 642 |
+
- type: cosine_mrr@150
|
| 643 |
+
value: 0.4857120835710493
|
| 644 |
+
name: Cosine Mrr@150
|
| 645 |
+
- type: cosine_mrr@200
|
| 646 |
+
value: 0.48579472848118294
|
| 647 |
+
name: Cosine Mrr@200
|
| 648 |
+
- type: cosine_map@1
|
| 649 |
+
value: 0.39417576703068125
|
| 650 |
+
name: Cosine Map@1
|
| 651 |
+
- type: cosine_map@20
|
| 652 |
+
value: 0.4098891006090195
|
| 653 |
+
name: Cosine Map@20
|
| 654 |
+
- type: cosine_map@50
|
| 655 |
+
value: 0.41704940718756184
|
| 656 |
+
name: Cosine Map@50
|
| 657 |
+
- type: cosine_map@100
|
| 658 |
+
value: 0.4192177736540712
|
| 659 |
+
name: Cosine Map@100
|
| 660 |
+
- type: cosine_map@150
|
| 661 |
+
value: 0.41989349138490134
|
| 662 |
+
name: Cosine Map@150
|
| 663 |
+
- type: cosine_map@200
|
| 664 |
+
value: 0.4201792836237905
|
| 665 |
+
name: Cosine Map@200
|
| 666 |
+
- type: cosine_map@500
|
| 667 |
+
value: 0.42068145332288714
|
| 668 |
+
name: Cosine Map@500
|
| 669 |
+
- task:
|
| 670 |
+
type: information-retrieval
|
| 671 |
+
name: Information Retrieval
|
| 672 |
+
dataset:
|
| 673 |
+
name: mix de
|
| 674 |
+
type: mix_de
|
| 675 |
+
metrics:
|
| 676 |
+
- type: cosine_accuracy@1
|
| 677 |
+
value: 0.27769110764430577
|
| 678 |
+
name: Cosine Accuracy@1
|
| 679 |
+
- type: cosine_accuracy@20
|
| 680 |
+
value: 0.6349453978159126
|
| 681 |
+
name: Cosine Accuracy@20
|
| 682 |
+
- type: cosine_accuracy@50
|
| 683 |
+
value: 0.7399895995839834
|
| 684 |
+
name: Cosine Accuracy@50
|
| 685 |
+
- type: cosine_accuracy@100
|
| 686 |
+
value: 0.8273530941237649
|
| 687 |
+
name: Cosine Accuracy@100
|
| 688 |
+
- type: cosine_accuracy@150
|
| 689 |
+
value: 0.87467498699948
|
| 690 |
+
name: Cosine Accuracy@150
|
| 691 |
+
- type: cosine_accuracy@200
|
| 692 |
+
value: 0.9053562142485699
|
| 693 |
+
name: Cosine Accuracy@200
|
| 694 |
+
- type: cosine_precision@1
|
| 695 |
+
value: 0.27769110764430577
|
| 696 |
+
name: Cosine Precision@1
|
| 697 |
+
- type: cosine_precision@20
|
| 698 |
+
value: 0.07090483619344773
|
| 699 |
+
name: Cosine Precision@20
|
| 700 |
+
- type: cosine_precision@50
|
| 701 |
+
value: 0.03469578783151326
|
| 702 |
+
name: Cosine Precision@50
|
| 703 |
+
- type: cosine_precision@100
|
| 704 |
+
value: 0.020046801872074884
|
| 705 |
+
name: Cosine Precision@100
|
| 706 |
+
- type: cosine_precision@150
|
| 707 |
+
value: 0.014331773270930834
|
| 708 |
+
name: Cosine Precision@150
|
| 709 |
+
- type: cosine_precision@200
|
| 710 |
+
value: 0.011263650546021842
|
| 711 |
+
name: Cosine Precision@200
|
| 712 |
+
- type: cosine_recall@1
|
| 713 |
+
value: 0.10457618304732187
|
| 714 |
+
name: Cosine Recall@1
|
| 715 |
+
- type: cosine_recall@20
|
| 716 |
+
value: 0.5190240942971052
|
| 717 |
+
name: Cosine Recall@20
|
| 718 |
+
- type: cosine_recall@50
|
| 719 |
+
value: 0.6331426590396949
|
| 720 |
+
name: Cosine Recall@50
|
| 721 |
+
- type: cosine_recall@100
|
| 722 |
+
value: 0.7301352054082164
|
| 723 |
+
name: Cosine Recall@100
|
| 724 |
+
- type: cosine_recall@150
|
| 725 |
+
value: 0.7834720055468886
|
| 726 |
+
name: Cosine Recall@150
|
| 727 |
+
- type: cosine_recall@200
|
| 728 |
+
value: 0.821043508407003
|
| 729 |
+
name: Cosine Recall@200
|
| 730 |
+
- type: cosine_ndcg@1
|
| 731 |
+
value: 0.27769110764430577
|
| 732 |
+
name: Cosine Ndcg@1
|
| 733 |
+
- type: cosine_ndcg@20
|
| 734 |
+
value: 0.37573520751288797
|
| 735 |
+
name: Cosine Ndcg@20
|
| 736 |
+
- type: cosine_ndcg@50
|
| 737 |
+
value: 0.40663904775077114
|
| 738 |
+
name: Cosine Ndcg@50
|
| 739 |
+
- type: cosine_ndcg@100
|
| 740 |
+
value: 0.428125197732266
|
| 741 |
+
name: Cosine Ndcg@100
|
| 742 |
+
- type: cosine_ndcg@150
|
| 743 |
+
value: 0.43851431587679784
|
| 744 |
+
name: Cosine Ndcg@150
|
| 745 |
+
- type: cosine_ndcg@200
|
| 746 |
+
value: 0.44538466038255
|
| 747 |
+
name: Cosine Ndcg@200
|
| 748 |
+
- type: cosine_mrr@1
|
| 749 |
+
value: 0.27769110764430577
|
| 750 |
+
name: Cosine Mrr@1
|
| 751 |
+
- type: cosine_mrr@20
|
| 752 |
+
value: 0.35976204370795134
|
| 753 |
+
name: Cosine Mrr@20
|
| 754 |
+
- type: cosine_mrr@50
|
| 755 |
+
value: 0.36312305918627735
|
| 756 |
+
name: Cosine Mrr@50
|
| 757 |
+
- type: cosine_mrr@100
|
| 758 |
+
value: 0.3643486184027757
|
| 759 |
+
name: Cosine Mrr@100
|
| 760 |
+
- type: cosine_mrr@150
|
| 761 |
+
value: 0.36473033595438964
|
| 762 |
+
name: Cosine Mrr@150
|
| 763 |
+
- type: cosine_mrr@200
|
| 764 |
+
value: 0.36490983745143385
|
| 765 |
+
name: Cosine Mrr@200
|
| 766 |
+
- type: cosine_map@1
|
| 767 |
+
value: 0.27769110764430577
|
| 768 |
+
name: Cosine Map@1
|
| 769 |
+
- type: cosine_map@20
|
| 770 |
+
value: 0.29406713368898557
|
| 771 |
+
name: Cosine Map@20
|
| 772 |
+
- type: cosine_map@50
|
| 773 |
+
value: 0.30113502054518276
|
| 774 |
+
name: Cosine Map@50
|
| 775 |
+
- type: cosine_map@100
|
| 776 |
+
value: 0.30386818472766647
|
| 777 |
+
name: Cosine Map@100
|
| 778 |
+
- type: cosine_map@150
|
| 779 |
+
value: 0.3047008515614112
|
| 780 |
+
name: Cosine Map@150
|
| 781 |
+
- type: cosine_map@200
|
| 782 |
+
value: 0.3051359976327236
|
| 783 |
+
name: Cosine Map@200
|
| 784 |
+
- type: cosine_map@500
|
| 785 |
+
value: 0.3059525328830033
|
| 786 |
+
name: Cosine Map@500
|
| 787 |
+
- task:
|
| 788 |
+
type: information-retrieval
|
| 789 |
+
name: Information Retrieval
|
| 790 |
+
dataset:
|
| 791 |
+
name: mix zh
|
| 792 |
+
type: mix_zh
|
| 793 |
+
metrics:
|
| 794 |
+
- type: cosine_accuracy@1
|
| 795 |
+
value: 0.09394572025052192
|
| 796 |
+
name: Cosine Accuracy@1
|
| 797 |
+
- type: cosine_accuracy@20
|
| 798 |
+
value: 0.35386221294363257
|
| 799 |
+
name: Cosine Accuracy@20
|
| 800 |
+
- type: cosine_accuracy@50
|
| 801 |
+
value: 0.4869519832985386
|
| 802 |
+
name: Cosine Accuracy@50
|
| 803 |
+
- type: cosine_accuracy@100
|
| 804 |
+
value: 0.5955114822546973
|
| 805 |
+
name: Cosine Accuracy@100
|
| 806 |
+
- type: cosine_accuracy@150
|
| 807 |
+
value: 0.662839248434238
|
| 808 |
+
name: Cosine Accuracy@150
|
| 809 |
+
- type: cosine_accuracy@200
|
| 810 |
+
value: 0.7009394572025052
|
| 811 |
+
name: Cosine Accuracy@200
|
| 812 |
+
- type: cosine_precision@1
|
| 813 |
+
value: 0.09394572025052192
|
| 814 |
+
name: Cosine Precision@1
|
| 815 |
+
- type: cosine_precision@20
|
| 816 |
+
value: 0.0308455114822547
|
| 817 |
+
name: Cosine Precision@20
|
| 818 |
+
- type: cosine_precision@50
|
| 819 |
+
value: 0.01838204592901879
|
| 820 |
+
name: Cosine Precision@50
|
| 821 |
+
- type: cosine_precision@100
|
| 822 |
+
value: 0.011565762004175365
|
| 823 |
+
name: Cosine Precision@100
|
| 824 |
+
- type: cosine_precision@150
|
| 825 |
+
value: 0.008764787752261655
|
| 826 |
+
name: Cosine Precision@150
|
| 827 |
+
- type: cosine_precision@200
|
| 828 |
+
value: 0.0070720250521920675
|
| 829 |
+
name: Cosine Precision@200
|
| 830 |
+
- type: cosine_recall@1
|
| 831 |
+
value: 0.03218510786360473
|
| 832 |
+
name: Cosine Recall@1
|
| 833 |
+
- type: cosine_recall@20
|
| 834 |
+
value: 0.2054242469430361
|
| 835 |
+
name: Cosine Recall@20
|
| 836 |
+
- type: cosine_recall@50
|
| 837 |
+
value: 0.3032918282135401
|
| 838 |
+
name: Cosine Recall@50
|
| 839 |
+
- type: cosine_recall@100
|
| 840 |
+
value: 0.3818466878748716
|
| 841 |
+
name: Cosine Recall@100
|
| 842 |
+
- type: cosine_recall@150
|
| 843 |
+
value: 0.4343829737879842
|
| 844 |
+
name: Cosine Recall@150
|
| 845 |
+
- type: cosine_recall@200
|
| 846 |
+
value: 0.46733356529807474
|
| 847 |
+
name: Cosine Recall@200
|
| 848 |
+
- type: cosine_ndcg@1
|
| 849 |
+
value: 0.09394572025052192
|
| 850 |
+
name: Cosine Ndcg@1
|
| 851 |
+
- type: cosine_ndcg@20
|
| 852 |
+
value: 0.13526182724058286
|
| 853 |
+
name: Cosine Ndcg@20
|
| 854 |
+
- type: cosine_ndcg@50
|
| 855 |
+
value: 0.16273403880201556
|
| 856 |
+
name: Cosine Ndcg@50
|
| 857 |
+
- type: cosine_ndcg@100
|
| 858 |
+
value: 0.180685476350191
|
| 859 |
+
name: Cosine Ndcg@100
|
| 860 |
+
- type: cosine_ndcg@150
|
| 861 |
+
value: 0.1913175060746284
|
| 862 |
+
name: Cosine Ndcg@150
|
| 863 |
+
- type: cosine_ndcg@200
|
| 864 |
+
value: 0.19756360996316394
|
| 865 |
+
name: Cosine Ndcg@200
|
| 866 |
+
- type: cosine_mrr@1
|
| 867 |
+
value: 0.09394572025052192
|
| 868 |
+
name: Cosine Mrr@1
|
| 869 |
+
- type: cosine_mrr@20
|
| 870 |
+
value: 0.1486268139347834
|
| 871 |
+
name: Cosine Mrr@20
|
| 872 |
+
- type: cosine_mrr@50
|
| 873 |
+
value: 0.15284573002617868
|
| 874 |
+
name: Cosine Mrr@50
|
| 875 |
+
- type: cosine_mrr@100
|
| 876 |
+
value: 0.15439034982296526
|
| 877 |
+
name: Cosine Mrr@100
|
| 878 |
+
- type: cosine_mrr@150
|
| 879 |
+
value: 0.1549448592625029
|
| 880 |
+
name: Cosine Mrr@150
|
| 881 |
+
- type: cosine_mrr@200
|
| 882 |
+
value: 0.15516529379486205
|
| 883 |
+
name: Cosine Mrr@200
|
| 884 |
+
- type: cosine_map@1
|
| 885 |
+
value: 0.09394572025052192
|
| 886 |
+
name: Cosine Map@1
|
| 887 |
+
- type: cosine_map@20
|
| 888 |
+
value: 0.08491818175758956
|
| 889 |
+
name: Cosine Map@20
|
| 890 |
+
- type: cosine_map@50
|
| 891 |
+
value: 0.09052948294713963
|
| 892 |
+
name: Cosine Map@50
|
| 893 |
+
- type: cosine_map@100
|
| 894 |
+
value: 0.09248066772963609
|
| 895 |
+
name: Cosine Map@100
|
| 896 |
+
- type: cosine_map@150
|
| 897 |
+
value: 0.09326228290776101
|
| 898 |
+
name: Cosine Map@150
|
| 899 |
+
- type: cosine_map@200
|
| 900 |
+
value: 0.09361529404962608
|
| 901 |
+
name: Cosine Map@200
|
| 902 |
+
- type: cosine_map@500
|
| 903 |
+
value: 0.09455859576932324
|
| 904 |
+
name: Cosine Map@500
|
| 905 |
+
---
|
| 906 |
+
|
| 907 |
+
# SentenceTransformer based on BAAI/bge-small-en-v1.5
|
| 908 |
+
|
| 909 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 910 |
+
|
| 911 |
+
## Model Details
|
| 912 |
+
|
| 913 |
+
### Model Description
|
| 914 |
+
- **Model Type:** Sentence Transformer
|
| 915 |
+
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
|
| 916 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 917 |
+
- **Output Dimensionality:** 384 dimensions
|
| 918 |
+
- **Similarity Function:** Cosine Similarity
|
| 919 |
+
- **Training Datasets:**
|
| 920 |
+
- full_en
|
| 921 |
+
- full_de
|
| 922 |
+
- full_es
|
| 923 |
+
- full_zh
|
| 924 |
+
- mix
|
| 925 |
+
<!-- - **Language:** Unknown -->
|
| 926 |
+
<!-- - **License:** Unknown -->
|
| 927 |
+
|
| 928 |
+
### Model Sources
|
| 929 |
+
|
| 930 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 931 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 932 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 933 |
+
|
| 934 |
+
### Full Model Architecture
|
| 935 |
+
|
| 936 |
+
```
|
| 937 |
+
SentenceTransformer(
|
| 938 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
| 939 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 940 |
+
(2): Normalize()
|
| 941 |
+
)
|
| 942 |
+
```
|
| 943 |
+
|
| 944 |
+
## Usage
|
| 945 |
+
|
| 946 |
+
### Direct Usage (Sentence Transformers)
|
| 947 |
+
|
| 948 |
+
First install the Sentence Transformers library:
|
| 949 |
+
|
| 950 |
+
```bash
|
| 951 |
+
pip install -U sentence-transformers
|
| 952 |
+
```
|
| 953 |
+
|
| 954 |
+
Then you can load this model and run inference.
|
| 955 |
+
```python
|
| 956 |
+
from sentence_transformers import SentenceTransformer
|
| 957 |
+
|
| 958 |
+
# Download from the 🤗 Hub
|
| 959 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 960 |
+
# Run inference
|
| 961 |
+
sentences = [
|
| 962 |
+
'Volksvertreter',
|
| 963 |
+
'Parlamentarier',
|
| 964 |
+
'Oberbürgermeister',
|
| 965 |
+
]
|
| 966 |
+
embeddings = model.encode(sentences)
|
| 967 |
+
print(embeddings.shape)
|
| 968 |
+
# [3, 384]
|
| 969 |
+
|
| 970 |
+
# Get the similarity scores for the embeddings
|
| 971 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 972 |
+
print(similarities.shape)
|
| 973 |
+
# [3, 3]
|
| 974 |
+
```
|
| 975 |
+
|
| 976 |
+
<!--
|
| 977 |
+
### Direct Usage (Transformers)
|
| 978 |
+
|
| 979 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 980 |
+
|
| 981 |
+
</details>
|
| 982 |
+
-->
|
| 983 |
+
|
| 984 |
+
<!--
|
| 985 |
+
### Downstream Usage (Sentence Transformers)
|
| 986 |
+
|
| 987 |
+
You can finetune this model on your own dataset.
|
| 988 |
+
|
| 989 |
+
<details><summary>Click to expand</summary>
|
| 990 |
+
|
| 991 |
+
</details>
|
| 992 |
+
-->
|
| 993 |
+
|
| 994 |
+
<!--
|
| 995 |
+
### Out-of-Scope Use
|
| 996 |
+
|
| 997 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 998 |
+
-->
|
| 999 |
+
|
| 1000 |
+
## Evaluation
|
| 1001 |
+
|
| 1002 |
+
### Metrics
|
| 1003 |
+
|
| 1004 |
+
#### Information Retrieval
|
| 1005 |
+
|
| 1006 |
+
* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
|
| 1007 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
| 1008 |
+
|
| 1009 |
+
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
|
| 1010 |
+
|:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
|
| 1011 |
+
| cosine_accuracy@1 | 0.6571 | 0.1297 | 0.2956 | 0.3204 | 0.3942 | 0.2777 | 0.0939 |
|
| 1012 |
+
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9261 | 0.7282 | 0.7499 | 0.6349 | 0.3539 |
|
| 1013 |
+
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9557 | 0.8155 | 0.8388 | 0.74 | 0.487 |
|
| 1014 |
+
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9803 | 0.8641 | 0.9012 | 0.8274 | 0.5955 |
|
| 1015 |
+
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9852 | 0.9126 | 0.9314 | 0.8747 | 0.6628 |
|
| 1016 |
+
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9852 | 0.9417 | 0.9454 | 0.9054 | 0.7009 |
|
| 1017 |
+
| cosine_precision@1 | 0.6571 | 0.1297 | 0.2956 | 0.3204 | 0.3942 | 0.2777 | 0.0939 |
|
| 1018 |
+
| cosine_precision@20 | 0.5019 | 0.4884 | 0.4264 | 0.1723 | 0.0873 | 0.0709 | 0.0308 |
|
| 1019 |
+
| cosine_precision@50 | 0.3088 | 0.3142 | 0.277 | 0.0938 | 0.0408 | 0.0347 | 0.0184 |
|
| 1020 |
+
| cosine_precision@100 | 0.1868 | 0.1968 | 0.179 | 0.0575 | 0.0224 | 0.02 | 0.0116 |
|
| 1021 |
+
| cosine_precision@150 | 0.1328 | 0.1452 | 0.1349 | 0.0454 | 0.0157 | 0.0143 | 0.0088 |
|
| 1022 |
+
| cosine_precision@200 | 0.1025 | 0.1168 | 0.109 | 0.0383 | 0.0121 | 0.0113 | 0.0071 |
|
| 1023 |
+
| cosine_recall@1 | 0.068 | 0.0032 | 0.0111 | 0.0247 | 0.1498 | 0.1046 | 0.0322 |
|
| 1024 |
+
| cosine_recall@20 | 0.5375 | 0.3208 | 0.2601 | 0.1828 | 0.6446 | 0.519 | 0.2054 |
|
| 1025 |
+
| cosine_recall@50 | 0.7285 | 0.4568 | 0.3747 | 0.2361 | 0.7537 | 0.6331 | 0.3033 |
|
| 1026 |
+
| cosine_recall@100 | 0.8322 | 0.5382 | 0.4638 | 0.2817 | 0.8297 | 0.7301 | 0.3818 |
|
| 1027 |
+
| cosine_recall@150 | 0.8802 | 0.5774 | 0.5124 | 0.3245 | 0.8702 | 0.7835 | 0.4344 |
|
| 1028 |
+
| cosine_recall@200 | 0.9028 | 0.609 | 0.5445 | 0.358 | 0.8944 | 0.821 | 0.4673 |
|
| 1029 |
+
| cosine_ndcg@1 | 0.6571 | 0.1297 | 0.2956 | 0.3204 | 0.3942 | 0.2777 | 0.0939 |
|
| 1030 |
+
| cosine_ndcg@20 | 0.6843 | 0.5381 | 0.4597 | 0.2449 | 0.4956 | 0.3757 | 0.1353 |
|
| 1031 |
+
| cosine_ndcg@50 | 0.7051 | 0.4974 | 0.4174 | 0.2354 | 0.5252 | 0.4066 | 0.1627 |
|
| 1032 |
+
| cosine_ndcg@100 | 0.7593 | 0.5114 | 0.434 | 0.2562 | 0.5419 | 0.4281 | 0.1807 |
|
| 1033 |
+
| cosine_ndcg@150 | 0.7793 | 0.5312 | 0.4587 | 0.2738 | 0.5498 | 0.4385 | 0.1913 |
|
| 1034 |
+
| **cosine_ndcg@200** | **0.7882** | **0.5471** | **0.4748** | **0.2868** | **0.5542** | **0.4454** | **0.1976** |
|
| 1035 |
+
| cosine_mrr@1 | 0.6571 | 0.1297 | 0.2956 | 0.3204 | 0.3942 | 0.2777 | 0.0939 |
|
| 1036 |
+
| cosine_mrr@20 | 0.8095 | 0.5547 | 0.4893 | 0.4399 | 0.4816 | 0.3598 | 0.1486 |
|
| 1037 |
+
| cosine_mrr@50 | 0.8095 | 0.5547 | 0.4903 | 0.4428 | 0.4846 | 0.3631 | 0.1528 |
|
| 1038 |
+
| cosine_mrr@100 | 0.8095 | 0.5547 | 0.4907 | 0.4434 | 0.4855 | 0.3643 | 0.1544 |
|
| 1039 |
+
| cosine_mrr@150 | 0.8095 | 0.5547 | 0.4907 | 0.4439 | 0.4857 | 0.3647 | 0.1549 |
|
| 1040 |
+
| cosine_mrr@200 | 0.8095 | 0.5547 | 0.4907 | 0.444 | 0.4858 | 0.3649 | 0.1552 |
|
| 1041 |
+
| cosine_map@1 | 0.6571 | 0.1297 | 0.2956 | 0.3204 | 0.3942 | 0.2777 | 0.0939 |
|
| 1042 |
+
| cosine_map@20 | 0.5423 | 0.4043 | 0.3233 | 0.1448 | 0.4099 | 0.2941 | 0.0849 |
|
| 1043 |
+
| cosine_map@50 | 0.534 | 0.3394 | 0.261 | 0.1244 | 0.417 | 0.3011 | 0.0905 |
|
| 1044 |
+
| cosine_map@100 | 0.5669 | 0.3369 | 0.2554 | 0.1294 | 0.4192 | 0.3039 | 0.0925 |
|
| 1045 |
+
| cosine_map@150 | 0.575 | 0.3445 | 0.2643 | 0.132 | 0.4199 | 0.3047 | 0.0933 |
|
| 1046 |
+
| cosine_map@200 | 0.5778 | 0.3502 | 0.2692 | 0.1336 | 0.4202 | 0.3051 | 0.0936 |
|
| 1047 |
+
| cosine_map@500 | 0.5826 | 0.3601 | 0.2803 | 0.1374 | 0.4207 | 0.306 | 0.0946 |
|
| 1048 |
+
|
| 1049 |
+
<!--
|
| 1050 |
+
## Bias, Risks and Limitations
|
| 1051 |
+
|
| 1052 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 1053 |
+
-->
|
| 1054 |
+
|
| 1055 |
+
<!--
|
| 1056 |
+
### Recommendations
|
| 1057 |
+
|
| 1058 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 1059 |
+
-->
|
| 1060 |
+
|
| 1061 |
+
## Training Details
|
| 1062 |
+
|
| 1063 |
+
### Training Datasets
|
| 1064 |
+
<details><summary>full_en</summary>
|
| 1065 |
+
|
| 1066 |
+
#### full_en
|
| 1067 |
+
|
| 1068 |
+
* Dataset: full_en
|
| 1069 |
+
* Size: 28,880 training samples
|
| 1070 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1071 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1072 |
+
| | anchor | positive |
|
| 1073 |
+
|:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1074 |
+
| type | string | string |
|
| 1075 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 5.0 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.01 tokens</li><li>max: 13 tokens</li></ul> |
|
| 1076 |
+
* Samples:
|
| 1077 |
+
| anchor | positive |
|
| 1078 |
+
|:-----------------------------------------|:-----------------------------------------|
|
| 1079 |
+
| <code>air commodore</code> | <code>flight lieutenant</code> |
|
| 1080 |
+
| <code>command and control officer</code> | <code>flight officer</code> |
|
| 1081 |
+
| <code>air commodore</code> | <code>command and control officer</code> |
|
| 1082 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1083 |
+
```json
|
| 1084 |
+
{'guide': SentenceTransformer(
|
| 1085 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1086 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1087 |
+
(2): Normalize()
|
| 1088 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1089 |
+
```
|
| 1090 |
+
</details>
|
| 1091 |
+
<details><summary>full_de</summary>
|
| 1092 |
+
|
| 1093 |
+
#### full_de
|
| 1094 |
+
|
| 1095 |
+
* Dataset: full_de
|
| 1096 |
+
* Size: 23,023 training samples
|
| 1097 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1098 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1099 |
+
| | anchor | positive |
|
| 1100 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1101 |
+
| type | string | string |
|
| 1102 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 11.05 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.43 tokens</li><li>max: 45 tokens</li></ul> |
|
| 1103 |
+
* Samples:
|
| 1104 |
+
| anchor | positive |
|
| 1105 |
+
|:----------------------------------|:-----------------------------------------------------|
|
| 1106 |
+
| <code>Staffelkommandantin</code> | <code>Kommodore</code> |
|
| 1107 |
+
| <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
|
| 1108 |
+
| <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
|
| 1109 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1110 |
+
```json
|
| 1111 |
+
{'guide': SentenceTransformer(
|
| 1112 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1113 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1114 |
+
(2): Normalize()
|
| 1115 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1116 |
+
```
|
| 1117 |
+
</details>
|
| 1118 |
+
<details><summary>full_es</summary>
|
| 1119 |
+
|
| 1120 |
+
#### full_es
|
| 1121 |
+
|
| 1122 |
+
* Dataset: full_es
|
| 1123 |
+
* Size: 20,724 training samples
|
| 1124 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1125 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1126 |
+
| | anchor | positive |
|
| 1127 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1128 |
+
| type | string | string |
|
| 1129 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 12.95 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.57 tokens</li><li>max: 50 tokens</li></ul> |
|
| 1130 |
+
* Samples:
|
| 1131 |
+
| anchor | positive |
|
| 1132 |
+
|:------------------------------------|:-------------------------------------------|
|
| 1133 |
+
| <code>jefe de escuadrón</code> | <code>instructor</code> |
|
| 1134 |
+
| <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
|
| 1135 |
+
| <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
|
| 1136 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1137 |
+
```json
|
| 1138 |
+
{'guide': SentenceTransformer(
|
| 1139 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1140 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1141 |
+
(2): Normalize()
|
| 1142 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1143 |
+
```
|
| 1144 |
+
</details>
|
| 1145 |
+
<details><summary>full_zh</summary>
|
| 1146 |
+
|
| 1147 |
+
#### full_zh
|
| 1148 |
+
|
| 1149 |
+
* Dataset: full_zh
|
| 1150 |
+
* Size: 30,401 training samples
|
| 1151 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1152 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1153 |
+
| | anchor | positive |
|
| 1154 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1155 |
+
| type | string | string |
|
| 1156 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 8.36 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.95 tokens</li><li>max: 27 tokens</li></ul> |
|
| 1157 |
+
* Samples:
|
| 1158 |
+
| anchor | positive |
|
| 1159 |
+
|:------------------|:---------------------|
|
| 1160 |
+
| <code>技术总监</code> | <code>技术和运营总监</code> |
|
| 1161 |
+
| <code>技术总监</code> | <code>技术主管</code> |
|
| 1162 |
+
| <code>技术总监</code> | <code>技术艺术总监</code> |
|
| 1163 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1164 |
+
```json
|
| 1165 |
+
{'guide': SentenceTransformer(
|
| 1166 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1167 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1168 |
+
(2): Normalize()
|
| 1169 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1170 |
+
```
|
| 1171 |
+
</details>
|
| 1172 |
+
<details><summary>mix</summary>
|
| 1173 |
+
|
| 1174 |
+
#### mix
|
| 1175 |
+
|
| 1176 |
+
* Dataset: mix
|
| 1177 |
+
* Size: 21,760 training samples
|
| 1178 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1179 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1180 |
+
| | anchor | positive |
|
| 1181 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1182 |
+
| type | string | string |
|
| 1183 |
+
| details | <ul><li>min: 2 tokens</li><li>mean: 5.65 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 10.08 tokens</li><li>max: 30 tokens</li></ul> |
|
| 1184 |
+
* Samples:
|
| 1185 |
+
| anchor | positive |
|
| 1186 |
+
|:------------------------------------------|:----------------------------------------------------------------|
|
| 1187 |
+
| <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
|
| 1188 |
+
| <code>head of technical</code> | <code>directora técnica</code> |
|
| 1189 |
+
| <code>head of technical department</code> | <code>技术艺术总监</code> |
|
| 1190 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1191 |
+
```json
|
| 1192 |
+
{'guide': SentenceTransformer(
|
| 1193 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1194 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1195 |
+
(2): Normalize()
|
| 1196 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1197 |
+
```
|
| 1198 |
+
</details>
|
| 1199 |
+
|
| 1200 |
+
### Training Hyperparameters
|
| 1201 |
+
#### Non-Default Hyperparameters
|
| 1202 |
+
|
| 1203 |
+
- `eval_strategy`: steps
|
| 1204 |
+
- `per_device_train_batch_size`: 128
|
| 1205 |
+
- `per_device_eval_batch_size`: 128
|
| 1206 |
+
- `gradient_accumulation_steps`: 2
|
| 1207 |
+
- `num_train_epochs`: 5
|
| 1208 |
+
- `warmup_ratio`: 0.05
|
| 1209 |
+
- `log_on_each_node`: False
|
| 1210 |
+
- `fp16`: True
|
| 1211 |
+
- `dataloader_num_workers`: 4
|
| 1212 |
+
- `ddp_find_unused_parameters`: True
|
| 1213 |
+
- `batch_sampler`: no_duplicates
|
| 1214 |
+
|
| 1215 |
+
#### All Hyperparameters
|
| 1216 |
+
<details><summary>Click to expand</summary>
|
| 1217 |
+
|
| 1218 |
+
- `overwrite_output_dir`: False
|
| 1219 |
+
- `do_predict`: False
|
| 1220 |
+
- `eval_strategy`: steps
|
| 1221 |
+
- `prediction_loss_only`: True
|
| 1222 |
+
- `per_device_train_batch_size`: 128
|
| 1223 |
+
- `per_device_eval_batch_size`: 128
|
| 1224 |
+
- `per_gpu_train_batch_size`: None
|
| 1225 |
+
- `per_gpu_eval_batch_size`: None
|
| 1226 |
+
- `gradient_accumulation_steps`: 2
|
| 1227 |
+
- `eval_accumulation_steps`: None
|
| 1228 |
+
- `torch_empty_cache_steps`: None
|
| 1229 |
+
- `learning_rate`: 5e-05
|
| 1230 |
+
- `weight_decay`: 0.0
|
| 1231 |
+
- `adam_beta1`: 0.9
|
| 1232 |
+
- `adam_beta2`: 0.999
|
| 1233 |
+
- `adam_epsilon`: 1e-08
|
| 1234 |
+
- `max_grad_norm`: 1.0
|
| 1235 |
+
- `num_train_epochs`: 5
|
| 1236 |
+
- `max_steps`: -1
|
| 1237 |
+
- `lr_scheduler_type`: linear
|
| 1238 |
+
- `lr_scheduler_kwargs`: {}
|
| 1239 |
+
- `warmup_ratio`: 0.05
|
| 1240 |
+
- `warmup_steps`: 0
|
| 1241 |
+
- `log_level`: passive
|
| 1242 |
+
- `log_level_replica`: warning
|
| 1243 |
+
- `log_on_each_node`: False
|
| 1244 |
+
- `logging_nan_inf_filter`: True
|
| 1245 |
+
- `save_safetensors`: True
|
| 1246 |
+
- `save_on_each_node`: False
|
| 1247 |
+
- `save_only_model`: False
|
| 1248 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 1249 |
+
- `no_cuda`: False
|
| 1250 |
+
- `use_cpu`: False
|
| 1251 |
+
- `use_mps_device`: False
|
| 1252 |
+
- `seed`: 42
|
| 1253 |
+
- `data_seed`: None
|
| 1254 |
+
- `jit_mode_eval`: False
|
| 1255 |
+
- `use_ipex`: False
|
| 1256 |
+
- `bf16`: False
|
| 1257 |
+
- `fp16`: True
|
| 1258 |
+
- `fp16_opt_level`: O1
|
| 1259 |
+
- `half_precision_backend`: auto
|
| 1260 |
+
- `bf16_full_eval`: False
|
| 1261 |
+
- `fp16_full_eval`: False
|
| 1262 |
+
- `tf32`: None
|
| 1263 |
+
- `local_rank`: 0
|
| 1264 |
+
- `ddp_backend`: None
|
| 1265 |
+
- `tpu_num_cores`: None
|
| 1266 |
+
- `tpu_metrics_debug`: False
|
| 1267 |
+
- `debug`: []
|
| 1268 |
+
- `dataloader_drop_last`: True
|
| 1269 |
+
- `dataloader_num_workers`: 4
|
| 1270 |
+
- `dataloader_prefetch_factor`: None
|
| 1271 |
+
- `past_index`: -1
|
| 1272 |
+
- `disable_tqdm`: False
|
| 1273 |
+
- `remove_unused_columns`: True
|
| 1274 |
+
- `label_names`: None
|
| 1275 |
+
- `load_best_model_at_end`: False
|
| 1276 |
+
- `ignore_data_skip`: False
|
| 1277 |
+
- `fsdp`: []
|
| 1278 |
+
- `fsdp_min_num_params`: 0
|
| 1279 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 1280 |
+
- `tp_size`: 0
|
| 1281 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 1282 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 1283 |
+
- `deepspeed`: None
|
| 1284 |
+
- `label_smoothing_factor`: 0.0
|
| 1285 |
+
- `optim`: adamw_torch
|
| 1286 |
+
- `optim_args`: None
|
| 1287 |
+
- `adafactor`: False
|
| 1288 |
+
- `group_by_length`: False
|
| 1289 |
+
- `length_column_name`: length
|
| 1290 |
+
- `ddp_find_unused_parameters`: True
|
| 1291 |
+
- `ddp_bucket_cap_mb`: None
|
| 1292 |
+
- `ddp_broadcast_buffers`: False
|
| 1293 |
+
- `dataloader_pin_memory`: True
|
| 1294 |
+
- `dataloader_persistent_workers`: False
|
| 1295 |
+
- `skip_memory_metrics`: True
|
| 1296 |
+
- `use_legacy_prediction_loop`: False
|
| 1297 |
+
- `push_to_hub`: False
|
| 1298 |
+
- `resume_from_checkpoint`: None
|
| 1299 |
+
- `hub_model_id`: None
|
| 1300 |
+
- `hub_strategy`: every_save
|
| 1301 |
+
- `hub_private_repo`: None
|
| 1302 |
+
- `hub_always_push`: False
|
| 1303 |
+
- `gradient_checkpointing`: False
|
| 1304 |
+
- `gradient_checkpointing_kwargs`: None
|
| 1305 |
+
- `include_inputs_for_metrics`: False
|
| 1306 |
+
- `include_for_metrics`: []
|
| 1307 |
+
- `eval_do_concat_batches`: True
|
| 1308 |
+
- `fp16_backend`: auto
|
| 1309 |
+
- `push_to_hub_model_id`: None
|
| 1310 |
+
- `push_to_hub_organization`: None
|
| 1311 |
+
- `mp_parameters`:
|
| 1312 |
+
- `auto_find_batch_size`: False
|
| 1313 |
+
- `full_determinism`: False
|
| 1314 |
+
- `torchdynamo`: None
|
| 1315 |
+
- `ray_scope`: last
|
| 1316 |
+
- `ddp_timeout`: 1800
|
| 1317 |
+
- `torch_compile`: False
|
| 1318 |
+
- `torch_compile_backend`: None
|
| 1319 |
+
- `torch_compile_mode`: None
|
| 1320 |
+
- `include_tokens_per_second`: False
|
| 1321 |
+
- `include_num_input_tokens_seen`: False
|
| 1322 |
+
- `neftune_noise_alpha`: None
|
| 1323 |
+
- `optim_target_modules`: None
|
| 1324 |
+
- `batch_eval_metrics`: False
|
| 1325 |
+
- `eval_on_start`: False
|
| 1326 |
+
- `use_liger_kernel`: False
|
| 1327 |
+
- `eval_use_gather_object`: False
|
| 1328 |
+
- `average_tokens_across_devices`: False
|
| 1329 |
+
- `prompts`: None
|
| 1330 |
+
- `batch_sampler`: no_duplicates
|
| 1331 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 1332 |
+
|
| 1333 |
+
</details>
|
| 1334 |
+
|
| 1335 |
+
### Training Logs
|
| 1336 |
+
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|
| 1337 |
+
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
|
| 1338 |
+
| -1 | -1 | - | 0.7322 | 0.4690 | 0.3853 | 0.2723 | 0.3209 | 0.2244 | 0.0919 |
|
| 1339 |
+
| 0.0021 | 1 | 23.8878 | - | - | - | - | - | - | - |
|
| 1340 |
+
| 0.2058 | 100 | 7.2098 | - | - | - | - | - | - | - |
|
| 1341 |
+
| 0.4115 | 200 | 4.2635 | 0.7800 | 0.5132 | 0.4268 | 0.2798 | 0.4372 | 0.2996 | 0.1447 |
|
| 1342 |
+
| 0.6173 | 300 | 4.1931 | - | - | - | - | - | - | - |
|
| 1343 |
+
| 0.8230 | 400 | 3.73 | 0.7863 | 0.5274 | 0.4451 | 0.2805 | 0.4762 | 0.3455 | 0.1648 |
|
| 1344 |
+
| 1.0309 | 500 | 3.3569 | - | - | - | - | - | - | - |
|
| 1345 |
+
| 1.2366 | 600 | 3.6464 | 0.7868 | 0.5372 | 0.4540 | 0.2813 | 0.5063 | 0.3794 | 0.1755 |
|
| 1346 |
+
| 1.4424 | 700 | 3.0772 | - | - | - | - | - | - | - |
|
| 1347 |
+
| 1.6481 | 800 | 3.114 | 0.7906 | 0.5391 | 0.4576 | 0.2832 | 0.5221 | 0.4047 | 0.1779 |
|
| 1348 |
+
| 1.8539 | 900 | 2.9246 | - | - | - | - | - | - | - |
|
| 1349 |
+
| 2.0617 | 1000 | 2.7479 | 0.7873 | 0.5423 | 0.4631 | 0.2871 | 0.5323 | 0.4143 | 0.1843 |
|
| 1350 |
+
| 2.2675 | 1100 | 3.049 | - | - | - | - | - | - | - |
|
| 1351 |
+
| 2.4733 | 1200 | 2.6137 | 0.7878 | 0.5418 | 0.4685 | 0.2870 | 0.5470 | 0.4339 | 0.1932 |
|
| 1352 |
+
| 2.6790 | 1300 | 2.8607 | - | - | - | - | - | - | - |
|
| 1353 |
+
| 2.8848 | 1400 | 2.7071 | 0.7889 | 0.5465 | 0.4714 | 0.2891 | 0.5504 | 0.4362 | 0.1944 |
|
| 1354 |
+
| 3.0926 | 1500 | 2.7012 | - | - | - | - | - | - | - |
|
| 1355 |
+
| 3.2984 | 1600 | 2.7423 | 0.7882 | 0.5471 | 0.4748 | 0.2868 | 0.5542 | 0.4454 | 0.1976 |
|
| 1356 |
+
|
| 1357 |
+
|
| 1358 |
+
### Framework Versions
|
| 1359 |
+
- Python: 3.11.11
|
| 1360 |
+
- Sentence Transformers: 4.1.0
|
| 1361 |
+
- Transformers: 4.51.3
|
| 1362 |
+
- PyTorch: 2.6.0+cu124
|
| 1363 |
+
- Accelerate: 1.6.0
|
| 1364 |
+
- Datasets: 3.5.0
|
| 1365 |
+
- Tokenizers: 0.21.1
|
| 1366 |
+
|
| 1367 |
+
## Citation
|
| 1368 |
+
|
| 1369 |
+
### BibTeX
|
| 1370 |
+
|
| 1371 |
+
#### Sentence Transformers
|
| 1372 |
+
```bibtex
|
| 1373 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1374 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1375 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1376 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1377 |
+
month = "11",
|
| 1378 |
+
year = "2019",
|
| 1379 |
+
publisher = "Association for Computational Linguistics",
|
| 1380 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1381 |
+
}
|
| 1382 |
+
```
|
| 1383 |
+
|
| 1384 |
+
#### GISTEmbedLoss
|
| 1385 |
+
```bibtex
|
| 1386 |
+
@misc{solatorio2024gistembed,
|
| 1387 |
+
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
|
| 1388 |
+
author={Aivin V. Solatorio},
|
| 1389 |
+
year={2024},
|
| 1390 |
+
eprint={2402.16829},
|
| 1391 |
+
archivePrefix={arXiv},
|
| 1392 |
+
primaryClass={cs.LG}
|
| 1393 |
+
}
|
| 1394 |
+
```
|
| 1395 |
+
|
| 1396 |
+
<!--
|
| 1397 |
+
## Glossary
|
| 1398 |
+
|
| 1399 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1400 |
+
-->
|
| 1401 |
+
|
| 1402 |
+
<!--
|
| 1403 |
+
## Model Card Authors
|
| 1404 |
+
|
| 1405 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1406 |
+
-->
|
| 1407 |
+
|
| 1408 |
+
<!--
|
| 1409 |
+
## Model Card Contact
|
| 1410 |
+
|
| 1411 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1412 |
+
-->
|
checkpoint-1600/config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"hidden_act": "gelu",
|
| 8 |
+
"hidden_dropout_prob": 0.1,
|
| 9 |
+
"hidden_size": 384,
|
| 10 |
+
"id2label": {
|
| 11 |
+
"0": "LABEL_0"
|
| 12 |
+
},
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 1536,
|
| 15 |
+
"label2id": {
|
| 16 |
+
"LABEL_0": 0
|
| 17 |
+
},
|
| 18 |
+
"layer_norm_eps": 1e-12,
|
| 19 |
+
"max_position_embeddings": 512,
|
| 20 |
+
"model_type": "bert",
|
| 21 |
+
"num_attention_heads": 12,
|
| 22 |
+
"num_hidden_layers": 12,
|
| 23 |
+
"pad_token_id": 0,
|
| 24 |
+
"position_embedding_type": "absolute",
|
| 25 |
+
"torch_dtype": "float32",
|
| 26 |
+
"transformers_version": "4.51.3",
|
| 27 |
+
"type_vocab_size": 2,
|
| 28 |
+
"use_cache": true,
|
| 29 |
+
"vocab_size": 30522
|
| 30 |
+
}
|
checkpoint-1600/modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
checkpoint-1600/tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"sep_token": "[SEP]",
|
| 54 |
+
"strip_accents": null,
|
| 55 |
+
"tokenize_chinese_chars": true,
|
| 56 |
+
"tokenizer_class": "BertTokenizer",
|
| 57 |
+
"unk_token": "[UNK]"
|
| 58 |
+
}
|
checkpoint-1600/vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-1800/1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
checkpoint-1800/config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"hidden_act": "gelu",
|
| 8 |
+
"hidden_dropout_prob": 0.1,
|
| 9 |
+
"hidden_size": 384,
|
| 10 |
+
"id2label": {
|
| 11 |
+
"0": "LABEL_0"
|
| 12 |
+
},
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 1536,
|
| 15 |
+
"label2id": {
|
| 16 |
+
"LABEL_0": 0
|
| 17 |
+
},
|
| 18 |
+
"layer_norm_eps": 1e-12,
|
| 19 |
+
"max_position_embeddings": 512,
|
| 20 |
+
"model_type": "bert",
|
| 21 |
+
"num_attention_heads": 12,
|
| 22 |
+
"num_hidden_layers": 12,
|
| 23 |
+
"pad_token_id": 0,
|
| 24 |
+
"position_embedding_type": "absolute",
|
| 25 |
+
"torch_dtype": "float32",
|
| 26 |
+
"transformers_version": "4.51.3",
|
| 27 |
+
"type_vocab_size": 2,
|
| 28 |
+
"use_cache": true,
|
| 29 |
+
"vocab_size": 30522
|
| 30 |
+
}
|
checkpoint-1800/modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
checkpoint-1800/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2437b5c67036935c72b2c072bed4ff74e1c8b6722209e57827521e3614926ba5
|
| 3 |
+
size 14244
|
checkpoint-1800/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4ad34971e3c69650a686a499a0f3766200f8730349122d5039c4709bab310232
|
| 3 |
+
size 1064
|
checkpoint-1800/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-1800/tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"sep_token": "[SEP]",
|
| 54 |
+
"strip_accents": null,
|
| 55 |
+
"tokenize_chinese_chars": true,
|
| 56 |
+
"tokenizer_class": "BertTokenizer",
|
| 57 |
+
"unk_token": "[UNK]"
|
| 58 |
+
}
|
checkpoint-1800/trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-1800/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:760a4b48c96df095158050a3998b912dc701e81df23c2f6256e0e65915c7301a
|
| 3 |
+
size 5624
|
checkpoint-1800/vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2000/1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
checkpoint-2000/README.md
ADDED
|
@@ -0,0 +1,1416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:124788
|
| 8 |
+
- loss:GISTEmbedLoss
|
| 9 |
+
base_model: BAAI/bge-small-en-v1.5
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: 其他机械、设备和有形货物租赁服务代表
|
| 12 |
+
sentences:
|
| 13 |
+
- 其他机械和设备租赁服务工作人员
|
| 14 |
+
- 电子和电信设备及零部件物流经理
|
| 15 |
+
- 工业主厨
|
| 16 |
+
- source_sentence: 公交车司机
|
| 17 |
+
sentences:
|
| 18 |
+
- 表演灯光设计师
|
| 19 |
+
- 乙烯基地板安装工
|
| 20 |
+
- 国际巴士司机
|
| 21 |
+
- source_sentence: online communication manager
|
| 22 |
+
sentences:
|
| 23 |
+
- trades union official
|
| 24 |
+
- social media manager
|
| 25 |
+
- budget manager
|
| 26 |
+
- source_sentence: Projektmanagerin
|
| 27 |
+
sentences:
|
| 28 |
+
- Projektmanager/Projektmanagerin
|
| 29 |
+
- Category-Manager
|
| 30 |
+
- Infanterist
|
| 31 |
+
- source_sentence: Volksvertreter
|
| 32 |
+
sentences:
|
| 33 |
+
- Parlamentarier
|
| 34 |
+
- Oberbürgermeister
|
| 35 |
+
- Konsul
|
| 36 |
+
pipeline_tag: sentence-similarity
|
| 37 |
+
library_name: sentence-transformers
|
| 38 |
+
metrics:
|
| 39 |
+
- cosine_accuracy@1
|
| 40 |
+
- cosine_accuracy@20
|
| 41 |
+
- cosine_accuracy@50
|
| 42 |
+
- cosine_accuracy@100
|
| 43 |
+
- cosine_accuracy@150
|
| 44 |
+
- cosine_accuracy@200
|
| 45 |
+
- cosine_precision@1
|
| 46 |
+
- cosine_precision@20
|
| 47 |
+
- cosine_precision@50
|
| 48 |
+
- cosine_precision@100
|
| 49 |
+
- cosine_precision@150
|
| 50 |
+
- cosine_precision@200
|
| 51 |
+
- cosine_recall@1
|
| 52 |
+
- cosine_recall@20
|
| 53 |
+
- cosine_recall@50
|
| 54 |
+
- cosine_recall@100
|
| 55 |
+
- cosine_recall@150
|
| 56 |
+
- cosine_recall@200
|
| 57 |
+
- cosine_ndcg@1
|
| 58 |
+
- cosine_ndcg@20
|
| 59 |
+
- cosine_ndcg@50
|
| 60 |
+
- cosine_ndcg@100
|
| 61 |
+
- cosine_ndcg@150
|
| 62 |
+
- cosine_ndcg@200
|
| 63 |
+
- cosine_mrr@1
|
| 64 |
+
- cosine_mrr@20
|
| 65 |
+
- cosine_mrr@50
|
| 66 |
+
- cosine_mrr@100
|
| 67 |
+
- cosine_mrr@150
|
| 68 |
+
- cosine_mrr@200
|
| 69 |
+
- cosine_map@1
|
| 70 |
+
- cosine_map@20
|
| 71 |
+
- cosine_map@50
|
| 72 |
+
- cosine_map@100
|
| 73 |
+
- cosine_map@150
|
| 74 |
+
- cosine_map@200
|
| 75 |
+
- cosine_map@500
|
| 76 |
+
model-index:
|
| 77 |
+
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
|
| 78 |
+
results:
|
| 79 |
+
- task:
|
| 80 |
+
type: information-retrieval
|
| 81 |
+
name: Information Retrieval
|
| 82 |
+
dataset:
|
| 83 |
+
name: full en
|
| 84 |
+
type: full_en
|
| 85 |
+
metrics:
|
| 86 |
+
- type: cosine_accuracy@1
|
| 87 |
+
value: 0.6571428571428571
|
| 88 |
+
name: Cosine Accuracy@1
|
| 89 |
+
- type: cosine_accuracy@20
|
| 90 |
+
value: 0.9904761904761905
|
| 91 |
+
name: Cosine Accuracy@20
|
| 92 |
+
- type: cosine_accuracy@50
|
| 93 |
+
value: 0.9904761904761905
|
| 94 |
+
name: Cosine Accuracy@50
|
| 95 |
+
- type: cosine_accuracy@100
|
| 96 |
+
value: 0.9904761904761905
|
| 97 |
+
name: Cosine Accuracy@100
|
| 98 |
+
- type: cosine_accuracy@150
|
| 99 |
+
value: 0.9904761904761905
|
| 100 |
+
name: Cosine Accuracy@150
|
| 101 |
+
- type: cosine_accuracy@200
|
| 102 |
+
value: 0.9904761904761905
|
| 103 |
+
name: Cosine Accuracy@200
|
| 104 |
+
- type: cosine_precision@1
|
| 105 |
+
value: 0.6571428571428571
|
| 106 |
+
name: Cosine Precision@1
|
| 107 |
+
- type: cosine_precision@20
|
| 108 |
+
value: 0.5057142857142858
|
| 109 |
+
name: Cosine Precision@20
|
| 110 |
+
- type: cosine_precision@50
|
| 111 |
+
value: 0.3085714285714286
|
| 112 |
+
name: Cosine Precision@50
|
| 113 |
+
- type: cosine_precision@100
|
| 114 |
+
value: 0.18685714285714286
|
| 115 |
+
name: Cosine Precision@100
|
| 116 |
+
- type: cosine_precision@150
|
| 117 |
+
value: 0.13263492063492063
|
| 118 |
+
name: Cosine Precision@150
|
| 119 |
+
- type: cosine_precision@200
|
| 120 |
+
value: 0.10261904761904762
|
| 121 |
+
name: Cosine Precision@200
|
| 122 |
+
- type: cosine_recall@1
|
| 123 |
+
value: 0.0680237860830842
|
| 124 |
+
name: Cosine Recall@1
|
| 125 |
+
- type: cosine_recall@20
|
| 126 |
+
value: 0.539814746481506
|
| 127 |
+
name: Cosine Recall@20
|
| 128 |
+
- type: cosine_recall@50
|
| 129 |
+
value: 0.7281788406466259
|
| 130 |
+
name: Cosine Recall@50
|
| 131 |
+
- type: cosine_recall@100
|
| 132 |
+
value: 0.8369695734692713
|
| 133 |
+
name: Cosine Recall@100
|
| 134 |
+
- type: cosine_recall@150
|
| 135 |
+
value: 0.8797734908498225
|
| 136 |
+
name: Cosine Recall@150
|
| 137 |
+
- type: cosine_recall@200
|
| 138 |
+
value: 0.9040821090543185
|
| 139 |
+
name: Cosine Recall@200
|
| 140 |
+
- type: cosine_ndcg@1
|
| 141 |
+
value: 0.6571428571428571
|
| 142 |
+
name: Cosine Ndcg@1
|
| 143 |
+
- type: cosine_ndcg@20
|
| 144 |
+
value: 0.6871892352981543
|
| 145 |
+
name: Cosine Ndcg@20
|
| 146 |
+
- type: cosine_ndcg@50
|
| 147 |
+
value: 0.7057435134474674
|
| 148 |
+
name: Cosine Ndcg@50
|
| 149 |
+
- type: cosine_ndcg@100
|
| 150 |
+
value: 0.7611594394123498
|
| 151 |
+
name: Cosine Ndcg@100
|
| 152 |
+
- type: cosine_ndcg@150
|
| 153 |
+
value: 0.7798336860589586
|
| 154 |
+
name: Cosine Ndcg@150
|
| 155 |
+
- type: cosine_ndcg@200
|
| 156 |
+
value: 0.7894131768304745
|
| 157 |
+
name: Cosine Ndcg@200
|
| 158 |
+
- type: cosine_mrr@1
|
| 159 |
+
value: 0.6571428571428571
|
| 160 |
+
name: Cosine Mrr@1
|
| 161 |
+
- type: cosine_mrr@20
|
| 162 |
+
value: 0.8095238095238095
|
| 163 |
+
name: Cosine Mrr@20
|
| 164 |
+
- type: cosine_mrr@50
|
| 165 |
+
value: 0.8095238095238095
|
| 166 |
+
name: Cosine Mrr@50
|
| 167 |
+
- type: cosine_mrr@100
|
| 168 |
+
value: 0.8095238095238095
|
| 169 |
+
name: Cosine Mrr@100
|
| 170 |
+
- type: cosine_mrr@150
|
| 171 |
+
value: 0.8095238095238095
|
| 172 |
+
name: Cosine Mrr@150
|
| 173 |
+
- type: cosine_mrr@200
|
| 174 |
+
value: 0.8095238095238095
|
| 175 |
+
name: Cosine Mrr@200
|
| 176 |
+
- type: cosine_map@1
|
| 177 |
+
value: 0.6571428571428571
|
| 178 |
+
name: Cosine Map@1
|
| 179 |
+
- type: cosine_map@20
|
| 180 |
+
value: 0.5458017299619246
|
| 181 |
+
name: Cosine Map@20
|
| 182 |
+
- type: cosine_map@50
|
| 183 |
+
value: 0.5350568967293148
|
| 184 |
+
name: Cosine Map@50
|
| 185 |
+
- type: cosine_map@100
|
| 186 |
+
value: 0.5681338314009312
|
| 187 |
+
name: Cosine Map@100
|
| 188 |
+
- type: cosine_map@150
|
| 189 |
+
value: 0.5758337072896192
|
| 190 |
+
name: Cosine Map@150
|
| 191 |
+
- type: cosine_map@200
|
| 192 |
+
value: 0.5788774324789392
|
| 193 |
+
name: Cosine Map@200
|
| 194 |
+
- type: cosine_map@500
|
| 195 |
+
value: 0.5832951333498196
|
| 196 |
+
name: Cosine Map@500
|
| 197 |
+
- task:
|
| 198 |
+
type: information-retrieval
|
| 199 |
+
name: Information Retrieval
|
| 200 |
+
dataset:
|
| 201 |
+
name: full es
|
| 202 |
+
type: full_es
|
| 203 |
+
metrics:
|
| 204 |
+
- type: cosine_accuracy@1
|
| 205 |
+
value: 0.12432432432432433
|
| 206 |
+
name: Cosine Accuracy@1
|
| 207 |
+
- type: cosine_accuracy@20
|
| 208 |
+
value: 1.0
|
| 209 |
+
name: Cosine Accuracy@20
|
| 210 |
+
- type: cosine_accuracy@50
|
| 211 |
+
value: 1.0
|
| 212 |
+
name: Cosine Accuracy@50
|
| 213 |
+
- type: cosine_accuracy@100
|
| 214 |
+
value: 1.0
|
| 215 |
+
name: Cosine Accuracy@100
|
| 216 |
+
- type: cosine_accuracy@150
|
| 217 |
+
value: 1.0
|
| 218 |
+
name: Cosine Accuracy@150
|
| 219 |
+
- type: cosine_accuracy@200
|
| 220 |
+
value: 1.0
|
| 221 |
+
name: Cosine Accuracy@200
|
| 222 |
+
- type: cosine_precision@1
|
| 223 |
+
value: 0.12432432432432433
|
| 224 |
+
name: Cosine Precision@1
|
| 225 |
+
- type: cosine_precision@20
|
| 226 |
+
value: 0.49054054054054047
|
| 227 |
+
name: Cosine Precision@20
|
| 228 |
+
- type: cosine_precision@50
|
| 229 |
+
value: 0.3163243243243243
|
| 230 |
+
name: Cosine Precision@50
|
| 231 |
+
- type: cosine_precision@100
|
| 232 |
+
value: 0.19794594594594597
|
| 233 |
+
name: Cosine Precision@100
|
| 234 |
+
- type: cosine_precision@150
|
| 235 |
+
value: 0.1476036036036036
|
| 236 |
+
name: Cosine Precision@150
|
| 237 |
+
- type: cosine_precision@200
|
| 238 |
+
value: 0.11764864864864866
|
| 239 |
+
name: Cosine Precision@200
|
| 240 |
+
- type: cosine_recall@1
|
| 241 |
+
value: 0.003111544931768446
|
| 242 |
+
name: Cosine Recall@1
|
| 243 |
+
- type: cosine_recall@20
|
| 244 |
+
value: 0.3226281360780687
|
| 245 |
+
name: Cosine Recall@20
|
| 246 |
+
- type: cosine_recall@50
|
| 247 |
+
value: 0.460233186838451
|
| 248 |
+
name: Cosine Recall@50
|
| 249 |
+
- type: cosine_recall@100
|
| 250 |
+
value: 0.541868009988165
|
| 251 |
+
name: Cosine Recall@100
|
| 252 |
+
- type: cosine_recall@150
|
| 253 |
+
value: 0.5852603494024129
|
| 254 |
+
name: Cosine Recall@150
|
| 255 |
+
- type: cosine_recall@200
|
| 256 |
+
value: 0.6129186722388266
|
| 257 |
+
name: Cosine Recall@200
|
| 258 |
+
- type: cosine_ndcg@1
|
| 259 |
+
value: 0.12432432432432433
|
| 260 |
+
name: Cosine Ndcg@1
|
| 261 |
+
- type: cosine_ndcg@20
|
| 262 |
+
value: 0.539216162208845
|
| 263 |
+
name: Cosine Ndcg@20
|
| 264 |
+
- type: cosine_ndcg@50
|
| 265 |
+
value: 0.4996835226060237
|
| 266 |
+
name: Cosine Ndcg@50
|
| 267 |
+
- type: cosine_ndcg@100
|
| 268 |
+
value: 0.5137905428062277
|
| 269 |
+
name: Cosine Ndcg@100
|
| 270 |
+
- type: cosine_ndcg@150
|
| 271 |
+
value: 0.5360687473286022
|
| 272 |
+
name: Cosine Ndcg@150
|
| 273 |
+
- type: cosine_ndcg@200
|
| 274 |
+
value: 0.5499397431446335
|
| 275 |
+
name: Cosine Ndcg@200
|
| 276 |
+
- type: cosine_mrr@1
|
| 277 |
+
value: 0.12432432432432433
|
| 278 |
+
name: Cosine Mrr@1
|
| 279 |
+
- type: cosine_mrr@20
|
| 280 |
+
value: 0.54987987987988
|
| 281 |
+
name: Cosine Mrr@20
|
| 282 |
+
- type: cosine_mrr@50
|
| 283 |
+
value: 0.54987987987988
|
| 284 |
+
name: Cosine Mrr@50
|
| 285 |
+
- type: cosine_mrr@100
|
| 286 |
+
value: 0.54987987987988
|
| 287 |
+
name: Cosine Mrr@100
|
| 288 |
+
- type: cosine_mrr@150
|
| 289 |
+
value: 0.54987987987988
|
| 290 |
+
name: Cosine Mrr@150
|
| 291 |
+
- type: cosine_mrr@200
|
| 292 |
+
value: 0.54987987987988
|
| 293 |
+
name: Cosine Mrr@200
|
| 294 |
+
- type: cosine_map@1
|
| 295 |
+
value: 0.12432432432432433
|
| 296 |
+
name: Cosine Map@1
|
| 297 |
+
- type: cosine_map@20
|
| 298 |
+
value: 0.4038320848933988
|
| 299 |
+
name: Cosine Map@20
|
| 300 |
+
- type: cosine_map@50
|
| 301 |
+
value: 0.34180322548979025
|
| 302 |
+
name: Cosine Map@50
|
| 303 |
+
- type: cosine_map@100
|
| 304 |
+
value: 0.33919520921684143
|
| 305 |
+
name: Cosine Map@100
|
| 306 |
+
- type: cosine_map@150
|
| 307 |
+
value: 0.34836248453935964
|
| 308 |
+
name: Cosine Map@150
|
| 309 |
+
- type: cosine_map@200
|
| 310 |
+
value: 0.3534621616433109
|
| 311 |
+
name: Cosine Map@200
|
| 312 |
+
- type: cosine_map@500
|
| 313 |
+
value: 0.36317607366795296
|
| 314 |
+
name: Cosine Map@500
|
| 315 |
+
- task:
|
| 316 |
+
type: information-retrieval
|
| 317 |
+
name: Information Retrieval
|
| 318 |
+
dataset:
|
| 319 |
+
name: full de
|
| 320 |
+
type: full_de
|
| 321 |
+
metrics:
|
| 322 |
+
- type: cosine_accuracy@1
|
| 323 |
+
value: 0.2955665024630542
|
| 324 |
+
name: Cosine Accuracy@1
|
| 325 |
+
- type: cosine_accuracy@20
|
| 326 |
+
value: 0.9211822660098522
|
| 327 |
+
name: Cosine Accuracy@20
|
| 328 |
+
- type: cosine_accuracy@50
|
| 329 |
+
value: 0.9655172413793104
|
| 330 |
+
name: Cosine Accuracy@50
|
| 331 |
+
- type: cosine_accuracy@100
|
| 332 |
+
value: 0.9753694581280788
|
| 333 |
+
name: Cosine Accuracy@100
|
| 334 |
+
- type: cosine_accuracy@150
|
| 335 |
+
value: 0.9852216748768473
|
| 336 |
+
name: Cosine Accuracy@150
|
| 337 |
+
- type: cosine_accuracy@200
|
| 338 |
+
value: 0.9852216748768473
|
| 339 |
+
name: Cosine Accuracy@200
|
| 340 |
+
- type: cosine_precision@1
|
| 341 |
+
value: 0.2955665024630542
|
| 342 |
+
name: Cosine Precision@1
|
| 343 |
+
- type: cosine_precision@20
|
| 344 |
+
value: 0.4273399014778325
|
| 345 |
+
name: Cosine Precision@20
|
| 346 |
+
- type: cosine_precision@50
|
| 347 |
+
value: 0.2806896551724138
|
| 348 |
+
name: Cosine Precision@50
|
| 349 |
+
- type: cosine_precision@100
|
| 350 |
+
value: 0.17970443349753695
|
| 351 |
+
name: Cosine Precision@100
|
| 352 |
+
- type: cosine_precision@150
|
| 353 |
+
value: 0.13536945812807882
|
| 354 |
+
name: Cosine Precision@150
|
| 355 |
+
- type: cosine_precision@200
|
| 356 |
+
value: 0.11017241379310345
|
| 357 |
+
name: Cosine Precision@200
|
| 358 |
+
- type: cosine_recall@1
|
| 359 |
+
value: 0.01108543831680986
|
| 360 |
+
name: Cosine Recall@1
|
| 361 |
+
- type: cosine_recall@20
|
| 362 |
+
value: 0.2624274710898933
|
| 363 |
+
name: Cosine Recall@20
|
| 364 |
+
- type: cosine_recall@50
|
| 365 |
+
value: 0.3816838951440551
|
| 366 |
+
name: Cosine Recall@50
|
| 367 |
+
- type: cosine_recall@100
|
| 368 |
+
value: 0.466648189283344
|
| 369 |
+
name: Cosine Recall@100
|
| 370 |
+
- type: cosine_recall@150
|
| 371 |
+
value: 0.5156350937800631
|
| 372 |
+
name: Cosine Recall@150
|
| 373 |
+
- type: cosine_recall@200
|
| 374 |
+
value: 0.5501200676805387
|
| 375 |
+
name: Cosine Recall@200
|
| 376 |
+
- type: cosine_ndcg@1
|
| 377 |
+
value: 0.2955665024630542
|
| 378 |
+
name: Cosine Ndcg@1
|
| 379 |
+
- type: cosine_ndcg@20
|
| 380 |
+
value: 0.4612630794197783
|
| 381 |
+
name: Cosine Ndcg@20
|
| 382 |
+
- type: cosine_ndcg@50
|
| 383 |
+
value: 0.4218308857158181
|
| 384 |
+
name: Cosine Ndcg@50
|
| 385 |
+
- type: cosine_ndcg@100
|
| 386 |
+
value: 0.43630012299200127
|
| 387 |
+
name: Cosine Ndcg@100
|
| 388 |
+
- type: cosine_ndcg@150
|
| 389 |
+
value: 0.4611671590034933
|
| 390 |
+
name: Cosine Ndcg@150
|
| 391 |
+
- type: cosine_ndcg@200
|
| 392 |
+
value: 0.47859447889613466
|
| 393 |
+
name: Cosine Ndcg@200
|
| 394 |
+
- type: cosine_mrr@1
|
| 395 |
+
value: 0.2955665024630542
|
| 396 |
+
name: Cosine Mrr@1
|
| 397 |
+
- type: cosine_mrr@20
|
| 398 |
+
value: 0.4902263308667246
|
| 399 |
+
name: Cosine Mrr@20
|
| 400 |
+
- type: cosine_mrr@50
|
| 401 |
+
value: 0.49157690165668283
|
| 402 |
+
name: Cosine Mrr@50
|
| 403 |
+
- type: cosine_mrr@100
|
| 404 |
+
value: 0.491727421634789
|
| 405 |
+
name: Cosine Mrr@100
|
| 406 |
+
- type: cosine_mrr@150
|
| 407 |
+
value: 0.49180457899033725
|
| 408 |
+
name: Cosine Mrr@150
|
| 409 |
+
- type: cosine_mrr@200
|
| 410 |
+
value: 0.49180457899033725
|
| 411 |
+
name: Cosine Mrr@200
|
| 412 |
+
- type: cosine_map@1
|
| 413 |
+
value: 0.2955665024630542
|
| 414 |
+
name: Cosine Map@1
|
| 415 |
+
- type: cosine_map@20
|
| 416 |
+
value: 0.32403320158333687
|
| 417 |
+
name: Cosine Map@20
|
| 418 |
+
- type: cosine_map@50
|
| 419 |
+
value: 0.263929499089501
|
| 420 |
+
name: Cosine Map@50
|
| 421 |
+
- type: cosine_map@100
|
| 422 |
+
value: 0.2571656148623807
|
| 423 |
+
name: Cosine Map@100
|
| 424 |
+
- type: cosine_map@150
|
| 425 |
+
value: 0.2662223711722934
|
| 426 |
+
name: Cosine Map@150
|
| 427 |
+
- type: cosine_map@200
|
| 428 |
+
value: 0.2716128199441605
|
| 429 |
+
name: Cosine Map@200
|
| 430 |
+
- type: cosine_map@500
|
| 431 |
+
value: 0.2826472699200774
|
| 432 |
+
name: Cosine Map@500
|
| 433 |
+
- task:
|
| 434 |
+
type: information-retrieval
|
| 435 |
+
name: Information Retrieval
|
| 436 |
+
dataset:
|
| 437 |
+
name: full zh
|
| 438 |
+
type: full_zh
|
| 439 |
+
metrics:
|
| 440 |
+
- type: cosine_accuracy@1
|
| 441 |
+
value: 0.30097087378640774
|
| 442 |
+
name: Cosine Accuracy@1
|
| 443 |
+
- type: cosine_accuracy@20
|
| 444 |
+
value: 0.6990291262135923
|
| 445 |
+
name: Cosine Accuracy@20
|
| 446 |
+
- type: cosine_accuracy@50
|
| 447 |
+
value: 0.8446601941747572
|
| 448 |
+
name: Cosine Accuracy@50
|
| 449 |
+
- type: cosine_accuracy@100
|
| 450 |
+
value: 0.883495145631068
|
| 451 |
+
name: Cosine Accuracy@100
|
| 452 |
+
- type: cosine_accuracy@150
|
| 453 |
+
value: 0.941747572815534
|
| 454 |
+
name: Cosine Accuracy@150
|
| 455 |
+
- type: cosine_accuracy@200
|
| 456 |
+
value: 0.941747572815534
|
| 457 |
+
name: Cosine Accuracy@200
|
| 458 |
+
- type: cosine_precision@1
|
| 459 |
+
value: 0.30097087378640774
|
| 460 |
+
name: Cosine Precision@1
|
| 461 |
+
- type: cosine_precision@20
|
| 462 |
+
value: 0.16504854368932043
|
| 463 |
+
name: Cosine Precision@20
|
| 464 |
+
- type: cosine_precision@50
|
| 465 |
+
value: 0.0932038834951456
|
| 466 |
+
name: Cosine Precision@50
|
| 467 |
+
- type: cosine_precision@100
|
| 468 |
+
value: 0.05825242718446601
|
| 469 |
+
name: Cosine Precision@100
|
| 470 |
+
- type: cosine_precision@150
|
| 471 |
+
value: 0.04601941747572816
|
| 472 |
+
name: Cosine Precision@150
|
| 473 |
+
- type: cosine_precision@200
|
| 474 |
+
value: 0.038834951456310676
|
| 475 |
+
name: Cosine Precision@200
|
| 476 |
+
- type: cosine_recall@1
|
| 477 |
+
value: 0.02386287516726942
|
| 478 |
+
name: Cosine Recall@1
|
| 479 |
+
- type: cosine_recall@20
|
| 480 |
+
value: 0.1765726567124355
|
| 481 |
+
name: Cosine Recall@20
|
| 482 |
+
- type: cosine_recall@50
|
| 483 |
+
value: 0.23652817418030478
|
| 484 |
+
name: Cosine Recall@50
|
| 485 |
+
- type: cosine_recall@100
|
| 486 |
+
value: 0.2843496525793469
|
| 487 |
+
name: Cosine Recall@100
|
| 488 |
+
- type: cosine_recall@150
|
| 489 |
+
value: 0.3277225727000478
|
| 490 |
+
name: Cosine Recall@150
|
| 491 |
+
- type: cosine_recall@200
|
| 492 |
+
value: 0.3596812771438104
|
| 493 |
+
name: Cosine Recall@200
|
| 494 |
+
- type: cosine_ndcg@1
|
| 495 |
+
value: 0.30097087378640774
|
| 496 |
+
name: Cosine Ndcg@1
|
| 497 |
+
- type: cosine_ndcg@20
|
| 498 |
+
value: 0.23858136398044388
|
| 499 |
+
name: Cosine Ndcg@20
|
| 500 |
+
- type: cosine_ndcg@50
|
| 501 |
+
value: 0.23394297561992747
|
| 502 |
+
name: Cosine Ndcg@50
|
| 503 |
+
- type: cosine_ndcg@100
|
| 504 |
+
value: 0.25614039865630267
|
| 505 |
+
name: Cosine Ndcg@100
|
| 506 |
+
- type: cosine_ndcg@150
|
| 507 |
+
value: 0.2739893276218014
|
| 508 |
+
name: Cosine Ndcg@150
|
| 509 |
+
- type: cosine_ndcg@200
|
| 510 |
+
value: 0.2869614126642384
|
| 511 |
+
name: Cosine Ndcg@200
|
| 512 |
+
- type: cosine_mrr@1
|
| 513 |
+
value: 0.30097087378640774
|
| 514 |
+
name: Cosine Mrr@1
|
| 515 |
+
- type: cosine_mrr@20
|
| 516 |
+
value: 0.4190465134339312
|
| 517 |
+
name: Cosine Mrr@20
|
| 518 |
+
- type: cosine_mrr@50
|
| 519 |
+
value: 0.4240176433261117
|
| 520 |
+
name: Cosine Mrr@50
|
| 521 |
+
- type: cosine_mrr@100
|
| 522 |
+
value: 0.4245497320288698
|
| 523 |
+
name: Cosine Mrr@100
|
| 524 |
+
- type: cosine_mrr@150
|
| 525 |
+
value: 0.4250484654944024
|
| 526 |
+
name: Cosine Mrr@150
|
| 527 |
+
- type: cosine_mrr@200
|
| 528 |
+
value: 0.4250484654944024
|
| 529 |
+
name: Cosine Mrr@200
|
| 530 |
+
- type: cosine_map@1
|
| 531 |
+
value: 0.30097087378640774
|
| 532 |
+
name: Cosine Map@1
|
| 533 |
+
- type: cosine_map@20
|
| 534 |
+
value: 0.1429307444790631
|
| 535 |
+
name: Cosine Map@20
|
| 536 |
+
- type: cosine_map@50
|
| 537 |
+
value: 0.12440485302105762
|
| 538 |
+
name: Cosine Map@50
|
| 539 |
+
- type: cosine_map@100
|
| 540 |
+
value: 0.12975707309312245
|
| 541 |
+
name: Cosine Map@100
|
| 542 |
+
- type: cosine_map@150
|
| 543 |
+
value: 0.1324151603536725
|
| 544 |
+
name: Cosine Map@150
|
| 545 |
+
- type: cosine_map@200
|
| 546 |
+
value: 0.13400586423473068
|
| 547 |
+
name: Cosine Map@200
|
| 548 |
+
- type: cosine_map@500
|
| 549 |
+
value: 0.13792557615284717
|
| 550 |
+
name: Cosine Map@500
|
| 551 |
+
- task:
|
| 552 |
+
type: information-retrieval
|
| 553 |
+
name: Information Retrieval
|
| 554 |
+
dataset:
|
| 555 |
+
name: mix es
|
| 556 |
+
type: mix_es
|
| 557 |
+
metrics:
|
| 558 |
+
- type: cosine_accuracy@1
|
| 559 |
+
value: 0.40561622464898595
|
| 560 |
+
name: Cosine Accuracy@1
|
| 561 |
+
- type: cosine_accuracy@20
|
| 562 |
+
value: 0.7555902236089443
|
| 563 |
+
name: Cosine Accuracy@20
|
| 564 |
+
- type: cosine_accuracy@50
|
| 565 |
+
value: 0.8465938637545501
|
| 566 |
+
name: Cosine Accuracy@50
|
| 567 |
+
- type: cosine_accuracy@100
|
| 568 |
+
value: 0.9053562142485699
|
| 569 |
+
name: Cosine Accuracy@100
|
| 570 |
+
- type: cosine_accuracy@150
|
| 571 |
+
value: 0.9391575663026521
|
| 572 |
+
name: Cosine Accuracy@150
|
| 573 |
+
- type: cosine_accuracy@200
|
| 574 |
+
value: 0.9521580863234529
|
| 575 |
+
name: Cosine Accuracy@200
|
| 576 |
+
- type: cosine_precision@1
|
| 577 |
+
value: 0.40561622464898595
|
| 578 |
+
name: Cosine Precision@1
|
| 579 |
+
- type: cosine_precision@20
|
| 580 |
+
value: 0.08801352054082164
|
| 581 |
+
name: Cosine Precision@20
|
| 582 |
+
- type: cosine_precision@50
|
| 583 |
+
value: 0.0414560582423297
|
| 584 |
+
name: Cosine Precision@50
|
| 585 |
+
- type: cosine_precision@100
|
| 586 |
+
value: 0.02274050962038482
|
| 587 |
+
name: Cosine Precision@100
|
| 588 |
+
- type: cosine_precision@150
|
| 589 |
+
value: 0.01580863234529381
|
| 590 |
+
name: Cosine Precision@150
|
| 591 |
+
- type: cosine_precision@200
|
| 592 |
+
value: 0.012181487259490382
|
| 593 |
+
name: Cosine Precision@200
|
| 594 |
+
- type: cosine_recall@1
|
| 595 |
+
value: 0.15422578807914222
|
| 596 |
+
name: Cosine Recall@1
|
| 597 |
+
- type: cosine_recall@20
|
| 598 |
+
value: 0.6504234455092489
|
| 599 |
+
name: Cosine Recall@20
|
| 600 |
+
- type: cosine_recall@50
|
| 601 |
+
value: 0.7645209617908526
|
| 602 |
+
name: Cosine Recall@50
|
| 603 |
+
- type: cosine_recall@100
|
| 604 |
+
value: 0.8407386771661344
|
| 605 |
+
name: Cosine Recall@100
|
| 606 |
+
- type: cosine_recall@150
|
| 607 |
+
value: 0.8772614714112373
|
| 608 |
+
name: Cosine Recall@150
|
| 609 |
+
- type: cosine_recall@200
|
| 610 |
+
value: 0.9011477601961221
|
| 611 |
+
name: Cosine Recall@200
|
| 612 |
+
- type: cosine_ndcg@1
|
| 613 |
+
value: 0.40561622464898595
|
| 614 |
+
name: Cosine Ndcg@1
|
| 615 |
+
- type: cosine_ndcg@20
|
| 616 |
+
value: 0.5052527283785204
|
| 617 |
+
name: Cosine Ndcg@20
|
| 618 |
+
- type: cosine_ndcg@50
|
| 619 |
+
value: 0.5363668402911114
|
| 620 |
+
name: Cosine Ndcg@50
|
| 621 |
+
- type: cosine_ndcg@100
|
| 622 |
+
value: 0.5529351239282845
|
| 623 |
+
name: Cosine Ndcg@100
|
| 624 |
+
- type: cosine_ndcg@150
|
| 625 |
+
value: 0.5600105253735999
|
| 626 |
+
name: Cosine Ndcg@150
|
| 627 |
+
- type: cosine_ndcg@200
|
| 628 |
+
value: 0.5643581500059056
|
| 629 |
+
name: Cosine Ndcg@200
|
| 630 |
+
- type: cosine_mrr@1
|
| 631 |
+
value: 0.40561622464898595
|
| 632 |
+
name: Cosine Mrr@1
|
| 633 |
+
- type: cosine_mrr@20
|
| 634 |
+
value: 0.49193080862589195
|
| 635 |
+
name: Cosine Mrr@20
|
| 636 |
+
- type: cosine_mrr@50
|
| 637 |
+
value: 0.49497073018920573
|
| 638 |
+
name: Cosine Mrr@50
|
| 639 |
+
- type: cosine_mrr@100
|
| 640 |
+
value: 0.4958131715411002
|
| 641 |
+
name: Cosine Mrr@100
|
| 642 |
+
- type: cosine_mrr@150
|
| 643 |
+
value: 0.4960911044064609
|
| 644 |
+
name: Cosine Mrr@150
|
| 645 |
+
- type: cosine_mrr@200
|
| 646 |
+
value: 0.49616673564150066
|
| 647 |
+
name: Cosine Mrr@200
|
| 648 |
+
- type: cosine_map@1
|
| 649 |
+
value: 0.40561622464898595
|
| 650 |
+
name: Cosine Map@1
|
| 651 |
+
- type: cosine_map@20
|
| 652 |
+
value: 0.42113760176243775
|
| 653 |
+
name: Cosine Map@20
|
| 654 |
+
- type: cosine_map@50
|
| 655 |
+
value: 0.4288029559186059
|
| 656 |
+
name: Cosine Map@50
|
| 657 |
+
- type: cosine_map@100
|
| 658 |
+
value: 0.4309354633228117
|
| 659 |
+
name: Cosine Map@100
|
| 660 |
+
- type: cosine_map@150
|
| 661 |
+
value: 0.43151233276792966
|
| 662 |
+
name: Cosine Map@150
|
| 663 |
+
- type: cosine_map@200
|
| 664 |
+
value: 0.4318026647046382
|
| 665 |
+
name: Cosine Map@200
|
| 666 |
+
- type: cosine_map@500
|
| 667 |
+
value: 0.4322791851958394
|
| 668 |
+
name: Cosine Map@500
|
| 669 |
+
- task:
|
| 670 |
+
type: information-retrieval
|
| 671 |
+
name: Information Retrieval
|
| 672 |
+
dataset:
|
| 673 |
+
name: mix de
|
| 674 |
+
type: mix_de
|
| 675 |
+
metrics:
|
| 676 |
+
- type: cosine_accuracy@1
|
| 677 |
+
value: 0.28965158606344255
|
| 678 |
+
name: Cosine Accuracy@1
|
| 679 |
+
- type: cosine_accuracy@20
|
| 680 |
+
value: 0.6453458138325533
|
| 681 |
+
name: Cosine Accuracy@20
|
| 682 |
+
- type: cosine_accuracy@50
|
| 683 |
+
value: 0.7514300572022881
|
| 684 |
+
name: Cosine Accuracy@50
|
| 685 |
+
- type: cosine_accuracy@100
|
| 686 |
+
value: 0.8424336973478939
|
| 687 |
+
name: Cosine Accuracy@100
|
| 688 |
+
- type: cosine_accuracy@150
|
| 689 |
+
value: 0.8840353614144566
|
| 690 |
+
name: Cosine Accuracy@150
|
| 691 |
+
- type: cosine_accuracy@200
|
| 692 |
+
value: 0.9131565262610505
|
| 693 |
+
name: Cosine Accuracy@200
|
| 694 |
+
- type: cosine_precision@1
|
| 695 |
+
value: 0.28965158606344255
|
| 696 |
+
name: Cosine Precision@1
|
| 697 |
+
- type: cosine_precision@20
|
| 698 |
+
value: 0.07230889235569424
|
| 699 |
+
name: Cosine Precision@20
|
| 700 |
+
- type: cosine_precision@50
|
| 701 |
+
value: 0.035559022360894435
|
| 702 |
+
name: Cosine Precision@50
|
| 703 |
+
- type: cosine_precision@100
|
| 704 |
+
value: 0.02045241809672387
|
| 705 |
+
name: Cosine Precision@100
|
| 706 |
+
- type: cosine_precision@150
|
| 707 |
+
value: 0.014543248396602529
|
| 708 |
+
name: Cosine Precision@150
|
| 709 |
+
- type: cosine_precision@200
|
| 710 |
+
value: 0.011443057722308895
|
| 711 |
+
name: Cosine Precision@200
|
| 712 |
+
- type: cosine_recall@1
|
| 713 |
+
value: 0.10873634945397814
|
| 714 |
+
name: Cosine Recall@1
|
| 715 |
+
- type: cosine_recall@20
|
| 716 |
+
value: 0.5285491419656786
|
| 717 |
+
name: Cosine Recall@20
|
| 718 |
+
- type: cosine_recall@50
|
| 719 |
+
value: 0.6476772404229503
|
| 720 |
+
name: Cosine Recall@50
|
| 721 |
+
- type: cosine_recall@100
|
| 722 |
+
value: 0.7456058242329694
|
| 723 |
+
name: Cosine Recall@100
|
| 724 |
+
- type: cosine_recall@150
|
| 725 |
+
value: 0.7947564569249437
|
| 726 |
+
name: Cosine Recall@150
|
| 727 |
+
- type: cosine_recall@200
|
| 728 |
+
value: 0.8333680013867221
|
| 729 |
+
name: Cosine Recall@200
|
| 730 |
+
- type: cosine_ndcg@1
|
| 731 |
+
value: 0.28965158606344255
|
| 732 |
+
name: Cosine Ndcg@1
|
| 733 |
+
- type: cosine_ndcg@20
|
| 734 |
+
value: 0.3869439859976832
|
| 735 |
+
name: Cosine Ndcg@20
|
| 736 |
+
- type: cosine_ndcg@50
|
| 737 |
+
value: 0.419340853881164
|
| 738 |
+
name: Cosine Ndcg@50
|
| 739 |
+
- type: cosine_ndcg@100
|
| 740 |
+
value: 0.4408718349726106
|
| 741 |
+
name: Cosine Ndcg@100
|
| 742 |
+
- type: cosine_ndcg@150
|
| 743 |
+
value: 0.4505012036387736
|
| 744 |
+
name: Cosine Ndcg@150
|
| 745 |
+
- type: cosine_ndcg@200
|
| 746 |
+
value: 0.4575667024678089
|
| 747 |
+
name: Cosine Ndcg@200
|
| 748 |
+
- type: cosine_mrr@1
|
| 749 |
+
value: 0.28965158606344255
|
| 750 |
+
name: Cosine Mrr@1
|
| 751 |
+
- type: cosine_mrr@20
|
| 752 |
+
value: 0.37323361269727506
|
| 753 |
+
name: Cosine Mrr@20
|
| 754 |
+
- type: cosine_mrr@50
|
| 755 |
+
value: 0.37671986743715985
|
| 756 |
+
name: Cosine Mrr@50
|
| 757 |
+
- type: cosine_mrr@100
|
| 758 |
+
value: 0.37799876590389947
|
| 759 |
+
name: Cosine Mrr@100
|
| 760 |
+
- type: cosine_mrr@150
|
| 761 |
+
value: 0.3783355727887503
|
| 762 |
+
name: Cosine Mrr@150
|
| 763 |
+
- type: cosine_mrr@200
|
| 764 |
+
value: 0.37850251063580587
|
| 765 |
+
name: Cosine Mrr@200
|
| 766 |
+
- type: cosine_map@1
|
| 767 |
+
value: 0.28965158606344255
|
| 768 |
+
name: Cosine Map@1
|
| 769 |
+
- type: cosine_map@20
|
| 770 |
+
value: 0.3048226727334811
|
| 771 |
+
name: Cosine Map@20
|
| 772 |
+
- type: cosine_map@50
|
| 773 |
+
value: 0.3123006074016708
|
| 774 |
+
name: Cosine Map@50
|
| 775 |
+
- type: cosine_map@100
|
| 776 |
+
value: 0.3150058759399239
|
| 777 |
+
name: Cosine Map@100
|
| 778 |
+
- type: cosine_map@150
|
| 779 |
+
value: 0.31578258870027714
|
| 780 |
+
name: Cosine Map@150
|
| 781 |
+
- type: cosine_map@200
|
| 782 |
+
value: 0.31623339353875296
|
| 783 |
+
name: Cosine Map@200
|
| 784 |
+
- type: cosine_map@500
|
| 785 |
+
value: 0.3169966358324732
|
| 786 |
+
name: Cosine Map@500
|
| 787 |
+
- task:
|
| 788 |
+
type: information-retrieval
|
| 789 |
+
name: Information Retrieval
|
| 790 |
+
dataset:
|
| 791 |
+
name: mix zh
|
| 792 |
+
type: mix_zh
|
| 793 |
+
metrics:
|
| 794 |
+
- type: cosine_accuracy@1
|
| 795 |
+
value: 0.09551148225469729
|
| 796 |
+
name: Cosine Accuracy@1
|
| 797 |
+
- type: cosine_accuracy@20
|
| 798 |
+
value: 0.34812108559498955
|
| 799 |
+
name: Cosine Accuracy@20
|
| 800 |
+
- type: cosine_accuracy@50
|
| 801 |
+
value: 0.4932150313152401
|
| 802 |
+
name: Cosine Accuracy@50
|
| 803 |
+
- type: cosine_accuracy@100
|
| 804 |
+
value: 0.5970772442588727
|
| 805 |
+
name: Cosine Accuracy@100
|
| 806 |
+
- type: cosine_accuracy@150
|
| 807 |
+
value: 0.6623173277661796
|
| 808 |
+
name: Cosine Accuracy@150
|
| 809 |
+
- type: cosine_accuracy@200
|
| 810 |
+
value: 0.7035490605427975
|
| 811 |
+
name: Cosine Accuracy@200
|
| 812 |
+
- type: cosine_precision@1
|
| 813 |
+
value: 0.09551148225469729
|
| 814 |
+
name: Cosine Precision@1
|
| 815 |
+
- type: cosine_precision@20
|
| 816 |
+
value: 0.030480167014613778
|
| 817 |
+
name: Cosine Precision@20
|
| 818 |
+
- type: cosine_precision@50
|
| 819 |
+
value: 0.018402922755741128
|
| 820 |
+
name: Cosine Precision@50
|
| 821 |
+
- type: cosine_precision@100
|
| 822 |
+
value: 0.01144572025052192
|
| 823 |
+
name: Cosine Precision@100
|
| 824 |
+
- type: cosine_precision@150
|
| 825 |
+
value: 0.00861864996520529
|
| 826 |
+
name: Cosine Precision@150
|
| 827 |
+
- type: cosine_precision@200
|
| 828 |
+
value: 0.0070720250521920675
|
| 829 |
+
name: Cosine Precision@200
|
| 830 |
+
- type: cosine_recall@1
|
| 831 |
+
value: 0.03220250521920668
|
| 832 |
+
name: Cosine Recall@1
|
| 833 |
+
- type: cosine_recall@20
|
| 834 |
+
value: 0.20316259071478276
|
| 835 |
+
name: Cosine Recall@20
|
| 836 |
+
- type: cosine_recall@50
|
| 837 |
+
value: 0.3040399145044239
|
| 838 |
+
name: Cosine Recall@50
|
| 839 |
+
- type: cosine_recall@100
|
| 840 |
+
value: 0.37823300858269543
|
| 841 |
+
name: Cosine Recall@100
|
| 842 |
+
- type: cosine_recall@150
|
| 843 |
+
value: 0.4274327302250057
|
| 844 |
+
name: Cosine Recall@150
|
| 845 |
+
- type: cosine_recall@200
|
| 846 |
+
value: 0.467568429598701
|
| 847 |
+
name: Cosine Recall@200
|
| 848 |
+
- type: cosine_ndcg@1
|
| 849 |
+
value: 0.09551148225469729
|
| 850 |
+
name: Cosine Ndcg@1
|
| 851 |
+
- type: cosine_ndcg@20
|
| 852 |
+
value: 0.13449413074843178
|
| 853 |
+
name: Cosine Ndcg@20
|
| 854 |
+
- type: cosine_ndcg@50
|
| 855 |
+
value: 0.16281375869650408
|
| 856 |
+
name: Cosine Ndcg@50
|
| 857 |
+
- type: cosine_ndcg@100
|
| 858 |
+
value: 0.1798079117342116
|
| 859 |
+
name: Cosine Ndcg@100
|
| 860 |
+
- type: cosine_ndcg@150
|
| 861 |
+
value: 0.18976873702750593
|
| 862 |
+
name: Cosine Ndcg@150
|
| 863 |
+
- type: cosine_ndcg@200
|
| 864 |
+
value: 0.19737879358914515
|
| 865 |
+
name: Cosine Ndcg@200
|
| 866 |
+
- type: cosine_mrr@1
|
| 867 |
+
value: 0.09551148225469729
|
| 868 |
+
name: Cosine Mrr@1
|
| 869 |
+
- type: cosine_mrr@20
|
| 870 |
+
value: 0.148796848074501
|
| 871 |
+
name: Cosine Mrr@20
|
| 872 |
+
- type: cosine_mrr@50
|
| 873 |
+
value: 0.15342712486814447
|
| 874 |
+
name: Cosine Mrr@50
|
| 875 |
+
- type: cosine_mrr@100
|
| 876 |
+
value: 0.15489924735195337
|
| 877 |
+
name: Cosine Mrr@100
|
| 878 |
+
- type: cosine_mrr@150
|
| 879 |
+
value: 0.15543781318663716
|
| 880 |
+
name: Cosine Mrr@150
|
| 881 |
+
- type: cosine_mrr@200
|
| 882 |
+
value: 0.15567492413016254
|
| 883 |
+
name: Cosine Mrr@200
|
| 884 |
+
- type: cosine_map@1
|
| 885 |
+
value: 0.09551148225469729
|
| 886 |
+
name: Cosine Map@1
|
| 887 |
+
- type: cosine_map@20
|
| 888 |
+
value: 0.08472355170504958
|
| 889 |
+
name: Cosine Map@20
|
| 890 |
+
- type: cosine_map@50
|
| 891 |
+
value: 0.09038650929811239
|
| 892 |
+
name: Cosine Map@50
|
| 893 |
+
- type: cosine_map@100
|
| 894 |
+
value: 0.0922515804329945
|
| 895 |
+
name: Cosine Map@100
|
| 896 |
+
- type: cosine_map@150
|
| 897 |
+
value: 0.09296251507722719
|
| 898 |
+
name: Cosine Map@150
|
| 899 |
+
- type: cosine_map@200
|
| 900 |
+
value: 0.09340391507908284
|
| 901 |
+
name: Cosine Map@200
|
| 902 |
+
- type: cosine_map@500
|
| 903 |
+
value: 0.09434895514443004
|
| 904 |
+
name: Cosine Map@500
|
| 905 |
+
---
|
| 906 |
+
|
| 907 |
+
# SentenceTransformer based on BAAI/bge-small-en-v1.5
|
| 908 |
+
|
| 909 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 910 |
+
|
| 911 |
+
## Model Details
|
| 912 |
+
|
| 913 |
+
### Model Description
|
| 914 |
+
- **Model Type:** Sentence Transformer
|
| 915 |
+
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
|
| 916 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 917 |
+
- **Output Dimensionality:** 384 dimensions
|
| 918 |
+
- **Similarity Function:** Cosine Similarity
|
| 919 |
+
- **Training Datasets:**
|
| 920 |
+
- full_en
|
| 921 |
+
- full_de
|
| 922 |
+
- full_es
|
| 923 |
+
- full_zh
|
| 924 |
+
- mix
|
| 925 |
+
<!-- - **Language:** Unknown -->
|
| 926 |
+
<!-- - **License:** Unknown -->
|
| 927 |
+
|
| 928 |
+
### Model Sources
|
| 929 |
+
|
| 930 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 931 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 932 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 933 |
+
|
| 934 |
+
### Full Model Architecture
|
| 935 |
+
|
| 936 |
+
```
|
| 937 |
+
SentenceTransformer(
|
| 938 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
| 939 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 940 |
+
(2): Normalize()
|
| 941 |
+
)
|
| 942 |
+
```
|
| 943 |
+
|
| 944 |
+
## Usage
|
| 945 |
+
|
| 946 |
+
### Direct Usage (Sentence Transformers)
|
| 947 |
+
|
| 948 |
+
First install the Sentence Transformers library:
|
| 949 |
+
|
| 950 |
+
```bash
|
| 951 |
+
pip install -U sentence-transformers
|
| 952 |
+
```
|
| 953 |
+
|
| 954 |
+
Then you can load this model and run inference.
|
| 955 |
+
```python
|
| 956 |
+
from sentence_transformers import SentenceTransformer
|
| 957 |
+
|
| 958 |
+
# Download from the 🤗 Hub
|
| 959 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 960 |
+
# Run inference
|
| 961 |
+
sentences = [
|
| 962 |
+
'Volksvertreter',
|
| 963 |
+
'Parlamentarier',
|
| 964 |
+
'Oberbürgermeister',
|
| 965 |
+
]
|
| 966 |
+
embeddings = model.encode(sentences)
|
| 967 |
+
print(embeddings.shape)
|
| 968 |
+
# [3, 384]
|
| 969 |
+
|
| 970 |
+
# Get the similarity scores for the embeddings
|
| 971 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 972 |
+
print(similarities.shape)
|
| 973 |
+
# [3, 3]
|
| 974 |
+
```
|
| 975 |
+
|
| 976 |
+
<!--
|
| 977 |
+
### Direct Usage (Transformers)
|
| 978 |
+
|
| 979 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 980 |
+
|
| 981 |
+
</details>
|
| 982 |
+
-->
|
| 983 |
+
|
| 984 |
+
<!--
|
| 985 |
+
### Downstream Usage (Sentence Transformers)
|
| 986 |
+
|
| 987 |
+
You can finetune this model on your own dataset.
|
| 988 |
+
|
| 989 |
+
<details><summary>Click to expand</summary>
|
| 990 |
+
|
| 991 |
+
</details>
|
| 992 |
+
-->
|
| 993 |
+
|
| 994 |
+
<!--
|
| 995 |
+
### Out-of-Scope Use
|
| 996 |
+
|
| 997 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 998 |
+
-->
|
| 999 |
+
|
| 1000 |
+
## Evaluation
|
| 1001 |
+
|
| 1002 |
+
### Metrics
|
| 1003 |
+
|
| 1004 |
+
#### Information Retrieval
|
| 1005 |
+
|
| 1006 |
+
* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
|
| 1007 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
| 1008 |
+
|
| 1009 |
+
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
|
| 1010 |
+
|:---------------------|:-----------|:-----------|:-----------|:----------|:-----------|:-----------|:-----------|
|
| 1011 |
+
| cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4056 | 0.2897 | 0.0955 |
|
| 1012 |
+
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9212 | 0.699 | 0.7556 | 0.6453 | 0.3481 |
|
| 1013 |
+
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9655 | 0.8447 | 0.8466 | 0.7514 | 0.4932 |
|
| 1014 |
+
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9754 | 0.8835 | 0.9054 | 0.8424 | 0.5971 |
|
| 1015 |
+
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9852 | 0.9417 | 0.9392 | 0.884 | 0.6623 |
|
| 1016 |
+
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9852 | 0.9417 | 0.9522 | 0.9132 | 0.7035 |
|
| 1017 |
+
| cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4056 | 0.2897 | 0.0955 |
|
| 1018 |
+
| cosine_precision@20 | 0.5057 | 0.4905 | 0.4273 | 0.165 | 0.088 | 0.0723 | 0.0305 |
|
| 1019 |
+
| cosine_precision@50 | 0.3086 | 0.3163 | 0.2807 | 0.0932 | 0.0415 | 0.0356 | 0.0184 |
|
| 1020 |
+
| cosine_precision@100 | 0.1869 | 0.1979 | 0.1797 | 0.0583 | 0.0227 | 0.0205 | 0.0114 |
|
| 1021 |
+
| cosine_precision@150 | 0.1326 | 0.1476 | 0.1354 | 0.046 | 0.0158 | 0.0145 | 0.0086 |
|
| 1022 |
+
| cosine_precision@200 | 0.1026 | 0.1176 | 0.1102 | 0.0388 | 0.0122 | 0.0114 | 0.0071 |
|
| 1023 |
+
| cosine_recall@1 | 0.068 | 0.0031 | 0.0111 | 0.0239 | 0.1542 | 0.1087 | 0.0322 |
|
| 1024 |
+
| cosine_recall@20 | 0.5398 | 0.3226 | 0.2624 | 0.1766 | 0.6504 | 0.5285 | 0.2032 |
|
| 1025 |
+
| cosine_recall@50 | 0.7282 | 0.4602 | 0.3817 | 0.2365 | 0.7645 | 0.6477 | 0.304 |
|
| 1026 |
+
| cosine_recall@100 | 0.837 | 0.5419 | 0.4666 | 0.2843 | 0.8407 | 0.7456 | 0.3782 |
|
| 1027 |
+
| cosine_recall@150 | 0.8798 | 0.5853 | 0.5156 | 0.3277 | 0.8773 | 0.7948 | 0.4274 |
|
| 1028 |
+
| cosine_recall@200 | 0.9041 | 0.6129 | 0.5501 | 0.3597 | 0.9011 | 0.8334 | 0.4676 |
|
| 1029 |
+
| cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4056 | 0.2897 | 0.0955 |
|
| 1030 |
+
| cosine_ndcg@20 | 0.6872 | 0.5392 | 0.4613 | 0.2386 | 0.5053 | 0.3869 | 0.1345 |
|
| 1031 |
+
| cosine_ndcg@50 | 0.7057 | 0.4997 | 0.4218 | 0.2339 | 0.5364 | 0.4193 | 0.1628 |
|
| 1032 |
+
| cosine_ndcg@100 | 0.7612 | 0.5138 | 0.4363 | 0.2561 | 0.5529 | 0.4409 | 0.1798 |
|
| 1033 |
+
| cosine_ndcg@150 | 0.7798 | 0.5361 | 0.4612 | 0.274 | 0.56 | 0.4505 | 0.1898 |
|
| 1034 |
+
| **cosine_ndcg@200** | **0.7894** | **0.5499** | **0.4786** | **0.287** | **0.5644** | **0.4576** | **0.1974** |
|
| 1035 |
+
| cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4056 | 0.2897 | 0.0955 |
|
| 1036 |
+
| cosine_mrr@20 | 0.8095 | 0.5499 | 0.4902 | 0.419 | 0.4919 | 0.3732 | 0.1488 |
|
| 1037 |
+
| cosine_mrr@50 | 0.8095 | 0.5499 | 0.4916 | 0.424 | 0.495 | 0.3767 | 0.1534 |
|
| 1038 |
+
| cosine_mrr@100 | 0.8095 | 0.5499 | 0.4917 | 0.4245 | 0.4958 | 0.378 | 0.1549 |
|
| 1039 |
+
| cosine_mrr@150 | 0.8095 | 0.5499 | 0.4918 | 0.425 | 0.4961 | 0.3783 | 0.1554 |
|
| 1040 |
+
| cosine_mrr@200 | 0.8095 | 0.5499 | 0.4918 | 0.425 | 0.4962 | 0.3785 | 0.1557 |
|
| 1041 |
+
| cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4056 | 0.2897 | 0.0955 |
|
| 1042 |
+
| cosine_map@20 | 0.5458 | 0.4038 | 0.324 | 0.1429 | 0.4211 | 0.3048 | 0.0847 |
|
| 1043 |
+
| cosine_map@50 | 0.5351 | 0.3418 | 0.2639 | 0.1244 | 0.4288 | 0.3123 | 0.0904 |
|
| 1044 |
+
| cosine_map@100 | 0.5681 | 0.3392 | 0.2572 | 0.1298 | 0.4309 | 0.315 | 0.0923 |
|
| 1045 |
+
| cosine_map@150 | 0.5758 | 0.3484 | 0.2662 | 0.1324 | 0.4315 | 0.3158 | 0.093 |
|
| 1046 |
+
| cosine_map@200 | 0.5789 | 0.3535 | 0.2716 | 0.134 | 0.4318 | 0.3162 | 0.0934 |
|
| 1047 |
+
| cosine_map@500 | 0.5833 | 0.3632 | 0.2826 | 0.1379 | 0.4323 | 0.317 | 0.0943 |
|
| 1048 |
+
|
| 1049 |
+
<!--
|
| 1050 |
+
## Bias, Risks and Limitations
|
| 1051 |
+
|
| 1052 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 1053 |
+
-->
|
| 1054 |
+
|
| 1055 |
+
<!--
|
| 1056 |
+
### Recommendations
|
| 1057 |
+
|
| 1058 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 1059 |
+
-->
|
| 1060 |
+
|
| 1061 |
+
## Training Details
|
| 1062 |
+
|
| 1063 |
+
### Training Datasets
|
| 1064 |
+
<details><summary>full_en</summary>
|
| 1065 |
+
|
| 1066 |
+
#### full_en
|
| 1067 |
+
|
| 1068 |
+
* Dataset: full_en
|
| 1069 |
+
* Size: 28,880 training samples
|
| 1070 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1071 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1072 |
+
| | anchor | positive |
|
| 1073 |
+
|:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1074 |
+
| type | string | string |
|
| 1075 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 5.0 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.01 tokens</li><li>max: 13 tokens</li></ul> |
|
| 1076 |
+
* Samples:
|
| 1077 |
+
| anchor | positive |
|
| 1078 |
+
|:-----------------------------------------|:-----------------------------------------|
|
| 1079 |
+
| <code>air commodore</code> | <code>flight lieutenant</code> |
|
| 1080 |
+
| <code>command and control officer</code> | <code>flight officer</code> |
|
| 1081 |
+
| <code>air commodore</code> | <code>command and control officer</code> |
|
| 1082 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1083 |
+
```json
|
| 1084 |
+
{'guide': SentenceTransformer(
|
| 1085 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1086 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1087 |
+
(2): Normalize()
|
| 1088 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1089 |
+
```
|
| 1090 |
+
</details>
|
| 1091 |
+
<details><summary>full_de</summary>
|
| 1092 |
+
|
| 1093 |
+
#### full_de
|
| 1094 |
+
|
| 1095 |
+
* Dataset: full_de
|
| 1096 |
+
* Size: 23,023 training samples
|
| 1097 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1098 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1099 |
+
| | anchor | positive |
|
| 1100 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1101 |
+
| type | string | string |
|
| 1102 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 11.05 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.43 tokens</li><li>max: 45 tokens</li></ul> |
|
| 1103 |
+
* Samples:
|
| 1104 |
+
| anchor | positive |
|
| 1105 |
+
|:----------------------------------|:-----------------------------------------------------|
|
| 1106 |
+
| <code>Staffelkommandantin</code> | <code>Kommodore</code> |
|
| 1107 |
+
| <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
|
| 1108 |
+
| <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
|
| 1109 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1110 |
+
```json
|
| 1111 |
+
{'guide': SentenceTransformer(
|
| 1112 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1113 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1114 |
+
(2): Normalize()
|
| 1115 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1116 |
+
```
|
| 1117 |
+
</details>
|
| 1118 |
+
<details><summary>full_es</summary>
|
| 1119 |
+
|
| 1120 |
+
#### full_es
|
| 1121 |
+
|
| 1122 |
+
* Dataset: full_es
|
| 1123 |
+
* Size: 20,724 training samples
|
| 1124 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1125 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1126 |
+
| | anchor | positive |
|
| 1127 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1128 |
+
| type | string | string |
|
| 1129 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 12.95 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.57 tokens</li><li>max: 50 tokens</li></ul> |
|
| 1130 |
+
* Samples:
|
| 1131 |
+
| anchor | positive |
|
| 1132 |
+
|:------------------------------------|:-------------------------------------------|
|
| 1133 |
+
| <code>jefe de escuadrón</code> | <code>instructor</code> |
|
| 1134 |
+
| <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
|
| 1135 |
+
| <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
|
| 1136 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1137 |
+
```json
|
| 1138 |
+
{'guide': SentenceTransformer(
|
| 1139 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1140 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1141 |
+
(2): Normalize()
|
| 1142 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1143 |
+
```
|
| 1144 |
+
</details>
|
| 1145 |
+
<details><summary>full_zh</summary>
|
| 1146 |
+
|
| 1147 |
+
#### full_zh
|
| 1148 |
+
|
| 1149 |
+
* Dataset: full_zh
|
| 1150 |
+
* Size: 30,401 training samples
|
| 1151 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1152 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1153 |
+
| | anchor | positive |
|
| 1154 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1155 |
+
| type | string | string |
|
| 1156 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 8.36 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.95 tokens</li><li>max: 27 tokens</li></ul> |
|
| 1157 |
+
* Samples:
|
| 1158 |
+
| anchor | positive |
|
| 1159 |
+
|:------------------|:---------------------|
|
| 1160 |
+
| <code>技术总监</code> | <code>技术和运营总监</code> |
|
| 1161 |
+
| <code>技术总监</code> | <code>技术主管</code> |
|
| 1162 |
+
| <code>技术总监</code> | <code>技术艺术总监</code> |
|
| 1163 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1164 |
+
```json
|
| 1165 |
+
{'guide': SentenceTransformer(
|
| 1166 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1167 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1168 |
+
(2): Normalize()
|
| 1169 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1170 |
+
```
|
| 1171 |
+
</details>
|
| 1172 |
+
<details><summary>mix</summary>
|
| 1173 |
+
|
| 1174 |
+
#### mix
|
| 1175 |
+
|
| 1176 |
+
* Dataset: mix
|
| 1177 |
+
* Size: 21,760 training samples
|
| 1178 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1179 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1180 |
+
| | anchor | positive |
|
| 1181 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1182 |
+
| type | string | string |
|
| 1183 |
+
| details | <ul><li>min: 2 tokens</li><li>mean: 5.65 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 10.08 tokens</li><li>max: 30 tokens</li></ul> |
|
| 1184 |
+
* Samples:
|
| 1185 |
+
| anchor | positive |
|
| 1186 |
+
|:------------------------------------------|:----------------------------------------------------------------|
|
| 1187 |
+
| <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
|
| 1188 |
+
| <code>head of technical</code> | <code>directora técnica</code> |
|
| 1189 |
+
| <code>head of technical department</code> | <code>技术艺术总监</code> |
|
| 1190 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1191 |
+
```json
|
| 1192 |
+
{'guide': SentenceTransformer(
|
| 1193 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1194 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1195 |
+
(2): Normalize()
|
| 1196 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1197 |
+
```
|
| 1198 |
+
</details>
|
| 1199 |
+
|
| 1200 |
+
### Training Hyperparameters
|
| 1201 |
+
#### Non-Default Hyperparameters
|
| 1202 |
+
|
| 1203 |
+
- `eval_strategy`: steps
|
| 1204 |
+
- `per_device_train_batch_size`: 128
|
| 1205 |
+
- `per_device_eval_batch_size`: 128
|
| 1206 |
+
- `gradient_accumulation_steps`: 2
|
| 1207 |
+
- `num_train_epochs`: 5
|
| 1208 |
+
- `warmup_ratio`: 0.05
|
| 1209 |
+
- `log_on_each_node`: False
|
| 1210 |
+
- `fp16`: True
|
| 1211 |
+
- `dataloader_num_workers`: 4
|
| 1212 |
+
- `ddp_find_unused_parameters`: True
|
| 1213 |
+
- `batch_sampler`: no_duplicates
|
| 1214 |
+
|
| 1215 |
+
#### All Hyperparameters
|
| 1216 |
+
<details><summary>Click to expand</summary>
|
| 1217 |
+
|
| 1218 |
+
- `overwrite_output_dir`: False
|
| 1219 |
+
- `do_predict`: False
|
| 1220 |
+
- `eval_strategy`: steps
|
| 1221 |
+
- `prediction_loss_only`: True
|
| 1222 |
+
- `per_device_train_batch_size`: 128
|
| 1223 |
+
- `per_device_eval_batch_size`: 128
|
| 1224 |
+
- `per_gpu_train_batch_size`: None
|
| 1225 |
+
- `per_gpu_eval_batch_size`: None
|
| 1226 |
+
- `gradient_accumulation_steps`: 2
|
| 1227 |
+
- `eval_accumulation_steps`: None
|
| 1228 |
+
- `torch_empty_cache_steps`: None
|
| 1229 |
+
- `learning_rate`: 5e-05
|
| 1230 |
+
- `weight_decay`: 0.0
|
| 1231 |
+
- `adam_beta1`: 0.9
|
| 1232 |
+
- `adam_beta2`: 0.999
|
| 1233 |
+
- `adam_epsilon`: 1e-08
|
| 1234 |
+
- `max_grad_norm`: 1.0
|
| 1235 |
+
- `num_train_epochs`: 5
|
| 1236 |
+
- `max_steps`: -1
|
| 1237 |
+
- `lr_scheduler_type`: linear
|
| 1238 |
+
- `lr_scheduler_kwargs`: {}
|
| 1239 |
+
- `warmup_ratio`: 0.05
|
| 1240 |
+
- `warmup_steps`: 0
|
| 1241 |
+
- `log_level`: passive
|
| 1242 |
+
- `log_level_replica`: warning
|
| 1243 |
+
- `log_on_each_node`: False
|
| 1244 |
+
- `logging_nan_inf_filter`: True
|
| 1245 |
+
- `save_safetensors`: True
|
| 1246 |
+
- `save_on_each_node`: False
|
| 1247 |
+
- `save_only_model`: False
|
| 1248 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 1249 |
+
- `no_cuda`: False
|
| 1250 |
+
- `use_cpu`: False
|
| 1251 |
+
- `use_mps_device`: False
|
| 1252 |
+
- `seed`: 42
|
| 1253 |
+
- `data_seed`: None
|
| 1254 |
+
- `jit_mode_eval`: False
|
| 1255 |
+
- `use_ipex`: False
|
| 1256 |
+
- `bf16`: False
|
| 1257 |
+
- `fp16`: True
|
| 1258 |
+
- `fp16_opt_level`: O1
|
| 1259 |
+
- `half_precision_backend`: auto
|
| 1260 |
+
- `bf16_full_eval`: False
|
| 1261 |
+
- `fp16_full_eval`: False
|
| 1262 |
+
- `tf32`: None
|
| 1263 |
+
- `local_rank`: 0
|
| 1264 |
+
- `ddp_backend`: None
|
| 1265 |
+
- `tpu_num_cores`: None
|
| 1266 |
+
- `tpu_metrics_debug`: False
|
| 1267 |
+
- `debug`: []
|
| 1268 |
+
- `dataloader_drop_last`: True
|
| 1269 |
+
- `dataloader_num_workers`: 4
|
| 1270 |
+
- `dataloader_prefetch_factor`: None
|
| 1271 |
+
- `past_index`: -1
|
| 1272 |
+
- `disable_tqdm`: False
|
| 1273 |
+
- `remove_unused_columns`: True
|
| 1274 |
+
- `label_names`: None
|
| 1275 |
+
- `load_best_model_at_end`: False
|
| 1276 |
+
- `ignore_data_skip`: False
|
| 1277 |
+
- `fsdp`: []
|
| 1278 |
+
- `fsdp_min_num_params`: 0
|
| 1279 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 1280 |
+
- `tp_size`: 0
|
| 1281 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 1282 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 1283 |
+
- `deepspeed`: None
|
| 1284 |
+
- `label_smoothing_factor`: 0.0
|
| 1285 |
+
- `optim`: adamw_torch
|
| 1286 |
+
- `optim_args`: None
|
| 1287 |
+
- `adafactor`: False
|
| 1288 |
+
- `group_by_length`: False
|
| 1289 |
+
- `length_column_name`: length
|
| 1290 |
+
- `ddp_find_unused_parameters`: True
|
| 1291 |
+
- `ddp_bucket_cap_mb`: None
|
| 1292 |
+
- `ddp_broadcast_buffers`: False
|
| 1293 |
+
- `dataloader_pin_memory`: True
|
| 1294 |
+
- `dataloader_persistent_workers`: False
|
| 1295 |
+
- `skip_memory_metrics`: True
|
| 1296 |
+
- `use_legacy_prediction_loop`: False
|
| 1297 |
+
- `push_to_hub`: False
|
| 1298 |
+
- `resume_from_checkpoint`: None
|
| 1299 |
+
- `hub_model_id`: None
|
| 1300 |
+
- `hub_strategy`: every_save
|
| 1301 |
+
- `hub_private_repo`: None
|
| 1302 |
+
- `hub_always_push`: False
|
| 1303 |
+
- `gradient_checkpointing`: False
|
| 1304 |
+
- `gradient_checkpointing_kwargs`: None
|
| 1305 |
+
- `include_inputs_for_metrics`: False
|
| 1306 |
+
- `include_for_metrics`: []
|
| 1307 |
+
- `eval_do_concat_batches`: True
|
| 1308 |
+
- `fp16_backend`: auto
|
| 1309 |
+
- `push_to_hub_model_id`: None
|
| 1310 |
+
- `push_to_hub_organization`: None
|
| 1311 |
+
- `mp_parameters`:
|
| 1312 |
+
- `auto_find_batch_size`: False
|
| 1313 |
+
- `full_determinism`: False
|
| 1314 |
+
- `torchdynamo`: None
|
| 1315 |
+
- `ray_scope`: last
|
| 1316 |
+
- `ddp_timeout`: 1800
|
| 1317 |
+
- `torch_compile`: False
|
| 1318 |
+
- `torch_compile_backend`: None
|
| 1319 |
+
- `torch_compile_mode`: None
|
| 1320 |
+
- `include_tokens_per_second`: False
|
| 1321 |
+
- `include_num_input_tokens_seen`: False
|
| 1322 |
+
- `neftune_noise_alpha`: None
|
| 1323 |
+
- `optim_target_modules`: None
|
| 1324 |
+
- `batch_eval_metrics`: False
|
| 1325 |
+
- `eval_on_start`: False
|
| 1326 |
+
- `use_liger_kernel`: False
|
| 1327 |
+
- `eval_use_gather_object`: False
|
| 1328 |
+
- `average_tokens_across_devices`: False
|
| 1329 |
+
- `prompts`: None
|
| 1330 |
+
- `batch_sampler`: no_duplicates
|
| 1331 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 1332 |
+
|
| 1333 |
+
</details>
|
| 1334 |
+
|
| 1335 |
+
### Training Logs
|
| 1336 |
+
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|
| 1337 |
+
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
|
| 1338 |
+
| -1 | -1 | - | 0.7322 | 0.4690 | 0.3853 | 0.2723 | 0.3209 | 0.2244 | 0.0919 |
|
| 1339 |
+
| 0.0021 | 1 | 23.8878 | - | - | - | - | - | - | - |
|
| 1340 |
+
| 0.2058 | 100 | 7.2098 | - | - | - | - | - | - | - |
|
| 1341 |
+
| 0.4115 | 200 | 4.2635 | 0.7800 | 0.5132 | 0.4268 | 0.2798 | 0.4372 | 0.2996 | 0.1447 |
|
| 1342 |
+
| 0.6173 | 300 | 4.1931 | - | - | - | - | - | - | - |
|
| 1343 |
+
| 0.8230 | 400 | 3.73 | 0.7863 | 0.5274 | 0.4451 | 0.2805 | 0.4762 | 0.3455 | 0.1648 |
|
| 1344 |
+
| 1.0309 | 500 | 3.3569 | - | - | - | - | - | - | - |
|
| 1345 |
+
| 1.2366 | 600 | 3.6464 | 0.7868 | 0.5372 | 0.4540 | 0.2813 | 0.5063 | 0.3794 | 0.1755 |
|
| 1346 |
+
| 1.4424 | 700 | 3.0772 | - | - | - | - | - | - | - |
|
| 1347 |
+
| 1.6481 | 800 | 3.114 | 0.7906 | 0.5391 | 0.4576 | 0.2832 | 0.5221 | 0.4047 | 0.1779 |
|
| 1348 |
+
| 1.8539 | 900 | 2.9246 | - | - | - | - | - | - | - |
|
| 1349 |
+
| 2.0617 | 1000 | 2.7479 | 0.7873 | 0.5423 | 0.4631 | 0.2871 | 0.5323 | 0.4143 | 0.1843 |
|
| 1350 |
+
| 2.2675 | 1100 | 3.049 | - | - | - | - | - | - | - |
|
| 1351 |
+
| 2.4733 | 1200 | 2.6137 | 0.7878 | 0.5418 | 0.4685 | 0.2870 | 0.5470 | 0.4339 | 0.1932 |
|
| 1352 |
+
| 2.6790 | 1300 | 2.8607 | - | - | - | - | - | - | - |
|
| 1353 |
+
| 2.8848 | 1400 | 2.7071 | 0.7889 | 0.5465 | 0.4714 | 0.2891 | 0.5504 | 0.4362 | 0.1944 |
|
| 1354 |
+
| 3.0926 | 1500 | 2.7012 | - | - | - | - | - | - | - |
|
| 1355 |
+
| 3.2984 | 1600 | 2.7423 | 0.7882 | 0.5471 | 0.4748 | 0.2868 | 0.5542 | 0.4454 | 0.1976 |
|
| 1356 |
+
| 3.5041 | 1700 | 2.5316 | - | - | - | - | - | - | - |
|
| 1357 |
+
| 3.7099 | 1800 | 2.6344 | 0.7900 | 0.5498 | 0.4763 | 0.2857 | 0.5639 | 0.4552 | 0.1954 |
|
| 1358 |
+
| 3.9156 | 1900 | 2.4983 | - | - | - | - | - | - | - |
|
| 1359 |
+
| 4.1235 | 2000 | 2.5423 | 0.7894 | 0.5499 | 0.4786 | 0.2870 | 0.5644 | 0.4576 | 0.1974 |
|
| 1360 |
+
|
| 1361 |
+
|
| 1362 |
+
### Framework Versions
|
| 1363 |
+
- Python: 3.11.11
|
| 1364 |
+
- Sentence Transformers: 4.1.0
|
| 1365 |
+
- Transformers: 4.51.3
|
| 1366 |
+
- PyTorch: 2.6.0+cu124
|
| 1367 |
+
- Accelerate: 1.6.0
|
| 1368 |
+
- Datasets: 3.5.0
|
| 1369 |
+
- Tokenizers: 0.21.1
|
| 1370 |
+
|
| 1371 |
+
## Citation
|
| 1372 |
+
|
| 1373 |
+
### BibTeX
|
| 1374 |
+
|
| 1375 |
+
#### Sentence Transformers
|
| 1376 |
+
```bibtex
|
| 1377 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1378 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1379 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1380 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1381 |
+
month = "11",
|
| 1382 |
+
year = "2019",
|
| 1383 |
+
publisher = "Association for Computational Linguistics",
|
| 1384 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1385 |
+
}
|
| 1386 |
+
```
|
| 1387 |
+
|
| 1388 |
+
#### GISTEmbedLoss
|
| 1389 |
+
```bibtex
|
| 1390 |
+
@misc{solatorio2024gistembed,
|
| 1391 |
+
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
|
| 1392 |
+
author={Aivin V. Solatorio},
|
| 1393 |
+
year={2024},
|
| 1394 |
+
eprint={2402.16829},
|
| 1395 |
+
archivePrefix={arXiv},
|
| 1396 |
+
primaryClass={cs.LG}
|
| 1397 |
+
}
|
| 1398 |
+
```
|
| 1399 |
+
|
| 1400 |
+
<!--
|
| 1401 |
+
## Glossary
|
| 1402 |
+
|
| 1403 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1404 |
+
-->
|
| 1405 |
+
|
| 1406 |
+
<!--
|
| 1407 |
+
## Model Card Authors
|
| 1408 |
+
|
| 1409 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1410 |
+
-->
|
| 1411 |
+
|
| 1412 |
+
<!--
|
| 1413 |
+
## Model Card Contact
|
| 1414 |
+
|
| 1415 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1416 |
+
-->
|
checkpoint-2000/config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"hidden_act": "gelu",
|
| 8 |
+
"hidden_dropout_prob": 0.1,
|
| 9 |
+
"hidden_size": 384,
|
| 10 |
+
"id2label": {
|
| 11 |
+
"0": "LABEL_0"
|
| 12 |
+
},
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 1536,
|
| 15 |
+
"label2id": {
|
| 16 |
+
"LABEL_0": 0
|
| 17 |
+
},
|
| 18 |
+
"layer_norm_eps": 1e-12,
|
| 19 |
+
"max_position_embeddings": 512,
|
| 20 |
+
"model_type": "bert",
|
| 21 |
+
"num_attention_heads": 12,
|
| 22 |
+
"num_hidden_layers": 12,
|
| 23 |
+
"pad_token_id": 0,
|
| 24 |
+
"position_embedding_type": "absolute",
|
| 25 |
+
"torch_dtype": "float32",
|
| 26 |
+
"transformers_version": "4.51.3",
|
| 27 |
+
"type_vocab_size": 2,
|
| 28 |
+
"use_cache": true,
|
| 29 |
+
"vocab_size": 30522
|
| 30 |
+
}
|
checkpoint-2000/config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.1.0",
|
| 4 |
+
"transformers": "4.51.3",
|
| 5 |
+
"pytorch": "2.6.0+cu124"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
checkpoint-2000/modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
checkpoint-2000/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e756c3f89513295be3155fdf8ed1ea92f5d6f2c569291ca059a763f34d54beae
|
| 3 |
+
size 14244
|
checkpoint-2000/scaler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fb34a6d7418af42106b2b0133aa1f174b745ed4d807efde69588376ea449b438
|
| 3 |
+
size 988
|
checkpoint-2000/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:44d4faf0d53d3bbb44be74070bcf3d3b0b1dde1bc82878cd58999d4b5ac888d4
|
| 3 |
+
size 1064
|
checkpoint-2000/sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": true
|
| 4 |
+
}
|
checkpoint-2000/special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
checkpoint-2000/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2000/tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"sep_token": "[SEP]",
|
| 54 |
+
"strip_accents": null,
|
| 55 |
+
"tokenize_chinese_chars": true,
|
| 56 |
+
"tokenizer_class": "BertTokenizer",
|
| 57 |
+
"unk_token": "[UNK]"
|
| 58 |
+
}
|
checkpoint-2000/trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2000/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:760a4b48c96df095158050a3998b912dc701e81df23c2f6256e0e65915c7301a
|
| 3 |
+
size 5624
|
checkpoint-2000/vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2200/tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"sep_token": "[SEP]",
|
| 54 |
+
"strip_accents": null,
|
| 55 |
+
"tokenize_chinese_chars": true,
|
| 56 |
+
"tokenizer_class": "BertTokenizer",
|
| 57 |
+
"unk_token": "[UNK]"
|
| 58 |
+
}
|
checkpoint-2200/vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2400/1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
checkpoint-2400/README.md
ADDED
|
@@ -0,0 +1,1420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:124788
|
| 8 |
+
- loss:GISTEmbedLoss
|
| 9 |
+
base_model: BAAI/bge-small-en-v1.5
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: 其他机械、设备和有形货物租赁服务代表
|
| 12 |
+
sentences:
|
| 13 |
+
- 其他机械和设备租赁服务工作人员
|
| 14 |
+
- 电子和电信设备及零部件物流经理
|
| 15 |
+
- 工业主厨
|
| 16 |
+
- source_sentence: 公交车司机
|
| 17 |
+
sentences:
|
| 18 |
+
- 表演灯光设计师
|
| 19 |
+
- 乙烯基地板安装工
|
| 20 |
+
- 国际巴士司机
|
| 21 |
+
- source_sentence: online communication manager
|
| 22 |
+
sentences:
|
| 23 |
+
- trades union official
|
| 24 |
+
- social media manager
|
| 25 |
+
- budget manager
|
| 26 |
+
- source_sentence: Projektmanagerin
|
| 27 |
+
sentences:
|
| 28 |
+
- Projektmanager/Projektmanagerin
|
| 29 |
+
- Category-Manager
|
| 30 |
+
- Infanterist
|
| 31 |
+
- source_sentence: Volksvertreter
|
| 32 |
+
sentences:
|
| 33 |
+
- Parlamentarier
|
| 34 |
+
- Oberbürgermeister
|
| 35 |
+
- Konsul
|
| 36 |
+
pipeline_tag: sentence-similarity
|
| 37 |
+
library_name: sentence-transformers
|
| 38 |
+
metrics:
|
| 39 |
+
- cosine_accuracy@1
|
| 40 |
+
- cosine_accuracy@20
|
| 41 |
+
- cosine_accuracy@50
|
| 42 |
+
- cosine_accuracy@100
|
| 43 |
+
- cosine_accuracy@150
|
| 44 |
+
- cosine_accuracy@200
|
| 45 |
+
- cosine_precision@1
|
| 46 |
+
- cosine_precision@20
|
| 47 |
+
- cosine_precision@50
|
| 48 |
+
- cosine_precision@100
|
| 49 |
+
- cosine_precision@150
|
| 50 |
+
- cosine_precision@200
|
| 51 |
+
- cosine_recall@1
|
| 52 |
+
- cosine_recall@20
|
| 53 |
+
- cosine_recall@50
|
| 54 |
+
- cosine_recall@100
|
| 55 |
+
- cosine_recall@150
|
| 56 |
+
- cosine_recall@200
|
| 57 |
+
- cosine_ndcg@1
|
| 58 |
+
- cosine_ndcg@20
|
| 59 |
+
- cosine_ndcg@50
|
| 60 |
+
- cosine_ndcg@100
|
| 61 |
+
- cosine_ndcg@150
|
| 62 |
+
- cosine_ndcg@200
|
| 63 |
+
- cosine_mrr@1
|
| 64 |
+
- cosine_mrr@20
|
| 65 |
+
- cosine_mrr@50
|
| 66 |
+
- cosine_mrr@100
|
| 67 |
+
- cosine_mrr@150
|
| 68 |
+
- cosine_mrr@200
|
| 69 |
+
- cosine_map@1
|
| 70 |
+
- cosine_map@20
|
| 71 |
+
- cosine_map@50
|
| 72 |
+
- cosine_map@100
|
| 73 |
+
- cosine_map@150
|
| 74 |
+
- cosine_map@200
|
| 75 |
+
- cosine_map@500
|
| 76 |
+
model-index:
|
| 77 |
+
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
|
| 78 |
+
results:
|
| 79 |
+
- task:
|
| 80 |
+
type: information-retrieval
|
| 81 |
+
name: Information Retrieval
|
| 82 |
+
dataset:
|
| 83 |
+
name: full en
|
| 84 |
+
type: full_en
|
| 85 |
+
metrics:
|
| 86 |
+
- type: cosine_accuracy@1
|
| 87 |
+
value: 0.6571428571428571
|
| 88 |
+
name: Cosine Accuracy@1
|
| 89 |
+
- type: cosine_accuracy@20
|
| 90 |
+
value: 0.9904761904761905
|
| 91 |
+
name: Cosine Accuracy@20
|
| 92 |
+
- type: cosine_accuracy@50
|
| 93 |
+
value: 0.9904761904761905
|
| 94 |
+
name: Cosine Accuracy@50
|
| 95 |
+
- type: cosine_accuracy@100
|
| 96 |
+
value: 0.9904761904761905
|
| 97 |
+
name: Cosine Accuracy@100
|
| 98 |
+
- type: cosine_accuracy@150
|
| 99 |
+
value: 0.9904761904761905
|
| 100 |
+
name: Cosine Accuracy@150
|
| 101 |
+
- type: cosine_accuracy@200
|
| 102 |
+
value: 0.9904761904761905
|
| 103 |
+
name: Cosine Accuracy@200
|
| 104 |
+
- type: cosine_precision@1
|
| 105 |
+
value: 0.6571428571428571
|
| 106 |
+
name: Cosine Precision@1
|
| 107 |
+
- type: cosine_precision@20
|
| 108 |
+
value: 0.5023809523809524
|
| 109 |
+
name: Cosine Precision@20
|
| 110 |
+
- type: cosine_precision@50
|
| 111 |
+
value: 0.30800000000000005
|
| 112 |
+
name: Cosine Precision@50
|
| 113 |
+
- type: cosine_precision@100
|
| 114 |
+
value: 0.18628571428571428
|
| 115 |
+
name: Cosine Precision@100
|
| 116 |
+
- type: cosine_precision@150
|
| 117 |
+
value: 0.1321904761904762
|
| 118 |
+
name: Cosine Precision@150
|
| 119 |
+
- type: cosine_precision@200
|
| 120 |
+
value: 0.10295238095238096
|
| 121 |
+
name: Cosine Precision@200
|
| 122 |
+
- type: cosine_recall@1
|
| 123 |
+
value: 0.0680237860830842
|
| 124 |
+
name: Cosine Recall@1
|
| 125 |
+
- type: cosine_recall@20
|
| 126 |
+
value: 0.5384852963395483
|
| 127 |
+
name: Cosine Recall@20
|
| 128 |
+
- type: cosine_recall@50
|
| 129 |
+
value: 0.7260449077992874
|
| 130 |
+
name: Cosine Recall@50
|
| 131 |
+
- type: cosine_recall@100
|
| 132 |
+
value: 0.8328530702930984
|
| 133 |
+
name: Cosine Recall@100
|
| 134 |
+
- type: cosine_recall@150
|
| 135 |
+
value: 0.8745262490032277
|
| 136 |
+
name: Cosine Recall@150
|
| 137 |
+
- type: cosine_recall@200
|
| 138 |
+
value: 0.9056960100263424
|
| 139 |
+
name: Cosine Recall@200
|
| 140 |
+
- type: cosine_ndcg@1
|
| 141 |
+
value: 0.6571428571428571
|
| 142 |
+
name: Cosine Ndcg@1
|
| 143 |
+
- type: cosine_ndcg@20
|
| 144 |
+
value: 0.6845256340390302
|
| 145 |
+
name: Cosine Ndcg@20
|
| 146 |
+
- type: cosine_ndcg@50
|
| 147 |
+
value: 0.7040452093638513
|
| 148 |
+
name: Cosine Ndcg@50
|
| 149 |
+
- type: cosine_ndcg@100
|
| 150 |
+
value: 0.758935932285001
|
| 151 |
+
name: Cosine Ndcg@100
|
| 152 |
+
- type: cosine_ndcg@150
|
| 153 |
+
value: 0.7774414598948007
|
| 154 |
+
name: Cosine Ndcg@150
|
| 155 |
+
- type: cosine_ndcg@200
|
| 156 |
+
value: 0.7892946240668293
|
| 157 |
+
name: Cosine Ndcg@200
|
| 158 |
+
- type: cosine_mrr@1
|
| 159 |
+
value: 0.6571428571428571
|
| 160 |
+
name: Cosine Mrr@1
|
| 161 |
+
- type: cosine_mrr@20
|
| 162 |
+
value: 0.8103174603174604
|
| 163 |
+
name: Cosine Mrr@20
|
| 164 |
+
- type: cosine_mrr@50
|
| 165 |
+
value: 0.8103174603174604
|
| 166 |
+
name: Cosine Mrr@50
|
| 167 |
+
- type: cosine_mrr@100
|
| 168 |
+
value: 0.8103174603174604
|
| 169 |
+
name: Cosine Mrr@100
|
| 170 |
+
- type: cosine_mrr@150
|
| 171 |
+
value: 0.8103174603174604
|
| 172 |
+
name: Cosine Mrr@150
|
| 173 |
+
- type: cosine_mrr@200
|
| 174 |
+
value: 0.8103174603174604
|
| 175 |
+
name: Cosine Mrr@200
|
| 176 |
+
- type: cosine_map@1
|
| 177 |
+
value: 0.6571428571428571
|
| 178 |
+
name: Cosine Map@1
|
| 179 |
+
- type: cosine_map@20
|
| 180 |
+
value: 0.5418235787800474
|
| 181 |
+
name: Cosine Map@20
|
| 182 |
+
- type: cosine_map@50
|
| 183 |
+
value: 0.5327215779103721
|
| 184 |
+
name: Cosine Map@50
|
| 185 |
+
- type: cosine_map@100
|
| 186 |
+
value: 0.565706253334091
|
| 187 |
+
name: Cosine Map@100
|
| 188 |
+
- type: cosine_map@150
|
| 189 |
+
value: 0.5733951147399983
|
| 190 |
+
name: Cosine Map@150
|
| 191 |
+
- type: cosine_map@200
|
| 192 |
+
value: 0.5771587776237981
|
| 193 |
+
name: Cosine Map@200
|
| 194 |
+
- type: cosine_map@500
|
| 195 |
+
value: 0.5813892452974444
|
| 196 |
+
name: Cosine Map@500
|
| 197 |
+
- task:
|
| 198 |
+
type: information-retrieval
|
| 199 |
+
name: Information Retrieval
|
| 200 |
+
dataset:
|
| 201 |
+
name: full es
|
| 202 |
+
type: full_es
|
| 203 |
+
metrics:
|
| 204 |
+
- type: cosine_accuracy@1
|
| 205 |
+
value: 0.12432432432432433
|
| 206 |
+
name: Cosine Accuracy@1
|
| 207 |
+
- type: cosine_accuracy@20
|
| 208 |
+
value: 1.0
|
| 209 |
+
name: Cosine Accuracy@20
|
| 210 |
+
- type: cosine_accuracy@50
|
| 211 |
+
value: 1.0
|
| 212 |
+
name: Cosine Accuracy@50
|
| 213 |
+
- type: cosine_accuracy@100
|
| 214 |
+
value: 1.0
|
| 215 |
+
name: Cosine Accuracy@100
|
| 216 |
+
- type: cosine_accuracy@150
|
| 217 |
+
value: 1.0
|
| 218 |
+
name: Cosine Accuracy@150
|
| 219 |
+
- type: cosine_accuracy@200
|
| 220 |
+
value: 1.0
|
| 221 |
+
name: Cosine Accuracy@200
|
| 222 |
+
- type: cosine_precision@1
|
| 223 |
+
value: 0.12432432432432433
|
| 224 |
+
name: Cosine Precision@1
|
| 225 |
+
- type: cosine_precision@20
|
| 226 |
+
value: 0.4897297297297297
|
| 227 |
+
name: Cosine Precision@20
|
| 228 |
+
- type: cosine_precision@50
|
| 229 |
+
value: 0.31794594594594594
|
| 230 |
+
name: Cosine Precision@50
|
| 231 |
+
- type: cosine_precision@100
|
| 232 |
+
value: 0.19864864864864865
|
| 233 |
+
name: Cosine Precision@100
|
| 234 |
+
- type: cosine_precision@150
|
| 235 |
+
value: 0.14688288288288287
|
| 236 |
+
name: Cosine Precision@150
|
| 237 |
+
- type: cosine_precision@200
|
| 238 |
+
value: 0.11789189189189188
|
| 239 |
+
name: Cosine Precision@200
|
| 240 |
+
- type: cosine_recall@1
|
| 241 |
+
value: 0.003111544931768446
|
| 242 |
+
name: Cosine Recall@1
|
| 243 |
+
- type: cosine_recall@20
|
| 244 |
+
value: 0.32208664960961075
|
| 245 |
+
name: Cosine Recall@20
|
| 246 |
+
- type: cosine_recall@50
|
| 247 |
+
value: 0.46383117404893587
|
| 248 |
+
name: Cosine Recall@50
|
| 249 |
+
- type: cosine_recall@100
|
| 250 |
+
value: 0.5437537828683688
|
| 251 |
+
name: Cosine Recall@100
|
| 252 |
+
- type: cosine_recall@150
|
| 253 |
+
value: 0.5824968655076911
|
| 254 |
+
name: Cosine Recall@150
|
| 255 |
+
- type: cosine_recall@200
|
| 256 |
+
value: 0.6146962508233631
|
| 257 |
+
name: Cosine Recall@200
|
| 258 |
+
- type: cosine_ndcg@1
|
| 259 |
+
value: 0.12432432432432433
|
| 260 |
+
name: Cosine Ndcg@1
|
| 261 |
+
- type: cosine_ndcg@20
|
| 262 |
+
value: 0.5384577730264963
|
| 263 |
+
name: Cosine Ndcg@20
|
| 264 |
+
- type: cosine_ndcg@50
|
| 265 |
+
value: 0.5012455261232941
|
| 266 |
+
name: Cosine Ndcg@50
|
| 267 |
+
- type: cosine_ndcg@100
|
| 268 |
+
value: 0.5147486871284331
|
| 269 |
+
name: Cosine Ndcg@100
|
| 270 |
+
- type: cosine_ndcg@150
|
| 271 |
+
value: 0.5348194013794069
|
| 272 |
+
name: Cosine Ndcg@150
|
| 273 |
+
- type: cosine_ndcg@200
|
| 274 |
+
value: 0.5505397598095297
|
| 275 |
+
name: Cosine Ndcg@200
|
| 276 |
+
- type: cosine_mrr@1
|
| 277 |
+
value: 0.12432432432432433
|
| 278 |
+
name: Cosine Mrr@1
|
| 279 |
+
- type: cosine_mrr@20
|
| 280 |
+
value: 0.5515015015015016
|
| 281 |
+
name: Cosine Mrr@20
|
| 282 |
+
- type: cosine_mrr@50
|
| 283 |
+
value: 0.5515015015015016
|
| 284 |
+
name: Cosine Mrr@50
|
| 285 |
+
- type: cosine_mrr@100
|
| 286 |
+
value: 0.5515015015015016
|
| 287 |
+
name: Cosine Mrr@100
|
| 288 |
+
- type: cosine_mrr@150
|
| 289 |
+
value: 0.5515015015015016
|
| 290 |
+
name: Cosine Mrr@150
|
| 291 |
+
- type: cosine_mrr@200
|
| 292 |
+
value: 0.5515015015015016
|
| 293 |
+
name: Cosine Mrr@200
|
| 294 |
+
- type: cosine_map@1
|
| 295 |
+
value: 0.12432432432432433
|
| 296 |
+
name: Cosine Map@1
|
| 297 |
+
- type: cosine_map@20
|
| 298 |
+
value: 0.40280623036556984
|
| 299 |
+
name: Cosine Map@20
|
| 300 |
+
- type: cosine_map@50
|
| 301 |
+
value: 0.3421710529569103
|
| 302 |
+
name: Cosine Map@50
|
| 303 |
+
- type: cosine_map@100
|
| 304 |
+
value: 0.33947884152876345
|
| 305 |
+
name: Cosine Map@100
|
| 306 |
+
- type: cosine_map@150
|
| 307 |
+
value: 0.34777364049184706
|
| 308 |
+
name: Cosine Map@150
|
| 309 |
+
- type: cosine_map@200
|
| 310 |
+
value: 0.35339765423089375
|
| 311 |
+
name: Cosine Map@200
|
| 312 |
+
- type: cosine_map@500
|
| 313 |
+
value: 0.3631043007370563
|
| 314 |
+
name: Cosine Map@500
|
| 315 |
+
- task:
|
| 316 |
+
type: information-retrieval
|
| 317 |
+
name: Information Retrieval
|
| 318 |
+
dataset:
|
| 319 |
+
name: full de
|
| 320 |
+
type: full_de
|
| 321 |
+
metrics:
|
| 322 |
+
- type: cosine_accuracy@1
|
| 323 |
+
value: 0.2955665024630542
|
| 324 |
+
name: Cosine Accuracy@1
|
| 325 |
+
- type: cosine_accuracy@20
|
| 326 |
+
value: 0.9211822660098522
|
| 327 |
+
name: Cosine Accuracy@20
|
| 328 |
+
- type: cosine_accuracy@50
|
| 329 |
+
value: 0.9655172413793104
|
| 330 |
+
name: Cosine Accuracy@50
|
| 331 |
+
- type: cosine_accuracy@100
|
| 332 |
+
value: 0.9753694581280788
|
| 333 |
+
name: Cosine Accuracy@100
|
| 334 |
+
- type: cosine_accuracy@150
|
| 335 |
+
value: 0.9852216748768473
|
| 336 |
+
name: Cosine Accuracy@150
|
| 337 |
+
- type: cosine_accuracy@200
|
| 338 |
+
value: 0.9852216748768473
|
| 339 |
+
name: Cosine Accuracy@200
|
| 340 |
+
- type: cosine_precision@1
|
| 341 |
+
value: 0.2955665024630542
|
| 342 |
+
name: Cosine Precision@1
|
| 343 |
+
- type: cosine_precision@20
|
| 344 |
+
value: 0.4246305418719211
|
| 345 |
+
name: Cosine Precision@20
|
| 346 |
+
- type: cosine_precision@50
|
| 347 |
+
value: 0.2813793103448276
|
| 348 |
+
name: Cosine Precision@50
|
| 349 |
+
- type: cosine_precision@100
|
| 350 |
+
value: 0.1800985221674877
|
| 351 |
+
name: Cosine Precision@100
|
| 352 |
+
- type: cosine_precision@150
|
| 353 |
+
value: 0.1362233169129721
|
| 354 |
+
name: Cosine Precision@150
|
| 355 |
+
- type: cosine_precision@200
|
| 356 |
+
value: 0.11054187192118226
|
| 357 |
+
name: Cosine Precision@200
|
| 358 |
+
- type: cosine_recall@1
|
| 359 |
+
value: 0.01108543831680986
|
| 360 |
+
name: Cosine Recall@1
|
| 361 |
+
- type: cosine_recall@20
|
| 362 |
+
value: 0.26139377973111655
|
| 363 |
+
name: Cosine Recall@20
|
| 364 |
+
- type: cosine_recall@50
|
| 365 |
+
value: 0.3835171819041212
|
| 366 |
+
name: Cosine Recall@50
|
| 367 |
+
- type: cosine_recall@100
|
| 368 |
+
value: 0.4676892706124872
|
| 369 |
+
name: Cosine Recall@100
|
| 370 |
+
- type: cosine_recall@150
|
| 371 |
+
value: 0.5183014504752351
|
| 372 |
+
name: Cosine Recall@150
|
| 373 |
+
- type: cosine_recall@200
|
| 374 |
+
value: 0.551717511250073
|
| 375 |
+
name: Cosine Recall@200
|
| 376 |
+
- type: cosine_ndcg@1
|
| 377 |
+
value: 0.2955665024630542
|
| 378 |
+
name: Cosine Ndcg@1
|
| 379 |
+
- type: cosine_ndcg@20
|
| 380 |
+
value: 0.4600580109269636
|
| 381 |
+
name: Cosine Ndcg@20
|
| 382 |
+
- type: cosine_ndcg@50
|
| 383 |
+
value: 0.4229190542750304
|
| 384 |
+
name: Cosine Ndcg@50
|
| 385 |
+
- type: cosine_ndcg@100
|
| 386 |
+
value: 0.4370543021366767
|
| 387 |
+
name: Cosine Ndcg@100
|
| 388 |
+
- type: cosine_ndcg@150
|
| 389 |
+
value: 0.46289045418097646
|
| 390 |
+
name: Cosine Ndcg@150
|
| 391 |
+
- type: cosine_ndcg@200
|
| 392 |
+
value: 0.4796711024513544
|
| 393 |
+
name: Cosine Ndcg@200
|
| 394 |
+
- type: cosine_mrr@1
|
| 395 |
+
value: 0.2955665024630542
|
| 396 |
+
name: Cosine Mrr@1
|
| 397 |
+
- type: cosine_mrr@20
|
| 398 |
+
value: 0.48958320005117995
|
| 399 |
+
name: Cosine Mrr@20
|
| 400 |
+
- type: cosine_mrr@50
|
| 401 |
+
value: 0.49093477998292195
|
| 402 |
+
name: Cosine Mrr@50
|
| 403 |
+
- type: cosine_mrr@100
|
| 404 |
+
value: 0.4910841931964832
|
| 405 |
+
name: Cosine Mrr@100
|
| 406 |
+
- type: cosine_mrr@150
|
| 407 |
+
value: 0.4911623560854821
|
| 408 |
+
name: Cosine Mrr@150
|
| 409 |
+
- type: cosine_mrr@200
|
| 410 |
+
value: 0.4911623560854821
|
| 411 |
+
name: Cosine Mrr@200
|
| 412 |
+
- type: cosine_map@1
|
| 413 |
+
value: 0.2955665024630542
|
| 414 |
+
name: Cosine Map@1
|
| 415 |
+
- type: cosine_map@20
|
| 416 |
+
value: 0.32364842421740225
|
| 417 |
+
name: Cosine Map@20
|
| 418 |
+
- type: cosine_map@50
|
| 419 |
+
value: 0.2643813390551392
|
| 420 |
+
name: Cosine Map@50
|
| 421 |
+
- type: cosine_map@100
|
| 422 |
+
value: 0.2576413544507463
|
| 423 |
+
name: Cosine Map@100
|
| 424 |
+
- type: cosine_map@150
|
| 425 |
+
value: 0.2669126239698539
|
| 426 |
+
name: Cosine Map@150
|
| 427 |
+
- type: cosine_map@200
|
| 428 |
+
value: 0.27215799504041416
|
| 429 |
+
name: Cosine Map@200
|
| 430 |
+
- type: cosine_map@500
|
| 431 |
+
value: 0.28329484592874316
|
| 432 |
+
name: Cosine Map@500
|
| 433 |
+
- task:
|
| 434 |
+
type: information-retrieval
|
| 435 |
+
name: Information Retrieval
|
| 436 |
+
dataset:
|
| 437 |
+
name: full zh
|
| 438 |
+
type: full_zh
|
| 439 |
+
metrics:
|
| 440 |
+
- type: cosine_accuracy@1
|
| 441 |
+
value: 0.34951456310679613
|
| 442 |
+
name: Cosine Accuracy@1
|
| 443 |
+
- type: cosine_accuracy@20
|
| 444 |
+
value: 0.7378640776699029
|
| 445 |
+
name: Cosine Accuracy@20
|
| 446 |
+
- type: cosine_accuracy@50
|
| 447 |
+
value: 0.8252427184466019
|
| 448 |
+
name: Cosine Accuracy@50
|
| 449 |
+
- type: cosine_accuracy@100
|
| 450 |
+
value: 0.8543689320388349
|
| 451 |
+
name: Cosine Accuracy@100
|
| 452 |
+
- type: cosine_accuracy@150
|
| 453 |
+
value: 0.9029126213592233
|
| 454 |
+
name: Cosine Accuracy@150
|
| 455 |
+
- type: cosine_accuracy@200
|
| 456 |
+
value: 0.941747572815534
|
| 457 |
+
name: Cosine Accuracy@200
|
| 458 |
+
- type: cosine_precision@1
|
| 459 |
+
value: 0.34951456310679613
|
| 460 |
+
name: Cosine Precision@1
|
| 461 |
+
- type: cosine_precision@20
|
| 462 |
+
value: 0.17330097087378643
|
| 463 |
+
name: Cosine Precision@20
|
| 464 |
+
- type: cosine_precision@50
|
| 465 |
+
value: 0.09436893203883494
|
| 466 |
+
name: Cosine Precision@50
|
| 467 |
+
- type: cosine_precision@100
|
| 468 |
+
value: 0.05893203883495146
|
| 469 |
+
name: Cosine Precision@100
|
| 470 |
+
- type: cosine_precision@150
|
| 471 |
+
value: 0.0458252427184466
|
| 472 |
+
name: Cosine Precision@150
|
| 473 |
+
- type: cosine_precision@200
|
| 474 |
+
value: 0.03854368932038834
|
| 475 |
+
name: Cosine Precision@200
|
| 476 |
+
- type: cosine_recall@1
|
| 477 |
+
value: 0.02726635297033844
|
| 478 |
+
name: Cosine Recall@1
|
| 479 |
+
- type: cosine_recall@20
|
| 480 |
+
value: 0.17661061398990294
|
| 481 |
+
name: Cosine Recall@20
|
| 482 |
+
- type: cosine_recall@50
|
| 483 |
+
value: 0.2392861843604663
|
| 484 |
+
name: Cosine Recall@50
|
| 485 |
+
- type: cosine_recall@100
|
| 486 |
+
value: 0.2862639658547104
|
| 487 |
+
name: Cosine Recall@100
|
| 488 |
+
- type: cosine_recall@150
|
| 489 |
+
value: 0.3286954340443375
|
| 490 |
+
name: Cosine Recall@150
|
| 491 |
+
- type: cosine_recall@200
|
| 492 |
+
value: 0.3630829587412431
|
| 493 |
+
name: Cosine Recall@200
|
| 494 |
+
- type: cosine_ndcg@1
|
| 495 |
+
value: 0.34951456310679613
|
| 496 |
+
name: Cosine Ndcg@1
|
| 497 |
+
- type: cosine_ndcg@20
|
| 498 |
+
value: 0.24683538489164747
|
| 499 |
+
name: Cosine Ndcg@20
|
| 500 |
+
- type: cosine_ndcg@50
|
| 501 |
+
value: 0.23936442282824424
|
| 502 |
+
name: Cosine Ndcg@50
|
| 503 |
+
- type: cosine_ndcg@100
|
| 504 |
+
value: 0.2618891246293786
|
| 505 |
+
name: Cosine Ndcg@100
|
| 506 |
+
- type: cosine_ndcg@150
|
| 507 |
+
value: 0.27867525817923894
|
| 508 |
+
name: Cosine Ndcg@150
|
| 509 |
+
- type: cosine_ndcg@200
|
| 510 |
+
value: 0.29190260238165355
|
| 511 |
+
name: Cosine Ndcg@200
|
| 512 |
+
- type: cosine_mrr@1
|
| 513 |
+
value: 0.34951456310679613
|
| 514 |
+
name: Cosine Mrr@1
|
| 515 |
+
- type: cosine_mrr@20
|
| 516 |
+
value: 0.44845699819699636
|
| 517 |
+
name: Cosine Mrr@20
|
| 518 |
+
- type: cosine_mrr@50
|
| 519 |
+
value: 0.4514515915598798
|
| 520 |
+
name: Cosine Mrr@50
|
| 521 |
+
- type: cosine_mrr@100
|
| 522 |
+
value: 0.451864194979824
|
| 523 |
+
name: Cosine Mrr@100
|
| 524 |
+
- type: cosine_mrr@150
|
| 525 |
+
value: 0.4522894025156287
|
| 526 |
+
name: Cosine Mrr@150
|
| 527 |
+
- type: cosine_mrr@200
|
| 528 |
+
value: 0.45250948321580986
|
| 529 |
+
name: Cosine Mrr@200
|
| 530 |
+
- type: cosine_map@1
|
| 531 |
+
value: 0.34951456310679613
|
| 532 |
+
name: Cosine Map@1
|
| 533 |
+
- type: cosine_map@20
|
| 534 |
+
value: 0.1470309927546457
|
| 535 |
+
name: Cosine Map@20
|
| 536 |
+
- type: cosine_map@50
|
| 537 |
+
value: 0.12671489844037503
|
| 538 |
+
name: Cosine Map@50
|
| 539 |
+
- type: cosine_map@100
|
| 540 |
+
value: 0.13257859039926595
|
| 541 |
+
name: Cosine Map@100
|
| 542 |
+
- type: cosine_map@150
|
| 543 |
+
value: 0.13523273342027425
|
| 544 |
+
name: Cosine Map@150
|
| 545 |
+
- type: cosine_map@200
|
| 546 |
+
value: 0.13679857663871084
|
| 547 |
+
name: Cosine Map@200
|
| 548 |
+
- type: cosine_map@500
|
| 549 |
+
value: 0.14069476480399515
|
| 550 |
+
name: Cosine Map@500
|
| 551 |
+
- task:
|
| 552 |
+
type: information-retrieval
|
| 553 |
+
name: Information Retrieval
|
| 554 |
+
dataset:
|
| 555 |
+
name: mix es
|
| 556 |
+
type: mix_es
|
| 557 |
+
metrics:
|
| 558 |
+
- type: cosine_accuracy@1
|
| 559 |
+
value: 0.41133645345813835
|
| 560 |
+
name: Cosine Accuracy@1
|
| 561 |
+
- type: cosine_accuracy@20
|
| 562 |
+
value: 0.7613104524180967
|
| 563 |
+
name: Cosine Accuracy@20
|
| 564 |
+
- type: cosine_accuracy@50
|
| 565 |
+
value: 0.8523140925637025
|
| 566 |
+
name: Cosine Accuracy@50
|
| 567 |
+
- type: cosine_accuracy@100
|
| 568 |
+
value: 0.9121164846593863
|
| 569 |
+
name: Cosine Accuracy@100
|
| 570 |
+
- type: cosine_accuracy@150
|
| 571 |
+
value: 0.9417576703068122
|
| 572 |
+
name: Cosine Accuracy@150
|
| 573 |
+
- type: cosine_accuracy@200
|
| 574 |
+
value: 0.9547581903276131
|
| 575 |
+
name: Cosine Accuracy@200
|
| 576 |
+
- type: cosine_precision@1
|
| 577 |
+
value: 0.41133645345813835
|
| 578 |
+
name: Cosine Precision@1
|
| 579 |
+
- type: cosine_precision@20
|
| 580 |
+
value: 0.08920956838273532
|
| 581 |
+
name: Cosine Precision@20
|
| 582 |
+
- type: cosine_precision@50
|
| 583 |
+
value: 0.04175767030681228
|
| 584 |
+
name: Cosine Precision@50
|
| 585 |
+
- type: cosine_precision@100
|
| 586 |
+
value: 0.02291731669266771
|
| 587 |
+
name: Cosine Precision@100
|
| 588 |
+
- type: cosine_precision@150
|
| 589 |
+
value: 0.015905702894782457
|
| 590 |
+
name: Cosine Precision@150
|
| 591 |
+
- type: cosine_precision@200
|
| 592 |
+
value: 0.012243889755590227
|
| 593 |
+
name: Cosine Precision@200
|
| 594 |
+
- type: cosine_recall@1
|
| 595 |
+
value: 0.15653988064284477
|
| 596 |
+
name: Cosine Recall@1
|
| 597 |
+
- type: cosine_recall@20
|
| 598 |
+
value: 0.6593678032835598
|
| 599 |
+
name: Cosine Recall@20
|
| 600 |
+
- type: cosine_recall@50
|
| 601 |
+
value: 0.7704838669737266
|
| 602 |
+
name: Cosine Recall@50
|
| 603 |
+
- type: cosine_recall@100
|
| 604 |
+
value: 0.847169601069757
|
| 605 |
+
name: Cosine Recall@100
|
| 606 |
+
- type: cosine_recall@150
|
| 607 |
+
value: 0.8825483495530297
|
| 608 |
+
name: Cosine Recall@150
|
| 609 |
+
- type: cosine_recall@200
|
| 610 |
+
value: 0.9050999182824455
|
| 611 |
+
name: Cosine Recall@200
|
| 612 |
+
- type: cosine_ndcg@1
|
| 613 |
+
value: 0.41133645345813835
|
| 614 |
+
name: Cosine Ndcg@1
|
| 615 |
+
- type: cosine_ndcg@20
|
| 616 |
+
value: 0.5116672519515115
|
| 617 |
+
name: Cosine Ndcg@20
|
| 618 |
+
- type: cosine_ndcg@50
|
| 619 |
+
value: 0.542000920569141
|
| 620 |
+
name: Cosine Ndcg@50
|
| 621 |
+
- type: cosine_ndcg@100
|
| 622 |
+
value: 0.558759964344595
|
| 623 |
+
name: Cosine Ndcg@100
|
| 624 |
+
- type: cosine_ndcg@150
|
| 625 |
+
value: 0.5655977162199296
|
| 626 |
+
name: Cosine Ndcg@150
|
| 627 |
+
- type: cosine_ndcg@200
|
| 628 |
+
value: 0.5697289878952349
|
| 629 |
+
name: Cosine Ndcg@200
|
| 630 |
+
- type: cosine_mrr@1
|
| 631 |
+
value: 0.41133645345813835
|
| 632 |
+
name: Cosine Mrr@1
|
| 633 |
+
- type: cosine_mrr@20
|
| 634 |
+
value: 0.4978677179556957
|
| 635 |
+
name: Cosine Mrr@20
|
| 636 |
+
- type: cosine_mrr@50
|
| 637 |
+
value: 0.5009543893008301
|
| 638 |
+
name: Cosine Mrr@50
|
| 639 |
+
- type: cosine_mrr@100
|
| 640 |
+
value: 0.5018183607581652
|
| 641 |
+
name: Cosine Mrr@100
|
| 642 |
+
- type: cosine_mrr@150
|
| 643 |
+
value: 0.5020589846475842
|
| 644 |
+
name: Cosine Mrr@150
|
| 645 |
+
- type: cosine_mrr@200
|
| 646 |
+
value: 0.5021321446410069
|
| 647 |
+
name: Cosine Mrr@200
|
| 648 |
+
- type: cosine_map@1
|
| 649 |
+
value: 0.41133645345813835
|
| 650 |
+
name: Cosine Map@1
|
| 651 |
+
- type: cosine_map@20
|
| 652 |
+
value: 0.4263681424556441
|
| 653 |
+
name: Cosine Map@20
|
| 654 |
+
- type: cosine_map@50
|
| 655 |
+
value: 0.4338209025376249
|
| 656 |
+
name: Cosine Map@50
|
| 657 |
+
- type: cosine_map@100
|
| 658 |
+
value: 0.4359939776007631
|
| 659 |
+
name: Cosine Map@100
|
| 660 |
+
- type: cosine_map@150
|
| 661 |
+
value: 0.43656970643226983
|
| 662 |
+
name: Cosine Map@150
|
| 663 |
+
- type: cosine_map@200
|
| 664 |
+
value: 0.4368426702726571
|
| 665 |
+
name: Cosine Map@200
|
| 666 |
+
- type: cosine_map@500
|
| 667 |
+
value: 0.43729529920887905
|
| 668 |
+
name: Cosine Map@500
|
| 669 |
+
- task:
|
| 670 |
+
type: information-retrieval
|
| 671 |
+
name: Information Retrieval
|
| 672 |
+
dataset:
|
| 673 |
+
name: mix de
|
| 674 |
+
type: mix_de
|
| 675 |
+
metrics:
|
| 676 |
+
- type: cosine_accuracy@1
|
| 677 |
+
value: 0.29433177327093085
|
| 678 |
+
name: Cosine Accuracy@1
|
| 679 |
+
- type: cosine_accuracy@20
|
| 680 |
+
value: 0.6500260010400416
|
| 681 |
+
name: Cosine Accuracy@20
|
| 682 |
+
- type: cosine_accuracy@50
|
| 683 |
+
value: 0.7607904316172647
|
| 684 |
+
name: Cosine Accuracy@50
|
| 685 |
+
- type: cosine_accuracy@100
|
| 686 |
+
value: 0.8507540301612064
|
| 687 |
+
name: Cosine Accuracy@100
|
| 688 |
+
- type: cosine_accuracy@150
|
| 689 |
+
value: 0.889755590223609
|
| 690 |
+
name: Cosine Accuracy@150
|
| 691 |
+
- type: cosine_accuracy@200
|
| 692 |
+
value: 0.9204368174726989
|
| 693 |
+
name: Cosine Accuracy@200
|
| 694 |
+
- type: cosine_precision@1
|
| 695 |
+
value: 0.29433177327093085
|
| 696 |
+
name: Cosine Precision@1
|
| 697 |
+
- type: cosine_precision@20
|
| 698 |
+
value: 0.07308892355694228
|
| 699 |
+
name: Cosine Precision@20
|
| 700 |
+
- type: cosine_precision@50
|
| 701 |
+
value: 0.036141445657826315
|
| 702 |
+
name: Cosine Precision@50
|
| 703 |
+
- type: cosine_precision@100
|
| 704 |
+
value: 0.020634425377015084
|
| 705 |
+
name: Cosine Precision@100
|
| 706 |
+
- type: cosine_precision@150
|
| 707 |
+
value: 0.014681920610157736
|
| 708 |
+
name: Cosine Precision@150
|
| 709 |
+
- type: cosine_precision@200
|
| 710 |
+
value: 0.011552262090483621
|
| 711 |
+
name: Cosine Precision@200
|
| 712 |
+
- type: cosine_recall@1
|
| 713 |
+
value: 0.1109031027907783
|
| 714 |
+
name: Cosine Recall@1
|
| 715 |
+
- type: cosine_recall@20
|
| 716 |
+
value: 0.534356040908303
|
| 717 |
+
name: Cosine Recall@20
|
| 718 |
+
- type: cosine_recall@50
|
| 719 |
+
value: 0.6584676720402148
|
| 720 |
+
name: Cosine Recall@50
|
| 721 |
+
- type: cosine_recall@100
|
| 722 |
+
value: 0.752470098803952
|
| 723 |
+
name: Cosine Recall@100
|
| 724 |
+
- type: cosine_recall@150
|
| 725 |
+
value: 0.8025567689374241
|
| 726 |
+
name: Cosine Recall@150
|
| 727 |
+
- type: cosine_recall@200
|
| 728 |
+
value: 0.8417663373201595
|
| 729 |
+
name: Cosine Recall@200
|
| 730 |
+
- type: cosine_ndcg@1
|
| 731 |
+
value: 0.29433177327093085
|
| 732 |
+
name: Cosine Ndcg@1
|
| 733 |
+
- type: cosine_ndcg@20
|
| 734 |
+
value: 0.3919428679123834
|
| 735 |
+
name: Cosine Ndcg@20
|
| 736 |
+
- type: cosine_ndcg@50
|
| 737 |
+
value: 0.425599899100406
|
| 738 |
+
name: Cosine Ndcg@50
|
| 739 |
+
- type: cosine_ndcg@100
|
| 740 |
+
value: 0.4462421162922913
|
| 741 |
+
name: Cosine Ndcg@100
|
| 742 |
+
- type: cosine_ndcg@150
|
| 743 |
+
value: 0.45606402272845137
|
| 744 |
+
name: Cosine Ndcg@150
|
| 745 |
+
- type: cosine_ndcg@200
|
| 746 |
+
value: 0.4632312746623382
|
| 747 |
+
name: Cosine Ndcg@200
|
| 748 |
+
- type: cosine_mrr@1
|
| 749 |
+
value: 0.29433177327093085
|
| 750 |
+
name: Cosine Mrr@1
|
| 751 |
+
- type: cosine_mrr@20
|
| 752 |
+
value: 0.37785395494554963
|
| 753 |
+
name: Cosine Mrr@20
|
| 754 |
+
- type: cosine_mrr@50
|
| 755 |
+
value: 0.38148321196953044
|
| 756 |
+
name: Cosine Mrr@50
|
| 757 |
+
- type: cosine_mrr@100
|
| 758 |
+
value: 0.38274724688611994
|
| 759 |
+
name: Cosine Mrr@100
|
| 760 |
+
- type: cosine_mrr@150
|
| 761 |
+
value: 0.3830666241433367
|
| 762 |
+
name: Cosine Mrr@150
|
| 763 |
+
- type: cosine_mrr@200
|
| 764 |
+
value: 0.3832429794087988
|
| 765 |
+
name: Cosine Mrr@200
|
| 766 |
+
- type: cosine_map@1
|
| 767 |
+
value: 0.29433177327093085
|
| 768 |
+
name: Cosine Map@1
|
| 769 |
+
- type: cosine_map@20
|
| 770 |
+
value: 0.3096720133634083
|
| 771 |
+
name: Cosine Map@20
|
| 772 |
+
- type: cosine_map@50
|
| 773 |
+
value: 0.31740714963039135
|
| 774 |
+
name: Cosine Map@50
|
| 775 |
+
- type: cosine_map@100
|
| 776 |
+
value: 0.31992557448195186
|
| 777 |
+
name: Cosine Map@100
|
| 778 |
+
- type: cosine_map@150
|
| 779 |
+
value: 0.3207379270967634
|
| 780 |
+
name: Cosine Map@150
|
| 781 |
+
- type: cosine_map@200
|
| 782 |
+
value: 0.3211962807999124
|
| 783 |
+
name: Cosine Map@200
|
| 784 |
+
- type: cosine_map@500
|
| 785 |
+
value: 0.3219246841517722
|
| 786 |
+
name: Cosine Map@500
|
| 787 |
+
- task:
|
| 788 |
+
type: information-retrieval
|
| 789 |
+
name: Information Retrieval
|
| 790 |
+
dataset:
|
| 791 |
+
name: mix zh
|
| 792 |
+
type: mix_zh
|
| 793 |
+
metrics:
|
| 794 |
+
- type: cosine_accuracy@1
|
| 795 |
+
value: 0.09707724425887265
|
| 796 |
+
name: Cosine Accuracy@1
|
| 797 |
+
- type: cosine_accuracy@20
|
| 798 |
+
value: 0.3585594989561587
|
| 799 |
+
name: Cosine Accuracy@20
|
| 800 |
+
- type: cosine_accuracy@50
|
| 801 |
+
value: 0.4900835073068894
|
| 802 |
+
name: Cosine Accuracy@50
|
| 803 |
+
- type: cosine_accuracy@100
|
| 804 |
+
value: 0.6002087682672234
|
| 805 |
+
name: Cosine Accuracy@100
|
| 806 |
+
- type: cosine_accuracy@150
|
| 807 |
+
value: 0.6612734864300627
|
| 808 |
+
name: Cosine Accuracy@150
|
| 809 |
+
- type: cosine_accuracy@200
|
| 810 |
+
value: 0.7061586638830898
|
| 811 |
+
name: Cosine Accuracy@200
|
| 812 |
+
- type: cosine_precision@1
|
| 813 |
+
value: 0.09707724425887265
|
| 814 |
+
name: Cosine Precision@1
|
| 815 |
+
- type: cosine_precision@20
|
| 816 |
+
value: 0.03144572025052192
|
| 817 |
+
name: Cosine Precision@20
|
| 818 |
+
- type: cosine_precision@50
|
| 819 |
+
value: 0.018486430062630482
|
| 820 |
+
name: Cosine Precision@50
|
| 821 |
+
- type: cosine_precision@100
|
| 822 |
+
value: 0.011612734864300627
|
| 823 |
+
name: Cosine Precision@100
|
| 824 |
+
- type: cosine_precision@150
|
| 825 |
+
value: 0.008688239387613084
|
| 826 |
+
name: Cosine Precision@150
|
| 827 |
+
- type: cosine_precision@200
|
| 828 |
+
value: 0.007132045929018789
|
| 829 |
+
name: Cosine Precision@200
|
| 830 |
+
- type: cosine_recall@1
|
| 831 |
+
value: 0.032868575405109846
|
| 832 |
+
name: Cosine Recall@1
|
| 833 |
+
- type: cosine_recall@20
|
| 834 |
+
value: 0.20912118500845014
|
| 835 |
+
name: Cosine Recall@20
|
| 836 |
+
- type: cosine_recall@50
|
| 837 |
+
value: 0.305353414852371
|
| 838 |
+
name: Cosine Recall@50
|
| 839 |
+
- type: cosine_recall@100
|
| 840 |
+
value: 0.3834696126188819
|
| 841 |
+
name: Cosine Recall@100
|
| 842 |
+
- type: cosine_recall@150
|
| 843 |
+
value: 0.43087740663419155
|
| 844 |
+
name: Cosine Recall@150
|
| 845 |
+
- type: cosine_recall@200
|
| 846 |
+
value: 0.4714567385757365
|
| 847 |
+
name: Cosine Recall@200
|
| 848 |
+
- type: cosine_ndcg@1
|
| 849 |
+
value: 0.09707724425887265
|
| 850 |
+
name: Cosine Ndcg@1
|
| 851 |
+
- type: cosine_ndcg@20
|
| 852 |
+
value: 0.13847583254619214
|
| 853 |
+
name: Cosine Ndcg@20
|
| 854 |
+
- type: cosine_ndcg@50
|
| 855 |
+
value: 0.16556220177827802
|
| 856 |
+
name: Cosine Ndcg@50
|
| 857 |
+
- type: cosine_ndcg@100
|
| 858 |
+
value: 0.1834871578549362
|
| 859 |
+
name: Cosine Ndcg@100
|
| 860 |
+
- type: cosine_ndcg@150
|
| 861 |
+
value: 0.1930615498205831
|
| 862 |
+
name: Cosine Ndcg@150
|
| 863 |
+
- type: cosine_ndcg@200
|
| 864 |
+
value: 0.20074882110420836
|
| 865 |
+
name: Cosine Ndcg@200
|
| 866 |
+
- type: cosine_mrr@1
|
| 867 |
+
value: 0.09707724425887265
|
| 868 |
+
name: Cosine Mrr@1
|
| 869 |
+
- type: cosine_mrr@20
|
| 870 |
+
value: 0.15220960831749397
|
| 871 |
+
name: Cosine Mrr@20
|
| 872 |
+
- type: cosine_mrr@50
|
| 873 |
+
value: 0.15642354470896513
|
| 874 |
+
name: Cosine Mrr@50
|
| 875 |
+
- type: cosine_mrr@100
|
| 876 |
+
value: 0.1580041495008456
|
| 877 |
+
name: Cosine Mrr@100
|
| 878 |
+
- type: cosine_mrr@150
|
| 879 |
+
value: 0.15850022553236756
|
| 880 |
+
name: Cosine Mrr@150
|
| 881 |
+
- type: cosine_mrr@200
|
| 882 |
+
value: 0.1587557913720219
|
| 883 |
+
name: Cosine Mrr@200
|
| 884 |
+
- type: cosine_map@1
|
| 885 |
+
value: 0.09707724425887265
|
| 886 |
+
name: Cosine Map@1
|
| 887 |
+
- type: cosine_map@20
|
| 888 |
+
value: 0.08751052569766739
|
| 889 |
+
name: Cosine Map@20
|
| 890 |
+
- type: cosine_map@50
|
| 891 |
+
value: 0.09304075210745723
|
| 892 |
+
name: Cosine Map@50
|
| 893 |
+
- type: cosine_map@100
|
| 894 |
+
value: 0.09500635866296525
|
| 895 |
+
name: Cosine Map@100
|
| 896 |
+
- type: cosine_map@150
|
| 897 |
+
value: 0.09570276054684158
|
| 898 |
+
name: Cosine Map@150
|
| 899 |
+
- type: cosine_map@200
|
| 900 |
+
value: 0.09614394028730197
|
| 901 |
+
name: Cosine Map@200
|
| 902 |
+
- type: cosine_map@500
|
| 903 |
+
value: 0.09706713378133278
|
| 904 |
+
name: Cosine Map@500
|
| 905 |
+
---
|
| 906 |
+
|
| 907 |
+
# Job - Job matching BAAI/bge-small-en-v1.5
|
| 908 |
+
|
| 909 |
+
Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching
|
| 910 |
+
|
| 911 |
+
## Model Details
|
| 912 |
+
|
| 913 |
+
### Model Description
|
| 914 |
+
- **Model Type:** Sentence Transformer
|
| 915 |
+
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
|
| 916 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 917 |
+
- **Output Dimensionality:** 384 dimensions
|
| 918 |
+
- **Similarity Function:** Cosine Similarity
|
| 919 |
+
- **Training Datasets:**
|
| 920 |
+
- full_en
|
| 921 |
+
- full_de
|
| 922 |
+
- full_es
|
| 923 |
+
- full_zh
|
| 924 |
+
- mix
|
| 925 |
+
<!-- - **Language:** Unknown -->
|
| 926 |
+
<!-- - **License:** Unknown -->
|
| 927 |
+
|
| 928 |
+
### Model Sources
|
| 929 |
+
|
| 930 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 931 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 932 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 933 |
+
|
| 934 |
+
### Full Model Architecture
|
| 935 |
+
|
| 936 |
+
```
|
| 937 |
+
SentenceTransformer(
|
| 938 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
| 939 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 940 |
+
(2): Normalize()
|
| 941 |
+
)
|
| 942 |
+
```
|
| 943 |
+
|
| 944 |
+
## Usage
|
| 945 |
+
|
| 946 |
+
### Direct Usage (Sentence Transformers)
|
| 947 |
+
|
| 948 |
+
First install the Sentence Transformers library:
|
| 949 |
+
|
| 950 |
+
```bash
|
| 951 |
+
pip install -U sentence-transformers
|
| 952 |
+
```
|
| 953 |
+
|
| 954 |
+
Then you can load this model and run inference.
|
| 955 |
+
```python
|
| 956 |
+
from sentence_transformers import SentenceTransformer
|
| 957 |
+
|
| 958 |
+
# Download from the 🤗 Hub
|
| 959 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 960 |
+
# Run inference
|
| 961 |
+
sentences = [
|
| 962 |
+
'Volksvertreter',
|
| 963 |
+
'Parlamentarier',
|
| 964 |
+
'Oberbürgermeister',
|
| 965 |
+
]
|
| 966 |
+
embeddings = model.encode(sentences)
|
| 967 |
+
print(embeddings.shape)
|
| 968 |
+
# [3, 384]
|
| 969 |
+
|
| 970 |
+
# Get the similarity scores for the embeddings
|
| 971 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 972 |
+
print(similarities.shape)
|
| 973 |
+
# [3, 3]
|
| 974 |
+
```
|
| 975 |
+
|
| 976 |
+
<!--
|
| 977 |
+
### Direct Usage (Transformers)
|
| 978 |
+
|
| 979 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 980 |
+
|
| 981 |
+
</details>
|
| 982 |
+
-->
|
| 983 |
+
|
| 984 |
+
<!--
|
| 985 |
+
### Downstream Usage (Sentence Transformers)
|
| 986 |
+
|
| 987 |
+
You can finetune this model on your own dataset.
|
| 988 |
+
|
| 989 |
+
<details><summary>Click to expand</summary>
|
| 990 |
+
|
| 991 |
+
</details>
|
| 992 |
+
-->
|
| 993 |
+
|
| 994 |
+
<!--
|
| 995 |
+
### Out-of-Scope Use
|
| 996 |
+
|
| 997 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 998 |
+
-->
|
| 999 |
+
|
| 1000 |
+
## Evaluation
|
| 1001 |
+
|
| 1002 |
+
### Metrics
|
| 1003 |
+
|
| 1004 |
+
#### Information Retrieval
|
| 1005 |
+
|
| 1006 |
+
* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
|
| 1007 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
| 1008 |
+
|
| 1009 |
+
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
|
| 1010 |
+
|:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
|
| 1011 |
+
| cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
|
| 1012 |
+
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9212 | 0.7379 | 0.7613 | 0.65 | 0.3586 |
|
| 1013 |
+
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9655 | 0.8252 | 0.8523 | 0.7608 | 0.4901 |
|
| 1014 |
+
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9754 | 0.8544 | 0.9121 | 0.8508 | 0.6002 |
|
| 1015 |
+
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9852 | 0.9029 | 0.9418 | 0.8898 | 0.6613 |
|
| 1016 |
+
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9852 | 0.9417 | 0.9548 | 0.9204 | 0.7062 |
|
| 1017 |
+
| cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
|
| 1018 |
+
| cosine_precision@20 | 0.5024 | 0.4897 | 0.4246 | 0.1733 | 0.0892 | 0.0731 | 0.0314 |
|
| 1019 |
+
| cosine_precision@50 | 0.308 | 0.3179 | 0.2814 | 0.0944 | 0.0418 | 0.0361 | 0.0185 |
|
| 1020 |
+
| cosine_precision@100 | 0.1863 | 0.1986 | 0.1801 | 0.0589 | 0.0229 | 0.0206 | 0.0116 |
|
| 1021 |
+
| cosine_precision@150 | 0.1322 | 0.1469 | 0.1362 | 0.0458 | 0.0159 | 0.0147 | 0.0087 |
|
| 1022 |
+
| cosine_precision@200 | 0.103 | 0.1179 | 0.1105 | 0.0385 | 0.0122 | 0.0116 | 0.0071 |
|
| 1023 |
+
| cosine_recall@1 | 0.068 | 0.0031 | 0.0111 | 0.0273 | 0.1565 | 0.1109 | 0.0329 |
|
| 1024 |
+
| cosine_recall@20 | 0.5385 | 0.3221 | 0.2614 | 0.1766 | 0.6594 | 0.5344 | 0.2091 |
|
| 1025 |
+
| cosine_recall@50 | 0.726 | 0.4638 | 0.3835 | 0.2393 | 0.7705 | 0.6585 | 0.3054 |
|
| 1026 |
+
| cosine_recall@100 | 0.8329 | 0.5438 | 0.4677 | 0.2863 | 0.8472 | 0.7525 | 0.3835 |
|
| 1027 |
+
| cosine_recall@150 | 0.8745 | 0.5825 | 0.5183 | 0.3287 | 0.8825 | 0.8026 | 0.4309 |
|
| 1028 |
+
| cosine_recall@200 | 0.9057 | 0.6147 | 0.5517 | 0.3631 | 0.9051 | 0.8418 | 0.4715 |
|
| 1029 |
+
| cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
|
| 1030 |
+
| cosine_ndcg@20 | 0.6845 | 0.5385 | 0.4601 | 0.2468 | 0.5117 | 0.3919 | 0.1385 |
|
| 1031 |
+
| cosine_ndcg@50 | 0.704 | 0.5012 | 0.4229 | 0.2394 | 0.542 | 0.4256 | 0.1656 |
|
| 1032 |
+
| cosine_ndcg@100 | 0.7589 | 0.5147 | 0.4371 | 0.2619 | 0.5588 | 0.4462 | 0.1835 |
|
| 1033 |
+
| cosine_ndcg@150 | 0.7774 | 0.5348 | 0.4629 | 0.2787 | 0.5656 | 0.4561 | 0.1931 |
|
| 1034 |
+
| **cosine_ndcg@200** | **0.7893** | **0.5505** | **0.4797** | **0.2919** | **0.5697** | **0.4632** | **0.2007** |
|
| 1035 |
+
| cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
|
| 1036 |
+
| cosine_mrr@20 | 0.8103 | 0.5515 | 0.4896 | 0.4485 | 0.4979 | 0.3779 | 0.1522 |
|
| 1037 |
+
| cosine_mrr@50 | 0.8103 | 0.5515 | 0.4909 | 0.4515 | 0.501 | 0.3815 | 0.1564 |
|
| 1038 |
+
| cosine_mrr@100 | 0.8103 | 0.5515 | 0.4911 | 0.4519 | 0.5018 | 0.3827 | 0.158 |
|
| 1039 |
+
| cosine_mrr@150 | 0.8103 | 0.5515 | 0.4912 | 0.4523 | 0.5021 | 0.3831 | 0.1585 |
|
| 1040 |
+
| cosine_mrr@200 | 0.8103 | 0.5515 | 0.4912 | 0.4525 | 0.5021 | 0.3832 | 0.1588 |
|
| 1041 |
+
| cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 |
|
| 1042 |
+
| cosine_map@20 | 0.5418 | 0.4028 | 0.3236 | 0.147 | 0.4264 | 0.3097 | 0.0875 |
|
| 1043 |
+
| cosine_map@50 | 0.5327 | 0.3422 | 0.2644 | 0.1267 | 0.4338 | 0.3174 | 0.093 |
|
| 1044 |
+
| cosine_map@100 | 0.5657 | 0.3395 | 0.2576 | 0.1326 | 0.436 | 0.3199 | 0.095 |
|
| 1045 |
+
| cosine_map@150 | 0.5734 | 0.3478 | 0.2669 | 0.1352 | 0.4366 | 0.3207 | 0.0957 |
|
| 1046 |
+
| cosine_map@200 | 0.5772 | 0.3534 | 0.2722 | 0.1368 | 0.4368 | 0.3212 | 0.0961 |
|
| 1047 |
+
| cosine_map@500 | 0.5814 | 0.3631 | 0.2833 | 0.1407 | 0.4373 | 0.3219 | 0.0971 |
|
| 1048 |
+
|
| 1049 |
+
<!--
|
| 1050 |
+
## Bias, Risks and Limitations
|
| 1051 |
+
|
| 1052 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 1053 |
+
-->
|
| 1054 |
+
|
| 1055 |
+
<!--
|
| 1056 |
+
### Recommendations
|
| 1057 |
+
|
| 1058 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 1059 |
+
-->
|
| 1060 |
+
|
| 1061 |
+
## Training Details
|
| 1062 |
+
|
| 1063 |
+
### Training Datasets
|
| 1064 |
+
<details><summary>full_en</summary>
|
| 1065 |
+
|
| 1066 |
+
#### full_en
|
| 1067 |
+
|
| 1068 |
+
* Dataset: full_en
|
| 1069 |
+
* Size: 28,880 training samples
|
| 1070 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1071 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1072 |
+
| | anchor | positive |
|
| 1073 |
+
|:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1074 |
+
| type | string | string |
|
| 1075 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 5.0 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.01 tokens</li><li>max: 13 tokens</li></ul> |
|
| 1076 |
+
* Samples:
|
| 1077 |
+
| anchor | positive |
|
| 1078 |
+
|:-----------------------------------------|:-----------------------------------------|
|
| 1079 |
+
| <code>air commodore</code> | <code>flight lieutenant</code> |
|
| 1080 |
+
| <code>command and control officer</code> | <code>flight officer</code> |
|
| 1081 |
+
| <code>air commodore</code> | <code>command and control officer</code> |
|
| 1082 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1083 |
+
```json
|
| 1084 |
+
{'guide': SentenceTransformer(
|
| 1085 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1086 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1087 |
+
(2): Normalize()
|
| 1088 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1089 |
+
```
|
| 1090 |
+
</details>
|
| 1091 |
+
<details><summary>full_de</summary>
|
| 1092 |
+
|
| 1093 |
+
#### full_de
|
| 1094 |
+
|
| 1095 |
+
* Dataset: full_de
|
| 1096 |
+
* Size: 23,023 training samples
|
| 1097 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1098 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1099 |
+
| | anchor | positive |
|
| 1100 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1101 |
+
| type | string | string |
|
| 1102 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 11.05 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.43 tokens</li><li>max: 45 tokens</li></ul> |
|
| 1103 |
+
* Samples:
|
| 1104 |
+
| anchor | positive |
|
| 1105 |
+
|:----------------------------------|:-----------------------------------------------------|
|
| 1106 |
+
| <code>Staffelkommandantin</code> | <code>Kommodore</code> |
|
| 1107 |
+
| <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
|
| 1108 |
+
| <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
|
| 1109 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1110 |
+
```json
|
| 1111 |
+
{'guide': SentenceTransformer(
|
| 1112 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1113 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1114 |
+
(2): Normalize()
|
| 1115 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1116 |
+
```
|
| 1117 |
+
</details>
|
| 1118 |
+
<details><summary>full_es</summary>
|
| 1119 |
+
|
| 1120 |
+
#### full_es
|
| 1121 |
+
|
| 1122 |
+
* Dataset: full_es
|
| 1123 |
+
* Size: 20,724 training samples
|
| 1124 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1125 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1126 |
+
| | anchor | positive |
|
| 1127 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1128 |
+
| type | string | string |
|
| 1129 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 12.95 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.57 tokens</li><li>max: 50 tokens</li></ul> |
|
| 1130 |
+
* Samples:
|
| 1131 |
+
| anchor | positive |
|
| 1132 |
+
|:------------------------------------|:-------------------------------------------|
|
| 1133 |
+
| <code>jefe de escuadrón</code> | <code>instructor</code> |
|
| 1134 |
+
| <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
|
| 1135 |
+
| <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
|
| 1136 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1137 |
+
```json
|
| 1138 |
+
{'guide': SentenceTransformer(
|
| 1139 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1140 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1141 |
+
(2): Normalize()
|
| 1142 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1143 |
+
```
|
| 1144 |
+
</details>
|
| 1145 |
+
<details><summary>full_zh</summary>
|
| 1146 |
+
|
| 1147 |
+
#### full_zh
|
| 1148 |
+
|
| 1149 |
+
* Dataset: full_zh
|
| 1150 |
+
* Size: 30,401 training samples
|
| 1151 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1152 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1153 |
+
| | anchor | positive |
|
| 1154 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1155 |
+
| type | string | string |
|
| 1156 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 8.36 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.95 tokens</li><li>max: 27 tokens</li></ul> |
|
| 1157 |
+
* Samples:
|
| 1158 |
+
| anchor | positive |
|
| 1159 |
+
|:------------------|:---------------------|
|
| 1160 |
+
| <code>技术总监</code> | <code>技术和运营总监</code> |
|
| 1161 |
+
| <code>技术总监</code> | <code>技术主管</code> |
|
| 1162 |
+
| <code>技术总监</code> | <code>技术艺术总监</code> |
|
| 1163 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1164 |
+
```json
|
| 1165 |
+
{'guide': SentenceTransformer(
|
| 1166 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1167 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1168 |
+
(2): Normalize()
|
| 1169 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1170 |
+
```
|
| 1171 |
+
</details>
|
| 1172 |
+
<details><summary>mix</summary>
|
| 1173 |
+
|
| 1174 |
+
#### mix
|
| 1175 |
+
|
| 1176 |
+
* Dataset: mix
|
| 1177 |
+
* Size: 21,760 training samples
|
| 1178 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1179 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1180 |
+
| | anchor | positive |
|
| 1181 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1182 |
+
| type | string | string |
|
| 1183 |
+
| details | <ul><li>min: 2 tokens</li><li>mean: 5.65 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 10.08 tokens</li><li>max: 30 tokens</li></ul> |
|
| 1184 |
+
* Samples:
|
| 1185 |
+
| anchor | positive |
|
| 1186 |
+
|:------------------------------------------|:----------------------------------------------------------------|
|
| 1187 |
+
| <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
|
| 1188 |
+
| <code>head of technical</code> | <code>directora técnica</code> |
|
| 1189 |
+
| <code>head of technical department</code> | <code>技术艺术总监</code> |
|
| 1190 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1191 |
+
```json
|
| 1192 |
+
{'guide': SentenceTransformer(
|
| 1193 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1194 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1195 |
+
(2): Normalize()
|
| 1196 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1197 |
+
```
|
| 1198 |
+
</details>
|
| 1199 |
+
|
| 1200 |
+
### Training Hyperparameters
|
| 1201 |
+
#### Non-Default Hyperparameters
|
| 1202 |
+
|
| 1203 |
+
- `eval_strategy`: steps
|
| 1204 |
+
- `per_device_train_batch_size`: 128
|
| 1205 |
+
- `per_device_eval_batch_size`: 128
|
| 1206 |
+
- `gradient_accumulation_steps`: 2
|
| 1207 |
+
- `num_train_epochs`: 5
|
| 1208 |
+
- `warmup_ratio`: 0.05
|
| 1209 |
+
- `log_on_each_node`: False
|
| 1210 |
+
- `fp16`: True
|
| 1211 |
+
- `dataloader_num_workers`: 4
|
| 1212 |
+
- `ddp_find_unused_parameters`: True
|
| 1213 |
+
- `batch_sampler`: no_duplicates
|
| 1214 |
+
|
| 1215 |
+
#### All Hyperparameters
|
| 1216 |
+
<details><summary>Click to expand</summary>
|
| 1217 |
+
|
| 1218 |
+
- `overwrite_output_dir`: False
|
| 1219 |
+
- `do_predict`: False
|
| 1220 |
+
- `eval_strategy`: steps
|
| 1221 |
+
- `prediction_loss_only`: True
|
| 1222 |
+
- `per_device_train_batch_size`: 128
|
| 1223 |
+
- `per_device_eval_batch_size`: 128
|
| 1224 |
+
- `per_gpu_train_batch_size`: None
|
| 1225 |
+
- `per_gpu_eval_batch_size`: None
|
| 1226 |
+
- `gradient_accumulation_steps`: 2
|
| 1227 |
+
- `eval_accumulation_steps`: None
|
| 1228 |
+
- `torch_empty_cache_steps`: None
|
| 1229 |
+
- `learning_rate`: 5e-05
|
| 1230 |
+
- `weight_decay`: 0.0
|
| 1231 |
+
- `adam_beta1`: 0.9
|
| 1232 |
+
- `adam_beta2`: 0.999
|
| 1233 |
+
- `adam_epsilon`: 1e-08
|
| 1234 |
+
- `max_grad_norm`: 1.0
|
| 1235 |
+
- `num_train_epochs`: 5
|
| 1236 |
+
- `max_steps`: -1
|
| 1237 |
+
- `lr_scheduler_type`: linear
|
| 1238 |
+
- `lr_scheduler_kwargs`: {}
|
| 1239 |
+
- `warmup_ratio`: 0.05
|
| 1240 |
+
- `warmup_steps`: 0
|
| 1241 |
+
- `log_level`: passive
|
| 1242 |
+
- `log_level_replica`: warning
|
| 1243 |
+
- `log_on_each_node`: False
|
| 1244 |
+
- `logging_nan_inf_filter`: True
|
| 1245 |
+
- `save_safetensors`: True
|
| 1246 |
+
- `save_on_each_node`: False
|
| 1247 |
+
- `save_only_model`: False
|
| 1248 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 1249 |
+
- `no_cuda`: False
|
| 1250 |
+
- `use_cpu`: False
|
| 1251 |
+
- `use_mps_device`: False
|
| 1252 |
+
- `seed`: 42
|
| 1253 |
+
- `data_seed`: None
|
| 1254 |
+
- `jit_mode_eval`: False
|
| 1255 |
+
- `use_ipex`: False
|
| 1256 |
+
- `bf16`: False
|
| 1257 |
+
- `fp16`: True
|
| 1258 |
+
- `fp16_opt_level`: O1
|
| 1259 |
+
- `half_precision_backend`: auto
|
| 1260 |
+
- `bf16_full_eval`: False
|
| 1261 |
+
- `fp16_full_eval`: False
|
| 1262 |
+
- `tf32`: None
|
| 1263 |
+
- `local_rank`: 0
|
| 1264 |
+
- `ddp_backend`: None
|
| 1265 |
+
- `tpu_num_cores`: None
|
| 1266 |
+
- `tpu_metrics_debug`: False
|
| 1267 |
+
- `debug`: []
|
| 1268 |
+
- `dataloader_drop_last`: True
|
| 1269 |
+
- `dataloader_num_workers`: 4
|
| 1270 |
+
- `dataloader_prefetch_factor`: None
|
| 1271 |
+
- `past_index`: -1
|
| 1272 |
+
- `disable_tqdm`: False
|
| 1273 |
+
- `remove_unused_columns`: True
|
| 1274 |
+
- `label_names`: None
|
| 1275 |
+
- `load_best_model_at_end`: False
|
| 1276 |
+
- `ignore_data_skip`: False
|
| 1277 |
+
- `fsdp`: []
|
| 1278 |
+
- `fsdp_min_num_params`: 0
|
| 1279 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 1280 |
+
- `tp_size`: 0
|
| 1281 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 1282 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 1283 |
+
- `deepspeed`: None
|
| 1284 |
+
- `label_smoothing_factor`: 0.0
|
| 1285 |
+
- `optim`: adamw_torch
|
| 1286 |
+
- `optim_args`: None
|
| 1287 |
+
- `adafactor`: False
|
| 1288 |
+
- `group_by_length`: False
|
| 1289 |
+
- `length_column_name`: length
|
| 1290 |
+
- `ddp_find_unused_parameters`: True
|
| 1291 |
+
- `ddp_bucket_cap_mb`: None
|
| 1292 |
+
- `ddp_broadcast_buffers`: False
|
| 1293 |
+
- `dataloader_pin_memory`: True
|
| 1294 |
+
- `dataloader_persistent_workers`: False
|
| 1295 |
+
- `skip_memory_metrics`: True
|
| 1296 |
+
- `use_legacy_prediction_loop`: False
|
| 1297 |
+
- `push_to_hub`: False
|
| 1298 |
+
- `resume_from_checkpoint`: None
|
| 1299 |
+
- `hub_model_id`: None
|
| 1300 |
+
- `hub_strategy`: every_save
|
| 1301 |
+
- `hub_private_repo`: None
|
| 1302 |
+
- `hub_always_push`: False
|
| 1303 |
+
- `gradient_checkpointing`: False
|
| 1304 |
+
- `gradient_checkpointing_kwargs`: None
|
| 1305 |
+
- `include_inputs_for_metrics`: False
|
| 1306 |
+
- `include_for_metrics`: []
|
| 1307 |
+
- `eval_do_concat_batches`: True
|
| 1308 |
+
- `fp16_backend`: auto
|
| 1309 |
+
- `push_to_hub_model_id`: None
|
| 1310 |
+
- `push_to_hub_organization`: None
|
| 1311 |
+
- `mp_parameters`:
|
| 1312 |
+
- `auto_find_batch_size`: False
|
| 1313 |
+
- `full_determinism`: False
|
| 1314 |
+
- `torchdynamo`: None
|
| 1315 |
+
- `ray_scope`: last
|
| 1316 |
+
- `ddp_timeout`: 1800
|
| 1317 |
+
- `torch_compile`: False
|
| 1318 |
+
- `torch_compile_backend`: None
|
| 1319 |
+
- `torch_compile_mode`: None
|
| 1320 |
+
- `include_tokens_per_second`: False
|
| 1321 |
+
- `include_num_input_tokens_seen`: False
|
| 1322 |
+
- `neftune_noise_alpha`: None
|
| 1323 |
+
- `optim_target_modules`: None
|
| 1324 |
+
- `batch_eval_metrics`: False
|
| 1325 |
+
- `eval_on_start`: False
|
| 1326 |
+
- `use_liger_kernel`: False
|
| 1327 |
+
- `eval_use_gather_object`: False
|
| 1328 |
+
- `average_tokens_across_devices`: False
|
| 1329 |
+
- `prompts`: None
|
| 1330 |
+
- `batch_sampler`: no_duplicates
|
| 1331 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 1332 |
+
|
| 1333 |
+
</details>
|
| 1334 |
+
|
| 1335 |
+
### Training Logs
|
| 1336 |
+
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|
| 1337 |
+
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
|
| 1338 |
+
| -1 | -1 | - | 0.7322 | 0.4690 | 0.3853 | 0.2723 | 0.3209 | 0.2244 | 0.0919 |
|
| 1339 |
+
| 0.0021 | 1 | 23.8878 | - | - | - | - | - | - | - |
|
| 1340 |
+
| 0.2058 | 100 | 7.2098 | - | - | - | - | - | - | - |
|
| 1341 |
+
| 0.4115 | 200 | 4.2635 | 0.7800 | 0.5132 | 0.4268 | 0.2798 | 0.4372 | 0.2996 | 0.1447 |
|
| 1342 |
+
| 0.6173 | 300 | 4.1931 | - | - | - | - | - | - | - |
|
| 1343 |
+
| 0.8230 | 400 | 3.73 | 0.7863 | 0.5274 | 0.4451 | 0.2805 | 0.4762 | 0.3455 | 0.1648 |
|
| 1344 |
+
| 1.0309 | 500 | 3.3569 | - | - | - | - | - | - | - |
|
| 1345 |
+
| 1.2366 | 600 | 3.6464 | 0.7868 | 0.5372 | 0.4540 | 0.2813 | 0.5063 | 0.3794 | 0.1755 |
|
| 1346 |
+
| 1.4424 | 700 | 3.0772 | - | - | - | - | - | - | - |
|
| 1347 |
+
| 1.6481 | 800 | 3.114 | 0.7906 | 0.5391 | 0.4576 | 0.2832 | 0.5221 | 0.4047 | 0.1779 |
|
| 1348 |
+
| 1.8539 | 900 | 2.9246 | - | - | - | - | - | - | - |
|
| 1349 |
+
| 2.0617 | 1000 | 2.7479 | 0.7873 | 0.5423 | 0.4631 | 0.2871 | 0.5323 | 0.4143 | 0.1843 |
|
| 1350 |
+
| 2.2675 | 1100 | 3.049 | - | - | - | - | - | - | - |
|
| 1351 |
+
| 2.4733 | 1200 | 2.6137 | 0.7878 | 0.5418 | 0.4685 | 0.2870 | 0.5470 | 0.4339 | 0.1932 |
|
| 1352 |
+
| 2.6790 | 1300 | 2.8607 | - | - | - | - | - | - | - |
|
| 1353 |
+
| 2.8848 | 1400 | 2.7071 | 0.7889 | 0.5465 | 0.4714 | 0.2891 | 0.5504 | 0.4362 | 0.1944 |
|
| 1354 |
+
| 3.0926 | 1500 | 2.7012 | - | - | - | - | - | - | - |
|
| 1355 |
+
| 3.2984 | 1600 | 2.7423 | 0.7882 | 0.5471 | 0.4748 | 0.2868 | 0.5542 | 0.4454 | 0.1976 |
|
| 1356 |
+
| 3.5041 | 1700 | 2.5316 | - | - | - | - | - | - | - |
|
| 1357 |
+
| 3.7099 | 1800 | 2.6344 | 0.7900 | 0.5498 | 0.4763 | 0.2857 | 0.5639 | 0.4552 | 0.1954 |
|
| 1358 |
+
| 3.9156 | 1900 | 2.4983 | - | - | - | - | - | - | - |
|
| 1359 |
+
| 4.1235 | 2000 | 2.5423 | 0.7894 | 0.5499 | 0.4786 | 0.2870 | 0.5644 | 0.4576 | 0.1974 |
|
| 1360 |
+
| 4.3292 | 2100 | 2.5674 | - | - | - | - | - | - | - |
|
| 1361 |
+
| 4.5350 | 2200 | 2.6237 | 0.7899 | 0.5502 | 0.4802 | 0.2843 | 0.5674 | 0.4607 | 0.1993 |
|
| 1362 |
+
| 4.7407 | 2300 | 2.3776 | - | - | - | - | - | - | - |
|
| 1363 |
+
| 4.9465 | 2400 | 2.1116 | 0.7893 | 0.5505 | 0.4797 | 0.2919 | 0.5697 | 0.4632 | 0.2007 |
|
| 1364 |
+
|
| 1365 |
+
|
| 1366 |
+
### Framework Versions
|
| 1367 |
+
- Python: 3.11.11
|
| 1368 |
+
- Sentence Transformers: 4.1.0
|
| 1369 |
+
- Transformers: 4.51.3
|
| 1370 |
+
- PyTorch: 2.6.0+cu124
|
| 1371 |
+
- Accelerate: 1.6.0
|
| 1372 |
+
- Datasets: 3.5.0
|
| 1373 |
+
- Tokenizers: 0.21.1
|
| 1374 |
+
|
| 1375 |
+
## Citation
|
| 1376 |
+
|
| 1377 |
+
### BibTeX
|
| 1378 |
+
|
| 1379 |
+
#### Sentence Transformers
|
| 1380 |
+
```bibtex
|
| 1381 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1382 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1383 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1384 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1385 |
+
month = "11",
|
| 1386 |
+
year = "2019",
|
| 1387 |
+
publisher = "Association for Computational Linguistics",
|
| 1388 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1389 |
+
}
|
| 1390 |
+
```
|
| 1391 |
+
|
| 1392 |
+
#### GISTEmbedLoss
|
| 1393 |
+
```bibtex
|
| 1394 |
+
@misc{solatorio2024gistembed,
|
| 1395 |
+
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
|
| 1396 |
+
author={Aivin V. Solatorio},
|
| 1397 |
+
year={2024},
|
| 1398 |
+
eprint={2402.16829},
|
| 1399 |
+
archivePrefix={arXiv},
|
| 1400 |
+
primaryClass={cs.LG}
|
| 1401 |
+
}
|
| 1402 |
+
```
|
| 1403 |
+
|
| 1404 |
+
<!--
|
| 1405 |
+
## Glossary
|
| 1406 |
+
|
| 1407 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1408 |
+
-->
|
| 1409 |
+
|
| 1410 |
+
<!--
|
| 1411 |
+
## Model Card Authors
|
| 1412 |
+
|
| 1413 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1414 |
+
-->
|
| 1415 |
+
|
| 1416 |
+
<!--
|
| 1417 |
+
## Model Card Contact
|
| 1418 |
+
|
| 1419 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1420 |
+
-->
|
checkpoint-2400/config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"hidden_act": "gelu",
|
| 8 |
+
"hidden_dropout_prob": 0.1,
|
| 9 |
+
"hidden_size": 384,
|
| 10 |
+
"id2label": {
|
| 11 |
+
"0": "LABEL_0"
|
| 12 |
+
},
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 1536,
|
| 15 |
+
"label2id": {
|
| 16 |
+
"LABEL_0": 0
|
| 17 |
+
},
|
| 18 |
+
"layer_norm_eps": 1e-12,
|
| 19 |
+
"max_position_embeddings": 512,
|
| 20 |
+
"model_type": "bert",
|
| 21 |
+
"num_attention_heads": 12,
|
| 22 |
+
"num_hidden_layers": 12,
|
| 23 |
+
"pad_token_id": 0,
|
| 24 |
+
"position_embedding_type": "absolute",
|
| 25 |
+
"torch_dtype": "float32",
|
| 26 |
+
"transformers_version": "4.51.3",
|
| 27 |
+
"type_vocab_size": 2,
|
| 28 |
+
"use_cache": true,
|
| 29 |
+
"vocab_size": 30522
|
| 30 |
+
}
|
checkpoint-2400/config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.1.0",
|
| 4 |
+
"transformers": "4.51.3",
|
| 5 |
+
"pytorch": "2.6.0+cu124"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
checkpoint-2400/modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
checkpoint-2400/sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": true
|
| 4 |
+
}
|
checkpoint-2400/special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
checkpoint-2400/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2400/tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"sep_token": "[SEP]",
|
| 54 |
+
"strip_accents": null,
|
| 55 |
+
"tokenize_chinese_chars": true,
|
| 56 |
+
"tokenizer_class": "BertTokenizer",
|
| 57 |
+
"unk_token": "[UNK]"
|
| 58 |
+
}
|
checkpoint-2400/trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
eval/Information-Retrieval_evaluation_full_de_results.csv
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
|
| 2 |
+
0.411522633744856,200,0.2955665024630542,0.9014778325123153,0.9408866995073891,0.9605911330049262,0.9605911330049262,0.9704433497536946,0.2955665024630542,0.01108543831680986,0.4027093596059113,0.2397877981982046,0.2561576354679803,0.3397409314681747,0.16064039408866995,0.40636431912970855,0.11914614121510674,0.446007269889672,0.095,0.469718501934431,0.2955665024630542,0.48314407267609183,0.4844918996268316,0.48480164022781674,0.48480164022781674,0.4848592643725686,0.2955665024630542,0.43619754352310475,0.38888491873524683,0.3955441522908745,0.4150719496756774,0.42677964152696485,0.2955665024630542,0.3029422417780052,0.24132957923060117,0.23155516632805698,0.23829517563807467,0.24151893822757842,0.24866229273096108
|
| 3 |
+
0.823045267489712,400,0.2955665024630542,0.9064039408866995,0.9359605911330049,0.9655172413793104,0.9704433497536946,0.9802955665024631,0.2955665024630542,0.01108543831680986,0.41182266009852214,0.24603315574847545,0.265024630541872,0.3559333178644535,0.16610837438423645,0.4239869245671403,0.12469622331691296,0.464226040675043,0.10002463054187193,0.49889192978503694,0.2955665024630542,0.4854539959219757,0.4864492293797279,0.4868486260728541,0.48688511576451626,0.48694330618535214,0.2955665024630542,0.44583022302558617,0.4019089233882443,0.4089732681691876,0.4299764699380707,0.44507642718195956,0.2955665024630542,0.31343527374238067,0.2511534690299019,0.24097108291056854,0.24906329181223558,0.25313724617084776,0.2612809613562446
|
| 4 |
+
1.2366255144032923,600,0.2955665024630542,0.9014778325123153,0.9458128078817734,0.9753694581280788,0.9802955665024631,0.9802955665024631,0.2955665024630542,0.01108543831680986,0.4179802955665025,0.2507659677684014,0.26945812807881775,0.36139943218013776,0.1685221674876847,0.42975460445862856,0.12752052545155995,0.47859982335228407,0.10280788177339902,0.5110425468683738,0.2955665024630542,0.487974894563564,0.4895739950712001,0.48998399066079057,0.4900177311291083,0.4900177311291083,0.2955665024630542,0.4513590471633809,0.4072116394103669,0.41394876856390583,0.4383431554345573,0.4539611235077664,0.2955665024630542,0.32001984932782485,0.2558157694655061,0.2460951907888303,0.2545210602874976,0.2590743916287105,0.2682904028010859
|
| 5 |
+
1.6481481481481481,800,0.2955665024630542,0.9014778325123153,0.9507389162561576,0.9753694581280788,0.9852216748768473,0.9852216748768473,0.2955665024630542,0.01108543831680986,0.41773399014778323,0.2494866605097815,0.27418719211822656,0.36928405234284817,0.17177339901477834,0.4412045266942434,0.1291297208538588,0.48510123264203986,0.10394088669950739,0.5176063882950653,0.2955665024630542,0.484464702607994,0.486173947904224,0.4865140569657979,0.4865886523211815,0.4865886523211815,0.2955665024630542,0.450579044037908,0.41170953475508176,0.41956590300215635,0.44235301040188246,0.45760233045594884,0.2955665024630542,0.3193150464209932,0.2585277060483647,0.24906832890040956,0.2576260716612884,0.26187572608350973,0.27163288456073703
|
| 6 |
+
2.0617283950617282,1000,0.2955665024630542,0.916256157635468,0.9556650246305419,0.9753694581280788,0.9802955665024631,0.9852216748768473,0.2955665024630542,0.01108543831680986,0.41748768472906406,0.25155227497815463,0.27270935960591136,0.3705669929966589,0.17339901477832514,0.4487664022453661,0.1303448275862069,0.4934281669006011,0.10514778325123154,0.5278916684808911,0.2955665024630542,0.4855922881169181,0.4870116041237047,0.48730977573921297,0.4873447126780384,0.48736984588403015,0.2955665024630542,0.45183168265391493,0.41228492442192266,0.4240106061739794,0.447142422447027,0.46311004808573736,0.2955665024630542,0.3186993957078306,0.25751169524533646,0.2502256866267068,0.25876370173281255,0.26321632344495977,0.27325486205583915
|
| 7 |
+
2.4732510288065845,1200,0.2955665024630542,0.9211822660098522,0.9655172413793104,0.9753694581280788,0.9802955665024631,0.9852216748768473,0.2955665024630542,0.01108543831680986,0.4206896551724138,0.25424626281255974,0.27448275862068966,0.37051189896088027,0.1755665024630542,0.4543389493160528,0.1322824302134647,0.503775023361744,0.10711822660098524,0.5364598132643672,0.2955665024630542,0.4871659060698465,0.48852868388849907,0.4886507814338861,0.4886963935484638,0.48872880215619,0.2955665024630542,0.4543570380262183,0.4136246995722192,0.42739450665515794,0.45221938702019715,0.46847956807533453,0.2955665024630542,0.3197938693485097,0.2583523807706544,0.25128698155203766,0.2599274644479043,0.264630021908868,0.2750223755540361
|
| 8 |
+
2.8847736625514404,1400,0.2955665024630542,0.9211822660098522,0.9605911330049262,0.9753694581280788,0.9852216748768473,0.9901477832512315,0.2955665024630542,0.01108543831680986,0.42266009852216746,0.2564373935368352,0.2763546798029557,0.3738095021680649,0.17719211822660097,0.46032234824984203,0.1323152709359606,0.5026371227945337,0.10761083743842365,0.5417412938935923,0.2955665024630542,0.49028088769468026,0.4916502861761478,0.4918651506767266,0.4919484740988368,0.49197373619306445,0.2955665024630542,0.4573450562750204,0.41671754793582183,0.43141520005257894,0.45327373735898785,0.47141089815692283,0.2955665024630542,0.32232925377765026,0.26059467804150227,0.25363797712043784,0.26183022395215827,0.2668163004108936,0.2776190401766902
|
| 9 |
+
3.2983539094650207,1600,0.2955665024630542,0.9261083743842364,0.9556650246305419,0.9802955665024631,0.9852216748768473,0.9852216748768473,0.2955665024630542,0.01108543831680986,0.4263546798029557,0.26014264456225006,0.2770443349753695,0.37472046766567035,0.17901477832512316,0.4638118170858238,0.13490968801313627,0.5124044299199141,0.10899014778325124,0.5445439134836504,0.2955665024630542,0.4892752997831232,0.4902771206282054,0.4906981997008054,0.4907366849224803,0.4907366849224803,0.2955665024630542,0.45965919662626975,0.41741219260743895,0.43399231095446933,0.45874970458896197,0.47478895069588406,0.2955665024630542,0.3232519233820698,0.26102657686588665,0.2553505082151027,0.2642642274892868,0.2691969880894716,0.2803112292648821
|
| 10 |
+
3.7098765432098766,1800,0.2955665024630542,0.9211822660098522,0.9605911330049262,0.9753694581280788,0.9852216748768473,0.9852216748768473,0.2955665024630542,0.01108543831680986,0.4226600985221674,0.25787568646307335,0.2775369458128079,0.378544115518205,0.1787192118226601,0.4646991741198787,0.1349753694581281,0.514077820298434,0.10960591133004927,0.5479242719935129,0.2955665024630542,0.488501497777794,0.48978270334574775,0.4900376562912742,0.4901135143922775,0.4901135143922775,0.2955665024630542,0.4571806408684656,0.4186161244795668,0.43413691996468995,0.45936827865079527,0.4762742892652946,0.2955665024630542,0.3211048669539684,0.261888445835493,0.2558901722323677,0.2649913870834412,0.27010541031599244,0.28106938786931224
|
| 11 |
+
4.1234567901234565,2000,0.2955665024630542,0.9211822660098522,0.9655172413793104,0.9753694581280788,0.9852216748768473,0.9852216748768473,0.2955665024630542,0.01108543831680986,0.4273399014778325,0.2624274710898933,0.2806896551724138,0.3816838951440551,0.17970443349753695,0.466648189283344,0.13536945812807882,0.5156350937800631,0.11017241379310345,0.5501200676805387,0.2955665024630542,0.4902263308667246,0.49157690165668283,0.491727421634789,0.49180457899033725,0.49180457899033725,0.2955665024630542,0.4612630794197783,0.4218308857158181,0.43630012299200127,0.4611671590034933,0.47859447889613466,0.2955665024630542,0.32403320158333687,0.263929499089501,0.2571656148623807,0.2662223711722934,0.2716128199441605,0.2826472699200774
|
| 12 |
+
4.534979423868313,2200,0.2955665024630542,0.9211822660098522,0.9655172413793104,0.9753694581280788,0.9852216748768473,0.9852216748768473,0.2955665024630542,0.01108543831680986,0.424384236453202,0.2600945586038909,0.28167487684729065,0.3844030994839744,0.17995073891625615,0.4672649807153451,0.13589490968801315,0.5171228717670064,0.1108128078817734,0.5533299912627624,0.2955665024630542,0.4892678749821603,0.49065090899064223,0.49080251743966435,0.4908799208299932,0.4908799208299932,0.2955665024630542,0.4593107411252075,0.42313178566078624,0.4367043857530601,0.4621847371016286,0.48019099347834654,0.2955665024630542,0.3228620941051522,0.2644260812747752,0.2576011230547815,0.2666548881846307,0.27224102651692533,0.28312561300678324
|
| 13 |
+
4.946502057613169,2400,0.2955665024630542,0.9211822660098522,0.9655172413793104,0.9753694581280788,0.9852216748768473,0.9852216748768473,0.2955665024630542,0.01108543831680986,0.4246305418719211,0.26139377973111655,0.2813793103448276,0.3835171819041212,0.1800985221674877,0.4676892706124872,0.1362233169129721,0.5183014504752351,0.11054187192118226,0.551717511250073,0.2955665024630542,0.48958320005117995,0.49093477998292195,0.4910841931964832,0.4911623560854821,0.4911623560854821,0.2955665024630542,0.4600580109269636,0.4229190542750304,0.4370543021366767,0.46289045418097646,0.4796711024513544,0.2955665024630542,0.32364842421740225,0.2643813390551392,0.2576413544507463,0.2669126239698539,0.27215799504041416,0.28329484592874316
|
eval/Information-Retrieval_evaluation_full_en_results.csv
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
|
| 2 |
+
0.411522633744856,200,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.4976190476190476,0.5284680259485819,0.3038095238095238,0.7231230420308711,0.18314285714285714,0.8273335723253694,0.13130158730158728,0.8724347093582713,0.1020952380952381,0.90021334459974,0.6571428571428571,0.8067460317460319,0.8067460317460319,0.8067460317460319,0.8067460317460319,0.8067460317460319,0.6571428571428571,0.6737645346273887,0.695164234192003,0.7483799443505852,0.7691112574007344,0.7800405992410987,0.6571428571428571,0.5299397041187759,0.5220251726274289,0.5532709362996466,0.5618399524058404,0.5651515423425598,0.569668844878145
|
| 3 |
+
0.823045267489712,400,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.5014285714285714,0.5375674892414365,0.3078095238095238,0.7347397365593289,0.18523809523809526,0.8276159955075398,0.13212698412698415,0.8777153749694616,0.10276190476190475,0.9011461596134613,0.6571428571428571,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.6571428571428571,0.6825167420372731,0.7048735083826516,0.7551270785607507,0.7761286809859862,0.7862859073246008,0.6571428571428571,0.5418719592514646,0.5324235947657433,0.5635993544994099,0.5718796948908037,0.5752611322019725,0.5796043727711822
|
| 4 |
+
1.2366255144032923,600,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.5028571428571428,0.5398715085192946,0.30704761904761907,0.7308719325653078,0.1838095238095238,0.8262964541001024,0.132,0.8784584230637306,0.10223809523809524,0.9018073337568441,0.6571428571428571,0.8077097505668934,0.8077097505668934,0.8077097505668934,0.8077097505668934,0.8077097505668934,0.6571428571428571,0.6850767250883057,0.7044403449717462,0.7546986124195911,0.777254490797725,0.7867945884669394,0.6571428571428571,0.5457839795231701,0.5355773107388312,0.5656610155238299,0.5746370131719752,0.5777208746811918,0.5824501808632291
|
| 5 |
+
1.6481481481481481,800,0.6476190476190476,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6476190476190476,0.06746356199344833,0.5061904761904762,0.541072327693301,0.30914285714285716,0.7327361037934382,0.186,0.8335321088015876,0.13333333333333333,0.8882026127864071,0.10347619047619047,0.9090716780714798,0.6476190476190476,0.8026984126984127,0.8026984126984127,0.8026984126984127,0.8026984126984127,0.8026984126984127,0.6476190476190476,0.6866463829861651,0.7064408019474654,0.7585381619488913,0.7812596240306533,0.790629112682048,0.6476190476190476,0.5461934071378476,0.5369545054652285,0.568147174753436,0.577055068259624,0.5803597622093143,0.5843536091323346
|
| 6 |
+
2.0617283950617282,1000,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.5028571428571428,0.5388142633863466,0.30514285714285716,0.7268631415793363,0.18504761904761904,0.8331116117257217,0.13180952380952382,0.8761158516906827,0.10252380952380953,0.904349067709719,0.6571428571428571,0.8061904761904761,0.8061904761904761,0.8061904761904761,0.8061904761904761,0.8061904761904761,0.6571428571428571,0.6842699993599198,0.702010913891441,0.756934764230349,0.7762338594987468,0.7873198038947117,0.6571428571428571,0.543775747791129,0.5323645236649057,0.56496259506028,0.5732219755644478,0.5767502034938088,0.5811866422740818
|
| 7 |
+
2.4732510288065845,1200,0.6666666666666666,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6666666666666666,0.06861902417832229,0.5038095238095238,0.5419002892127911,0.30704761904761907,0.7287885616142801,0.18571428571428575,0.8341958314686581,0.1319365079365079,0.8791111232735128,0.10242857142857144,0.9018490360567623,0.6666666666666666,0.8134920634920635,0.8134920634920635,0.8134920634920635,0.8134920634920635,0.8134920634920635,0.6666666666666666,0.6865928514549534,0.7044165269440101,0.758828543705718,0.7783015638083327,0.787833571926764,0.6666666666666666,0.5445384053598401,0.5340823226586825,0.5666498442765412,0.5744738971556304,0.577742003181827,0.582167426746285
|
| 8 |
+
2.8847736625514404,1400,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.5023809523809523,0.5390314830248254,0.30666666666666664,0.7255588872812402,0.18552380952380954,0.8336098454332262,0.13206349206349205,0.8776420958977807,0.10252380952380953,0.905477018983423,0.6571428571428571,0.8098412698412698,0.8098412698412698,0.8098412698412698,0.8098412698412698,0.8098412698412698,0.6571428571428571,0.6853690691220163,0.7035568453723352,0.7587041215816165,0.7781119824366103,0.7888922672016271,0.6571428571428571,0.5440561935362748,0.533757182194697,0.5665381431756713,0.574674883501895,0.5781424170756677,0.5826908375984402
|
| 9 |
+
3.2983539094650207,1600,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.5019047619047619,0.5375018845788361,0.3087619047619048,0.7285392134841354,0.18676190476190477,0.8322341922506664,0.13282539682539682,0.8801590338170654,0.10247619047619048,0.902805836843439,0.6571428571428571,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.6571428571428571,0.6842763252168604,0.7050658917677234,0.7592503116780603,0.7793217469818706,0.7881724081346186,0.6571428571428571,0.5422881048847362,0.5339554214943681,0.5668962932951893,0.5749918744199348,0.5778159227565198,0.5826470723639171
|
| 10 |
+
3.7098765432098766,1800,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.5076190476190475,0.5459242543214992,0.3089523809523809,0.728483344815942,0.1872380952380952,0.8382149119179341,0.1321904761904762,0.8762032488748317,0.1027142857142857,0.9059964336434017,0.6571428571428571,0.8098412698412698,0.8098412698412698,0.8098412698412698,0.8098412698412698,0.8098412698412698,0.6571428571428571,0.6895375515490911,0.7060633068166344,0.7619501692018719,0.778798440383198,0.7899830993214225,0.6571428571428571,0.5464916843297755,0.5351890636433139,0.5685440196941911,0.5756567539581475,0.5791635361565666,0.5835322146366259
|
| 11 |
+
4.1234567901234565,2000,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.5057142857142858,0.539814746481506,0.3085714285714286,0.7281788406466259,0.18685714285714286,0.8369695734692713,0.13263492063492063,0.8797734908498225,0.10261904761904762,0.9040821090543185,0.6571428571428571,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.6571428571428571,0.6871892352981543,0.7057435134474674,0.7611594394123498,0.7798336860589586,0.7894131768304745,0.6571428571428571,0.5458017299619246,0.5350568967293148,0.5681338314009312,0.5758337072896192,0.5788774324789392,0.5832951333498196
|
| 12 |
+
4.534979423868313,2200,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.5047619047619047,0.539060339827615,0.30857142857142855,0.7269844521994231,0.18666666666666668,0.8337131628681403,0.13269841269841268,0.879935375805825,0.1029047619047619,0.9050529457831012,0.6571428571428571,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.8095238095238095,0.6571428571428571,0.686462471196106,0.7052824081502371,0.7601614355798527,0.7798476891938094,0.7898871141566125,0.6571428571428571,0.5451065538458748,0.5347802076206865,0.567702602098158,0.5756725358487015,0.5789669196636947,0.5832808543489026
|
| 13 |
+
4.946502057613169,2400,0.6571428571428571,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.9904761904761905,0.6571428571428571,0.0680237860830842,0.5023809523809524,0.5384852963395483,0.30800000000000005,0.7260449077992874,0.18628571428571428,0.8328530702930984,0.1321904761904762,0.8745262490032277,0.10295238095238096,0.9056960100263424,0.6571428571428571,0.8103174603174604,0.8103174603174604,0.8103174603174604,0.8103174603174604,0.8103174603174604,0.6571428571428571,0.6845256340390302,0.7040452093638513,0.758935932285001,0.7774414598948007,0.7892946240668293,0.6571428571428571,0.5418235787800474,0.5327215779103721,0.565706253334091,0.5733951147399983,0.5771587776237981,0.5813892452974444
|
eval/Information-Retrieval_evaluation_full_es_results.csv
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
|
| 2 |
+
0.411522633744856,200,0.11891891891891893,1.0,1.0,1.0,1.0,1.0,0.11891891891891893,0.003024360973616746,0.4694594594594595,0.31053207088565277,0.2983783783783784,0.42614039588025415,0.18513513513513513,0.49901813152536034,0.1345945945945946,0.5346656868120796,0.10713513513513513,0.5592578750804021,0.11891891891891893,0.5490990990990992,0.5490990990990992,0.5490990990990992,0.5490990990990992,0.5490990990990992,0.11891891891891893,0.5218272350380521,0.4745212636441562,0.4842178173557756,0.5009132942819904,0.5131617481723315,0.11891891891891893,0.38346574954289603,0.31901962210798024,0.3135140561411267,0.31931399115014064,0.323326528706833,0.33235338808880366
|
| 3 |
+
0.823045267489712,400,0.11891891891891893,1.0,1.0,1.0,1.0,1.0,0.11891891891891893,0.0030705981104143607,0.47513513513513517,0.31369448244619974,0.3050810810810811,0.43422222128156396,0.19135135135135134,0.5163336846189911,0.14111711711711714,0.5578170727727878,0.1118918918918919,0.5806474757962988,0.11891891891891893,0.548069498069498,0.548069498069498,0.548069498069498,0.548069498069498,0.548069498069498,0.11891891891891893,0.5269280959725181,0.4822554523152334,0.4958705525297187,0.5157505381453046,0.5273738468985321,0.11891891891891893,0.3896153097252675,0.32693675475694645,0.32215739067065347,0.32974102041397374,0.33399917893721415,0.343191350066819
|
| 4 |
+
1.2366255144032923,600,0.11351351351351352,1.0,1.0,1.0,1.0,1.0,0.11351351351351352,0.0030021752571813805,0.4851351351351351,0.3190790134810421,0.30929729729729727,0.44553617281974717,0.19324324324324324,0.5245689118193608,0.14198198198198198,0.5657272960906738,0.1144054054054054,0.5971080490143961,0.11351351351351352,0.544924924924925,0.544924924924925,0.544924924924925,0.544924924924925,0.544924924924925,0.11351351351351352,0.5338448763613065,0.4892425039497285,0.5015633527777135,0.5215413480381466,0.5372195273357036,0.11351351351351352,0.3988008268766302,0.332404706941388,0.32803018571141285,0.3357274459586403,0.3413139528061142,0.35064145886476755
|
| 5 |
+
1.6481481481481481,800,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0031407981806144307,0.4851351351351351,0.3200261877139411,0.311027027027027,0.4478400840884975,0.1931891891891892,0.5215255817225937,0.14356756756756758,0.5658052519787189,0.11554054054054054,0.5968945752329973,0.12432432432432433,0.5528528528528529,0.5528528528528529,0.5528528528528529,0.5528528528528529,0.5528528528528529,0.12432432432432433,0.5348068192120945,0.49147006896559786,0.5014723160699831,0.5233831169034301,0.5390631670416406,0.12432432432432433,0.3974731353090948,0.3342302101369714,0.32923944286104007,0.33786797525549667,0.3435560550531658,0.3521253975729619
|
| 6 |
+
2.0617283950617282,1000,0.11891891891891893,1.0,1.0,1.0,1.0,1.0,0.11891891891891893,0.003072375327381451,0.48729729729729726,0.3208076411918978,0.31362162162162166,0.452475425213834,0.19491891891891894,0.5302819257482585,0.14436036036036037,0.571775166659582,0.11575675675675676,0.6005636184039903,0.11891891891891893,0.5485285285285286,0.5485285285285286,0.5485285285285286,0.5485285285285286,0.5485285285285286,0.11891891891891893,0.5367147104901926,0.49525767983820224,0.5066734906037516,0.5276121894183949,0.5422861265314998,0.11891891891891893,0.4007661220413231,0.3384329191359384,0.33408457998935936,0.3422187777075813,0.34770328660083977,0.357376707071446
|
| 7 |
+
2.4732510288065845,1200,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0031004765290395817,0.48081081081081084,0.31925138814015436,0.31243243243243246,0.45297033989113944,0.19637837837837838,0.5345696157187881,0.14515315315315316,0.5748030281430117,0.1158918918918919,0.6021356203629022,0.12432432432432433,0.5483998283998284,0.5483998283998284,0.5483998283998284,0.5483998283998284,0.5483998283998284,0.12432432432432433,0.5312640826009923,0.4933463182499906,0.5077266226967593,0.5279816661347473,0.5418401524093559,0.12432432432432433,0.39460510323628073,0.33539349047963,0.3326834908024987,0.3407696388796233,0.34597355552430814,0.35562081371928916
|
| 8 |
+
2.8847736625514404,1400,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0031799677850014264,0.4905405405405405,0.3231032000550234,0.312972972972973,0.45487821593662775,0.19632432432432437,0.5360488739655589,0.14544144144144144,0.5759583907003805,0.11670270270270271,0.6073796968887161,0.12972972972972974,0.5545259545259545,0.5545259545259545,0.5545259545259545,0.5545259545259545,0.5545259545259545,0.12972972972972974,0.5398849946110597,0.4964476931902315,0.5105371458072688,0.5309424575860822,0.5465013975504048,0.12972972972972974,0.4041376579147856,0.33910871999084424,0.3362432946078908,0.3446367578836471,0.35002496631252933,0.3591722266720399
|
| 9 |
+
3.2983539094650207,1600,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.003237252034219735,0.48837837837837833,0.3208378102445782,0.31416216216216214,0.4567910906819754,0.19681081081081084,0.5381915850001637,0.1451891891891892,0.5773791795052656,0.11681081081081081,0.6089669618204154,0.12972972972972974,0.5546546546546548,0.5546546546546548,0.5546546546546548,0.5546546546546548,0.5546546546546548,0.12972972972972974,0.5381393612536364,0.497412740756737,0.5113652855488736,0.5312098014018798,0.5471404882139521,0.12972972972972974,0.4042978961401532,0.33937321205124016,0.3368552825005167,0.34453705443740057,0.35018165521941574,0.360079205985487
|
| 10 |
+
3.7098765432098766,1800,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.003111544931768446,0.4924324324324324,0.3235933309332048,0.31686486486486487,0.4622883553307717,0.19843243243243244,0.5424114301447981,0.14702702702702705,0.5822792579944903,0.11762162162162161,0.612586126212026,0.12432432432432433,0.5516816816816817,0.5516816816816817,0.5516816816816817,0.5516816816816817,0.5516816816816817,0.12432432432432433,0.5406828319866788,0.500776817925352,0.5143442473922782,0.5349751306205418,0.5498255219419508,0.12432432432432433,0.4061591888137979,0.3426196432849601,0.3398108870028267,0.3482007813358776,0.3534583367060008,0.36353547903357536
|
| 11 |
+
4.1234567901234565,2000,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.003111544931768446,0.49054054054054047,0.3226281360780687,0.3163243243243243,0.460233186838451,0.19794594594594597,0.541868009988165,0.1476036036036036,0.5852603494024129,0.11764864864864866,0.6129186722388266,0.12432432432432433,0.54987987987988,0.54987987987988,0.54987987987988,0.54987987987988,0.54987987987988,0.12432432432432433,0.539216162208845,0.4996835226060237,0.5137905428062277,0.5360687473286022,0.5499397431446335,0.12432432432432433,0.4038320848933988,0.34180322548979025,0.33919520921684143,0.34836248453935964,0.3534621616433109,0.36317607366795296
|
| 12 |
+
4.534979423868313,2200,0.11351351351351352,1.0,1.0,1.0,1.0,1.0,0.11351351351351352,0.002992884071419607,0.4913513513513514,0.32341666838263944,0.316972972972973,0.4630260221149236,0.19843243243243244,0.5419804526017848,0.146990990990991,0.5826718468403144,0.11778378378378378,0.6149262657286421,0.11351351351351352,0.5444744744744745,0.5444744744744745,0.5444744744744745,0.5444744744744745,0.5444744744744745,0.11351351351351352,0.5389058089458943,0.5002442028172164,0.5138591255215345,0.5346372349516221,0.5502474315848075,0.11351351351351352,0.40352984921129137,0.3418539578142162,0.339373689987275,0.3478760829213016,0.3533435915341769,0.363222785830563
|
| 13 |
+
4.946502057613169,2400,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.003111544931768446,0.4897297297297297,0.32208664960961075,0.31794594594594594,0.46383117404893587,0.19864864864864865,0.5437537828683688,0.14688288288288287,0.5824968655076911,0.11789189189189188,0.6146962508233631,0.12432432432432433,0.5515015015015016,0.5515015015015016,0.5515015015015016,0.5515015015015016,0.5515015015015016,0.12432432432432433,0.5384577730264963,0.5012455261232941,0.5147486871284331,0.5348194013794069,0.5505397598095297,0.12432432432432433,0.40280623036556984,0.3421710529569103,0.33947884152876345,0.34777364049184706,0.35339765423089375,0.3631043007370563
|
eval/Information-Retrieval_evaluation_full_zh_results.csv
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
|
| 2 |
+
0.411522633744856,200,0.3106796116504854,0.6796116504854369,0.8446601941747572,0.9029126213592233,0.912621359223301,0.9320388349514563,0.3106796116504854,0.023462987244705715,0.16553398058252428,0.17783905741297326,0.09165048543689318,0.23592266427434708,0.05572815533980582,0.2754646962507602,0.04368932038834952,0.3117128999509392,0.03762135922330097,0.3466143491908374,0.3106796116504854,0.4147590004386121,0.42017917902528507,0.4210179476119375,0.42111313131648725,0.42122928943021815,0.3106796116504854,0.23632560619511656,0.23124988593204537,0.24989384741752022,0.2654638343682191,0.2798254309209333,0.3106796116504854,0.1401386342102764,0.12171575399150504,0.12609494695732792,0.12864672987762527,0.13051492431706083,0.13391587019094656
|
| 3 |
+
0.823045267489712,400,0.30097087378640774,0.6796116504854369,0.8155339805825242,0.8640776699029126,0.912621359223301,0.941747572815534,0.30097087378640774,0.02113522350080538,0.16893203883495148,0.1745090483426694,0.09417475728155338,0.23733304712823766,0.05766990291262136,0.2796051909812124,0.04517799352750809,0.32046823576498035,0.03815533980582524,0.35372016437047055,0.30097087378640774,0.41292572044999226,0.417491067865597,0.41811942101585403,0.41849921440759563,0.41865101229565255,0.30097087378640774,0.23661276930229252,0.23089474861642684,0.2507126789225508,0.26732986263815484,0.28046874437286684,0.30097087378640774,0.14201550651611927,0.12258545505833383,0.12738698832154322,0.12975328354084065,0.13144344690302204,0.13501788595120554
|
| 4 |
+
1.2366255144032923,600,0.2912621359223301,0.6893203883495146,0.7961165048543689,0.8932038834951457,0.9223300970873787,0.9320388349514563,0.2912621359223301,0.0237790011692411,0.17281553398058253,0.1780146591791834,0.09320388349514563,0.2353460713837157,0.05757281553398058,0.28003072679866114,0.04550161812297734,0.3201209220124462,0.0383495145631068,0.35197000288987207,0.2912621359223301,0.402749626584503,0.40637174235857404,0.40775766889852083,0.4079930674304089,0.4080485459324894,0.2912621359223301,0.23932847479881703,0.2304987127816453,0.25132779075972356,0.2684264546177072,0.28127288770020226,0.2912621359223301,0.14390317064591093,0.12336899531215392,0.1280979795498092,0.1307661431084446,0.13236443731787242,0.13619205369616966
|
| 5 |
+
1.6481481481481481,800,0.30097087378640774,0.6796116504854369,0.8058252427184466,0.8932038834951457,0.912621359223301,0.9223300970873787,0.30097087378640774,0.024519703098877212,0.16893203883495148,0.17456569026683885,0.09242718446601939,0.234580459268595,0.05776699029126213,0.278741199301444,0.045889967637540455,0.3253706444260417,0.03830097087378641,0.35803096403174617,0.30097087378640774,0.4059668795890955,0.4100950456028066,0.41130354468386193,0.4114770246615091,0.4115325031635896,0.30097087378640774,0.23745513681411046,0.2305748865491843,0.25179987312705016,0.27076524218225806,0.2832040382120035,0.30097087378640774,0.14326296371560157,0.12335213931312632,0.1281463494319185,0.13101897050674394,0.13266951269795274,0.1365110920424697
|
| 6 |
+
2.0617283950617282,1000,0.32038834951456313,0.6893203883495146,0.8252427184466019,0.8543689320388349,0.912621359223301,0.941747572815534,0.32038834951456313,0.025076400657044622,0.1694174757281554,0.17464818886103456,0.09417475728155338,0.23941957930187088,0.05854368932038835,0.285793749394471,0.04543689320388349,0.3248692502981408,0.03854368932038835,0.3594061933485738,0.32038834951456313,0.4322736853989672,0.4368880444493252,0.43729572738128003,0.43778572199583954,0.4379375198838964,0.32038834951456313,0.24024120500004684,0.23579057547653665,0.2573094710053012,0.27339364167426483,0.2870700158411852,0.32038834951456313,0.14312567487234693,0.12473920484974475,0.1299884370802636,0.1322736537535619,0.13400922896235773,0.13757526057084069
|
| 7 |
+
2.4732510288065845,1200,0.3106796116504854,0.6893203883495146,0.8252427184466019,0.8737864077669902,0.912621359223301,0.941747572815534,0.3106796116504854,0.024775196200563468,0.16796116504854372,0.17522051503262265,0.0928155339805825,0.23501537825752356,0.05786407766990292,0.2812014337133314,0.04530744336569579,0.32256653770358384,0.03859223300970874,0.3606190556658867,0.3106796116504854,0.4316099258632098,0.4363728027493244,0.43698795374438265,0.4372936132320186,0.43744541112007557,0.3106796116504854,0.2403594219494374,0.23377838497716172,0.2555796449390854,0.27244290951747213,0.2870306982800111,0.3106796116504854,0.14295031585571616,0.12373690032744442,0.12919405589193667,0.1317494418602855,0.13338926763104872,0.13718598500826484
|
| 8 |
+
2.8847736625514404,1400,0.32038834951456313,0.6601941747572816,0.8252427184466019,0.8737864077669902,0.912621359223301,0.941747572815534,0.32038834951456313,0.02531918584688107,0.1684466019417476,0.17328694510972953,0.09398058252427183,0.236600780086018,0.05873786407766991,0.28617705374072966,0.04563106796116504,0.3250376201519803,0.038834951456310676,0.3633754409058577,0.32038834951456313,0.4314141889084028,0.4369283020982786,0.4375351123956591,0.43785398652235735,0.43800578441041427,0.32038834951456313,0.24136499998719202,0.235847725345262,0.25862767157162764,0.27455689155757557,0.2891050802662493,0.32038834951456313,0.14624703558912305,0.1257115171690142,0.13123392963701538,0.13359145914665888,0.1353959454814316,0.1389928822140075
|
| 9 |
+
3.2983539094650207,1600,0.32038834951456313,0.7281553398058253,0.8155339805825242,0.8640776699029126,0.912621359223301,0.941747572815534,0.32038834951456313,0.02471280462494792,0.17233009708737868,0.18281935756329049,0.09378640776699028,0.23610648880680668,0.057475728155339814,0.2817401925500015,0.04543689320388349,0.32445039777652873,0.038252427184466024,0.3579914968024133,0.32038834951456313,0.43991789706080797,0.44280457808819257,0.4434266046741581,0.44385297519656264,0.44401312541610144,0.32038834951456313,0.24485074137633345,0.23539725480038964,0.25621007342179275,0.2738226067489134,0.28679471829998743,0.32038834951456313,0.1447951005144368,0.12441013252369439,0.12937320652986672,0.13203408286028803,0.13359947484648899,0.1374353051856652
|
| 10 |
+
3.7098765432098766,1800,0.30097087378640774,0.7087378640776699,0.8252427184466019,0.8543689320388349,0.912621359223301,0.941747572815534,0.30097087378640774,0.024446152054452382,0.16844660194174763,0.17513112391433697,0.09436893203883494,0.23948897590045773,0.05844660194174757,0.2859906000645493,0.04601941747572815,0.32910264724851107,0.038203883495145634,0.36304017348331746,0.30097087378640774,0.4211010881954553,0.4249525777196882,0.42539460155740233,0.42587488715939736,0.4260266850474542,0.30097087378640774,0.23848199480652515,0.23417872356945213,0.2558557487315817,0.27344459654855646,0.28574499658549296,0.30097087378640774,0.14164601531439067,0.12333195286802508,0.12884550949445583,0.13149151347084506,0.1329204280861929,0.13684460640814028
|
| 11 |
+
4.1234567901234565,2000,0.30097087378640774,0.6990291262135923,0.8446601941747572,0.883495145631068,0.941747572815534,0.941747572815534,0.30097087378640774,0.02386287516726942,0.16504854368932043,0.1765726567124355,0.0932038834951456,0.23652817418030478,0.05825242718446601,0.2843496525793469,0.04601941747572816,0.3277225727000478,0.038834951456310676,0.3596812771438104,0.30097087378640774,0.4190465134339312,0.4240176433261117,0.4245497320288698,0.4250484654944024,0.4250484654944024,0.30097087378640774,0.23858136398044388,0.23394297561992747,0.25614039865630267,0.2739893276218014,0.2869614126642384,0.30097087378640774,0.1429307444790631,0.12440485302105762,0.12975707309312245,0.1324151603536725,0.13400586423473068,0.13792557615284717
|
| 12 |
+
4.534979423868313,2200,0.3300970873786408,0.7184466019417476,0.8155339805825242,0.8932038834951457,0.9223300970873787,0.9320388349514563,0.3300970873786408,0.02573649124630195,0.16796116504854372,0.17402459309945448,0.09262135922330093,0.23816219248808224,0.05815533980582525,0.28291725637657983,0.04563106796116505,0.32619122038725784,0.03771844660194174,0.3543394793587958,0.3300970873786408,0.43064643766798927,0.43374387043765733,0.4348781442268605,0.4351279925655956,0.4351822313246128,0.3300970873786408,0.23956118764265208,0.2341910409667355,0.2559822552765659,0.27344655996496936,0.28432223965649855,0.3300970873786408,0.14301006319225865,0.12425793473074002,0.12962575663735706,0.13242860022521366,0.13374255185989983,0.13779434547799502
|
| 13 |
+
4.946502057613169,2400,0.34951456310679613,0.7378640776699029,0.8252427184466019,0.8543689320388349,0.9029126213592233,0.941747572815534,0.34951456310679613,0.02726635297033844,0.17330097087378643,0.17661061398990294,0.09436893203883494,0.2392861843604663,0.05893203883495146,0.2862639658547104,0.0458252427184466,0.3286954340443375,0.03854368932038834,0.3630829587412431,0.34951456310679613,0.44845699819699636,0.4514515915598798,0.451864194979824,0.4522894025156287,0.45250948321580986,0.34951456310679613,0.24683538489164747,0.23936442282824424,0.2618891246293786,0.27867525817923894,0.29190260238165355,0.34951456310679613,0.1470309927546457,0.12671489844037503,0.13257859039926595,0.13523273342027425,0.13679857663871084,0.14069476480399515
|
eval/Information-Retrieval_evaluation_mix_de_results.csv
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
|
| 2 |
+
0.411522633744856,200,0.1981279251170047,0.4300572022880915,0.5267810712428497,0.6068642745709828,0.6541861674466979,0.7020280811232449,0.1981279251170047,0.07334026694401108,0.045111804472178885,0.32932917316692667,0.022433697347893918,0.4094730455884902,0.013125325013000521,0.48012653839486913,0.009616918010053736,0.5271017507366962,0.007787311492459699,0.5684347373894956,0.1981279251170047,0.24936915812802668,0.25240815031462344,0.25353947481775135,0.25392824976220707,0.25420582867535996,0.1981279251170047,0.24564540855524686,0.267286311641879,0.28273714053246746,0.2919723078214969,0.29956641267725875,0.1981279251170047,0.19180782513140002,0.1962749706053975,0.19803531491406634,0.1987580832571362,0.19919879493222836,0.20020191528610837
|
| 3 |
+
0.823045267489712,400,0.22152886115444617,0.48569942797711907,0.5923036921476859,0.6885075403016121,0.7524700988039521,0.7888715548621945,0.22152886115444617,0.08254463511873808,0.0515080603224129,0.37629571849540644,0.025949037961518463,0.47381695267810714,0.015455018200728029,0.5636418790084936,0.011464725255676893,0.6273704281504593,0.009160166406656267,0.6674033628011787,0.22152886115444617,0.2795436747486559,0.28287038489783145,0.284246403459463,0.2847685281647116,0.2849825945568509,0.22152886115444617,0.27968506550620525,0.3058805067348632,0.3256964511132948,0.3381244039775933,0.3455041003597478,0.22152886115444617,0.2190070366990419,0.22462661639353262,0.22693516798544222,0.2279024088922963,0.22835490710858075,0.22937477848391208
|
| 4 |
+
1.2366255144032923,600,0.24076963078523142,0.5392615704628185,0.6510660426417056,0.7451898075923037,0.7919916796671866,0.8315132605304212,0.24076963078523142,0.08978159126365054,0.057514300572022885,0.4208961691801006,0.028861154446177848,0.5279944531114578,0.01706708268330733,0.6236176113711215,0.012438897555902237,0.6805512220488819,0.009945397815912636,0.7248483272664239,0.24076963078523142,0.30574206502407386,0.3092582065472375,0.31057458089353496,0.3109581662931957,0.3111859623149172,0.24076963078523142,0.31012124397512125,0.33894722487590406,0.3600401872839375,0.3712549559582106,0.3793846476191155,0.24076963078523142,0.24280216039368124,0.2491040511722396,0.2516632832742125,0.2526192678896798,0.2531238162054126,0.2541152558211349
|
| 5 |
+
1.6481481481481481,800,0.2574102964118565,0.5725429017160687,0.6838273530941238,0.7706708268330733,0.8252730109204368,0.8642745709828393,0.2574102964118565,0.09667186687467498,0.06209048361934478,0.456049575316346,0.03094123764950598,0.5656179580516554,0.01809152366094644,0.6604264170566823,0.013180793898422602,0.7214161899809326,0.010491419656786271,0.7658519674120299,0.2574102964118565,0.326511947249185,0.3299996673311145,0.3312205961883565,0.33167243978514876,0.33189721927516885,0.2574102964118565,0.3340038592250485,0.363696006087991,0.38465837471801473,0.39659537389860006,0.4046956530816971,0.2574102964118565,0.2617702375633599,0.2683743271170459,0.2710235535395128,0.27198263772401476,0.2724761068752751,0.27336248147369696
|
| 6 |
+
2.0617283950617282,1000,0.2579303172126885,0.592823712948518,0.7020280811232449,0.7888715548621945,0.8382735309412377,0.8814352574102964,0.2579303172126885,0.09647252556768937,0.06523660946437858,0.47890448951291387,0.03211648465938638,0.5869388108857688,0.01872594903796152,0.6823106257583638,0.013569076096377187,0.7413589876928411,0.010769630785231412,0.7856387588836886,0.2579303172126885,0.3313982190071335,0.3348965339304826,0.33612441957547085,0.33653122814722086,0.33677811012915093,0.2579303172126885,0.3442016094418496,0.3735657529127402,0.39465480938211644,0.4062423896248422,0.4142538964149005,0.2579303172126885,0.2673342452869632,0.2738465483514978,0.27651346921512704,0.2774801777535139,0.2779568533393845,0.2787917724063549
|
| 7 |
+
2.4732510288065845,1200,0.27249089963598544,0.6209048361934477,0.7202288091523661,0.8148725949037962,0.8663546541861674,0.8959958398335933,0.27249089963598544,0.10240942971052176,0.06866874674987,0.5036661466458658,0.03344773790951638,0.6103397469232102,0.01947477899115965,0.7091523660946438,0.014089096897209222,0.7695441150979372,0.01106604264170567,0.8066736002773445,0.27249089963598544,0.35128196320629806,0.35436004134401633,0.35570962695193414,0.3561337866615028,0.35630620535104285,0.27249089963598544,0.36459707698561655,0.39343635135156824,0.41529870597710383,0.4271129638867166,0.4338542362088321,0.27249089963598544,0.2845957030676952,0.2910603880750198,0.2937336078161298,0.29471472008234617,0.29514010455194895,0.2959679176074096
|
| 8 |
+
2.8847736625514404,1400,0.2719708788351534,0.6219448777951118,0.7280291211648466,0.8216328653146125,0.8663546541861674,0.8970358814352574,0.2719708788351534,0.10201941410989772,0.06929277171086844,0.5074969665453285,0.033936557462298504,0.6184347373894956,0.019604784191367654,0.7150806032241289,0.014127231755936902,0.7722308892355694,0.011138845553822154,0.8127665106604264,0.2719708788351534,0.35184585409140184,0.35521053332044367,0.356551321735229,0.3569175223872725,0.3570970648250785,0.2719708788351534,0.3662132046795461,0.3962811615035259,0.4175795552280441,0.4288278198828397,0.43616171894109024,0.2719708788351534,0.2851842024821843,0.2919416855447693,0.29457421907062104,0.2955242367376335,0.2959856272577734,0.29682907865900887
|
| 9 |
+
3.2983539094650207,1600,0.27769110764430577,0.6349453978159126,0.7399895995839834,0.8273530941237649,0.87467498699948,0.9053562142485699,0.27769110764430577,0.10457618304732187,0.07090483619344773,0.5190240942971052,0.03469578783151326,0.6331426590396949,0.020046801872074884,0.7301352054082164,0.014331773270930834,0.7834720055468886,0.011263650546021842,0.821043508407003,0.27769110764430577,0.35976204370795134,0.36312305918627735,0.3643486184027757,0.36473033595438964,0.36490983745143385,0.27769110764430577,0.37573520751288797,0.40663904775077114,0.428125197732266,0.43851431587679784,0.44538466038255,0.27769110764430577,0.29406713368898557,0.30113502054518276,0.30386818472766647,0.3047008515614112,0.3051359976327236,0.3059525328830033
|
| 10 |
+
3.7098765432098766,1800,0.29017160686427457,0.6484659386375455,0.7540301612064483,0.8419136765470618,0.8788351534061363,0.9089963598543942,0.29017160686427457,0.10890968972092217,0.07251690067602704,0.5299011960478419,0.0355486219448778,0.647191887675507,0.02041601664066563,0.7442624371641533,0.014505113537874847,0.7928583810019068,0.01137545501820073,0.8289478245796498,0.29017160686427457,0.37232551415227233,0.375685507642469,0.3769348294784883,0.377239930826995,0.3774183771765249,0.29017160686427457,0.38598145754556046,0.41773491829410075,0.43906545567486005,0.4485955578737219,0.45520732213321263,0.29017160686427457,0.30311022602590254,0.31036427264538485,0.31304585670015317,0.3138396622777036,0.31426372512191,0.3150399864057635
|
| 11 |
+
4.1234567901234565,2000,0.28965158606344255,0.6453458138325533,0.7514300572022881,0.8424336973478939,0.8840353614144566,0.9131565262610505,0.28965158606344255,0.10873634945397814,0.07230889235569424,0.5285491419656786,0.035559022360894435,0.6476772404229503,0.02045241809672387,0.7456058242329694,0.014543248396602529,0.7947564569249437,0.011443057722308895,0.8333680013867221,0.28965158606344255,0.37323361269727506,0.37671986743715985,0.37799876590389947,0.3783355727887503,0.37850251063580587,0.28965158606344255,0.3869439859976832,0.419340853881164,0.4408718349726106,0.4505012036387736,0.4575667024678089,0.28965158606344255,0.3048226727334811,0.3123006074016708,0.3150058759399239,0.31578258870027714,0.31623339353875296,0.3169966358324732
|
| 12 |
+
4.534979423868313,2200,0.2912116484659386,0.6526261050442018,0.7550702028081123,0.8460738429537181,0.8876755070202809,0.9173166926677067,0.2912116484659386,0.10977639105564223,0.07308892355694228,0.5342520367481365,0.03583983359334374,0.6529207834980065,0.02058242329693188,0.7505633558675681,0.014609117698041255,0.7989166233315999,0.011515860634425378,0.8393482405962905,0.2912116484659386,0.37544207546115405,0.37870409367323543,0.37999194359776256,0.3803335431113417,0.3805079454038972,0.2912116484659386,0.39027078330836906,0.4224011615840446,0.4438393956774872,0.45327900259303716,0.4606831999024183,0.2912116484659386,0.3075927383942124,0.31502827814698436,0.31767149302992986,0.31842095656425334,0.3189017921904424,0.31963709557315734
|
| 13 |
+
4.946502057613169,2400,0.29433177327093085,0.6500260010400416,0.7607904316172647,0.8507540301612064,0.889755590223609,0.9204368174726989,0.29433177327093085,0.1109031027907783,0.07308892355694228,0.534356040908303,0.036141445657826315,0.6584676720402148,0.020634425377015084,0.752470098803952,0.014681920610157736,0.8025567689374241,0.011552262090483621,0.8417663373201595,0.29433177327093085,0.37785395494554963,0.38148321196953044,0.38274724688611994,0.3830666241433367,0.3832429794087988,0.29433177327093085,0.3919428679123834,0.425599899100406,0.4462421162922913,0.45606402272845137,0.4632312746623382,0.29433177327093085,0.3096720133634083,0.31740714963039135,0.31992557448195186,0.3207379270967634,0.3211962807999124,0.3219246841517722
|
eval/Information-Retrieval_evaluation_mix_es_results.csv
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
|
| 2 |
+
0.411522633744856,200,0.30213208528341134,0.6203848153926157,0.7098283931357254,0.781071242849714,0.8174726989079563,0.8481539261570463,0.30213208528341134,0.11382017185449322,0.06833073322932917,0.5067837951613302,0.032397295891835674,0.5996595101899314,0.018268330733229334,0.6776638684595003,0.012969318772750909,0.7214877547482851,0.010208008320332815,0.7576500012381446,0.30213208528341134,0.37624536690642546,0.3791230245669684,0.38018035757789376,0.38047170599829533,0.38064941679605535,0.30213208528341134,0.38016850579550676,0.4051851614003381,0.4221921973271435,0.4307023039200337,0.4372318855282071,0.30213208528341134,0.30423498249896824,0.30990926563894405,0.31199819476576857,0.312679771425861,0.3130945627121421,0.313931308036428
|
| 3 |
+
0.823045267489712,400,0.3374934997399896,0.6640665626625065,0.7576703068122725,0.8179927197087884,0.860114404576183,0.8850754030161206,0.3374934997399896,0.12766139216997252,0.07347893915756631,0.5467387266919248,0.03523660946437858,0.6527548720996459,0.019641185647425896,0.7282012232870269,0.013971225515687292,0.7769407919173908,0.010871034841393656,0.8055887378352277,0.3374934997399896,0.4132584281967503,0.4163214874291682,0.4171728377443751,0.4175175014521313,0.41766146607074733,0.3374934997399896,0.4163844208372033,0.445066264506209,0.4615439022347602,0.471010840935464,0.4762442101294051,0.3374934997399896,0.3381226108439558,0.34475287387507586,0.34684361195227975,0.34761423703876665,0.3479432846917458,0.3486888395737178
|
| 4 |
+
1.2366255144032923,600,0.3577743109724389,0.6973478939157566,0.7763910556422257,0.8507540301612064,0.891315652626105,0.9199167966718669,0.3577743109724389,0.1352710298888146,0.07886115444617786,0.5856969516875912,0.03683827353094124,0.6804806477973404,0.020639625585023403,0.7649406928658099,0.014588316866007972,0.8114129708045464,0.011401456058242332,0.8455783374192111,0.3577743109724389,0.43829879302776303,0.44084529806067074,0.44192760304884215,0.442262133057051,0.4424277096196022,0.3577743109724389,0.44681544963436026,0.4726481268158083,0.49106458681972126,0.5000627035915306,0.5062623468675652,0.3577743109724389,0.3654389827879655,0.3717104289858826,0.37401601066356505,0.3747530541949902,0.37514030265122744,0.3758164163221179
|
| 5 |
+
1.6481481481481481,800,0.37285491419656785,0.703068122724909,0.8039521580863235,0.8684347373894956,0.9022360894435777,0.9266770670826833,0.37285491419656785,0.14132927221850777,0.08052522100884035,0.5963313770646065,0.03834633385335414,0.7112832132332912,0.02135205408216329,0.7903919966322461,0.01500086670133472,0.832730356833321,0.011658866354654188,0.8628776960602234,0.37285491419656785,0.4535506816383259,0.45673799621320993,0.4576802222193709,0.45796620614021427,0.45810810930233126,0.37285491419656785,0.4600645056109687,0.4908387998878199,0.5083488704283956,0.5166175530513689,0.5220900467731159,0.37285491419656785,0.3784582567838623,0.3856660044520993,0.38792895456495546,0.38861563491524675,0.38895926483897736,0.389571989863755
|
| 6 |
+
2.0617283950617282,1000,0.3837753510140406,0.7165886635465418,0.8122724908996359,0.8777951118044722,0.9084763390535622,0.9349973998959958,0.3837753510140406,0.14535943342495602,0.08255330213208528,0.6110702523339029,0.039147165886635464,0.7240583909070648,0.02166406656266251,0.8015414902310379,0.01516727335760097,0.841296832825694,0.011781071242849715,0.8718047198078399,0.3837753510140406,0.46304126564072634,0.466170530721476,0.4671384743911976,0.46739037287326474,0.4675485210211105,0.3837753510140406,0.47145052441992824,0.5019250982212344,0.5189834372219126,0.5267472617975066,0.5322772198388991,0.3837753510140406,0.3889228164549333,0.3961437534457393,0.3983391616068335,0.39900108642174664,0.39934604809222224,0.3999054154762101
|
| 7 |
+
2.4732510288065845,1200,0.39729589183567343,0.733749349973999,0.8294331773270931,0.8939157566302652,0.9251170046801872,0.9433177327093084,0.39729589183567343,0.151148998340886,0.0845553822152886,0.6262164772305179,0.040062402496099846,0.7401530346928162,0.0221216848673947,0.8185028353515094,0.015489686254116829,0.8589740732486443,0.01198127925117005,0.886243964044276,0.39729589183567343,0.4784446780392674,0.4815078826970145,0.4824293629456037,0.48268777361327,0.4827933131346441,0.39729589183567343,0.48617297590573705,0.517013995021804,0.5341653528246599,0.5420976929391493,0.547021727900728,0.39729589183567343,0.4029815933405254,0.41035415769736866,0.4125509183296373,0.4132338991905356,0.41355508594246726,0.41404960944992747
|
| 8 |
+
2.8847736625514404,1400,0.39365574622984917,0.7405096203848154,0.8403536141445658,0.9006760270410816,0.9303172126885075,0.9479979199167967,0.39365574622984917,0.15008295569918034,0.08556942277691108,0.6332367580417503,0.04062402496099844,0.750726790976401,0.022350494019760792,0.8269754599707798,0.015604090830299875,0.8663930366738478,0.012085283411336457,0.8937322635762573,0.39365574622984917,0.47865733219922946,0.4819794352235569,0.4828274289532764,0.48307346317849986,0.48317521807727926,0.39365574622984917,0.4891633580678844,0.5210348137488535,0.5377704085063164,0.5454257403567558,0.5504409931909128,0.39365574622984917,0.40462483371485203,0.41223380645143365,0.4144450266421713,0.4150997091391954,0.41543130662233696,0.4159141359187564
|
| 9 |
+
3.2983539094650207,1600,0.39417576703068125,0.749869994799792,0.8387935517420697,0.9011960478419136,0.9313572542901716,0.9453978159126365,0.39417576703068125,0.14977961023202832,0.0872854914196568,0.6446252135799717,0.040842433697347906,0.7537131961468935,0.022449297971918882,0.8297142361884952,0.015697694574449642,0.8701891885199218,0.012098283931357257,0.8944221578386945,0.39417576703068125,0.48161375643951787,0.48456339112411073,0.48546449697579613,0.4857120835710493,0.48579472848118294,0.39417576703068125,0.49564845544675695,0.5252351899067441,0.5419194834352565,0.549799901314173,0.5541820214452097,0.39417576703068125,0.4098891006090195,0.41704940718756184,0.4192177736540712,0.41989349138490134,0.4201792836237905,0.42068145332288714
|
| 10 |
+
3.7098765432098766,1800,0.40717628705148207,0.7581903276131046,0.8455538221528861,0.9048361934477379,0.9370774830993239,0.9547581903276131,0.40717628705148207,0.1547198078399326,0.08819552782111284,0.652070178045217,0.04139365574622985,0.7639576059232845,0.022704108164326574,0.8390052744966942,0.015822499566649332,0.877764158185375,0.012189287571502862,0.9016677809969541,0.40717628705148207,0.49319826751048873,0.49612329710657893,0.4969826860284758,0.49724671253026886,0.49734552981578295,0.40717628705148207,0.5052212563002627,0.5356805472279078,0.5521009256440798,0.5595924746165437,0.5639157869620031,0.40717628705148207,0.419614969499609,0.427088485280225,0.4292014145714,0.4298202694277485,0.4300980044671579,0.43055010151569684
|
| 11 |
+
4.1234567901234565,2000,0.40561622464898595,0.7555902236089443,0.8465938637545501,0.9053562142485699,0.9391575663026521,0.9521580863234529,0.40561622464898595,0.15422578807914222,0.08801352054082164,0.6504234455092489,0.0414560582423297,0.7645209617908526,0.02274050962038482,0.8407386771661344,0.01580863234529381,0.8772614714112373,0.012181487259490382,0.9011477601961221,0.40561622464898595,0.49193080862589195,0.49497073018920573,0.4958131715411002,0.4960911044064609,0.49616673564150066,0.40561622464898595,0.5052527283785204,0.5363668402911114,0.5529351239282845,0.5600105253735999,0.5643581500059056,0.40561622464898595,0.42113760176243775,0.4288029559186059,0.4309354633228117,0.43151233276792966,0.4318026647046382,0.4322791851958394
|
| 12 |
+
4.534979423868313,2200,0.40977639105564223,0.7618304732189287,0.8512740509620385,0.9105564222568903,0.9381175247009881,0.9542381695267811,0.40977639105564223,0.15567317930812472,0.0890015600624025,0.6574783943738703,0.04168486739469579,0.7691404799049105,0.022854914196567863,0.8454015303469281,0.01585370081469925,0.8795148948815096,0.012220488819552783,0.9035051878265606,0.40977639105564223,0.4963374711503733,0.49930745416180927,0.5001571935146001,0.5003842041203103,0.5004783417497985,0.40977639105564223,0.5094055696124096,0.5398029704628499,0.5563939454831869,0.5630335952477792,0.5674217099859529,0.40977639105564223,0.4236549905504724,0.4311498037279026,0.43327838927965695,0.4338451382952763,0.4341307997461715,0.4345995592976099
|
| 13 |
+
4.946502057613169,2400,0.41133645345813835,0.7613104524180967,0.8523140925637025,0.9121164846593863,0.9417576703068122,0.9547581903276131,0.41133645345813835,0.15653988064284477,0.08920956838273532,0.6593678032835598,0.04175767030681228,0.7704838669737266,0.02291731669266771,0.847169601069757,0.015905702894782457,0.8825483495530297,0.012243889755590227,0.9050999182824455,0.41133645345813835,0.4978677179556957,0.5009543893008301,0.5018183607581652,0.5020589846475842,0.5021321446410069,0.41133645345813835,0.5116672519515115,0.542000920569141,0.558759964344595,0.5655977162199296,0.5697289878952349,0.41133645345813835,0.4263681424556441,0.4338209025376249,0.4359939776007631,0.43656970643226983,0.4368426702726571,0.43729529920887905
|
eval/Information-Retrieval_evaluation_mix_zh_results.csv
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
|
| 2 |
+
0.411522633744856,200,0.05271398747390397,0.2578288100208768,0.3757828810020877,0.48173277661795405,0.5448851774530271,0.5913361169102297,0.05271398747390397,0.019137091162143353,0.02092901878914405,0.14023138482950592,0.013319415448851775,0.22045929018789143,0.008971816283924842,0.29615518441196936,0.006927627000695895,0.3430381581999536,0.005709812108559499,0.3773370447691951,0.05271398747390397,0.09556056072532532,0.09930368347374303,0.10081071540637217,0.10132227028022825,0.10159341696099079,0.05271398747390397,0.08881687976564442,0.11141055101423608,0.12877084407419526,0.13826321499195837,0.14474109558009463,0.05271398747390397,0.0530248520731265,0.05750306475672631,0.05939735438758803,0.06007002753858139,0.06041410153935675,0.0612616045534631
|
| 3 |
+
0.823045267489712,400,0.06576200417536535,0.2980167014613779,0.42745302713987476,0.535490605427975,0.5970772442588727,0.656054279749478,0.06576200417536535,0.0232428670842032,0.025443632567849688,0.16946764091858035,0.015427974947807935,0.2554801670146138,0.00997912317327766,0.3308214865626139,0.0075574112734864305,0.3754631010372138,0.006291753653444677,0.41669483381383177,0.06576200417536535,0.11235704150596755,0.11652128120776886,0.11804025040306476,0.11853682693823762,0.1188759370659957,0.06576200417536535,0.10653755817702598,0.13073562376188436,0.1479022120374964,0.15696526994526416,0.16477061568962684,0.06576200417536535,0.06451328746393485,0.06933044178863315,0.07119061084500962,0.07181702436281326,0.07222975531305806,0.07304511070814222
|
| 4 |
+
1.2366255144032923,600,0.0767223382045929,0.32411273486430064,0.45041753653444677,0.5615866388308977,0.6116910229645094,0.6617954070981211,0.0767223382045929,0.026765831593597772,0.02727035490605428,0.18139352818371604,0.016586638830897706,0.27481359976140773,0.010615866388308977,0.35095022699406836,0.007915796798886569,0.392343506644133,0.006484864300626305,0.42834112072107894,0.0767223382045929,0.12598049203118863,0.13000993091579688,0.1316122865033852,0.1320283348956683,0.1323174505954342,0.0767223382045929,0.11656756752344836,0.142736897860521,0.16027100070331385,0.16869827506693647,0.17552832130920326,0.0767223382045929,0.07152375953219589,0.07692616022630434,0.07884732581375235,0.0794713797550218,0.07984087325239508,0.08070697194940042
|
| 5 |
+
1.6481481481481481,800,0.08298538622129437,0.3246346555323591,0.45668058455114824,0.5610647181628392,0.6247390396659708,0.6691022964509394,0.08298538622129437,0.02889700765483646,0.027583507306889354,0.1843945720250522,0.01675365344467641,0.2775101898797097,0.010574112734864301,0.34997597508035916,0.007943632567849686,0.3945629121516387,0.006492693110647181,0.4297503065248368,0.08298538622129437,0.13082780820141615,0.13503888003814143,0.13652811025277245,0.13704978839849483,0.1373079705490806,0.08298538622129437,0.11941535673334294,0.14558892169636672,0.1621555415579131,0.17118806672216993,0.1778736644103507,0.08298538622129437,0.07375856353556162,0.07905869690345838,0.08081531252917848,0.08144614456783997,0.08181721303487892,0.08266895746562458
|
| 6 |
+
2.0617283950617282,1000,0.07933194154488518,0.3246346555323591,0.4613778705636743,0.5683716075156576,0.6304801670146137,0.6837160751565762,0.07933194154488518,0.027331245650661095,0.02828810020876827,0.18833507306889355,0.0174321503131524,0.28794860324087884,0.010960334029227558,0.36197890777744635,0.008204592901878915,0.4063210392020413,0.006714509394572025,0.44356877754581303,0.07933194154488518,0.13427438712380335,0.13868437701863284,0.1402611455320935,0.14076928815404088,0.14107699567160387,0.07933194154488518,0.1231515835151623,0.15119039063682807,0.16820374063132443,0.177205511733624,0.18425859303661765,0.07933194154488518,0.07669853006375293,0.08242821394664819,0.08427859654883654,0.08491738034307154,0.08529528775248019,0.08621346468383274
|
| 7 |
+
2.4732510288065845,1200,0.08924843423799582,0.3455114822546973,0.4754697286012526,0.5960334029227558,0.6524008350730689,0.6978079331941545,0.08924843423799582,0.030854210160055667,0.03003653444676409,0.19960855949895615,0.01781837160751566,0.2947596679590416,0.011461377870563675,0.3785933823773073,0.008653444676409185,0.42900719090698214,0.007019832985386221,0.464184643934122,0.08924843423799582,0.1438694259756465,0.14796630788350965,0.14970431884529528,0.150157575450279,0.15041628309356259,0.08924843423799582,0.1304446664530369,0.1571014914813751,0.17638739208394963,0.1865731356749295,0.1932168144705724,0.08924843423799582,0.08065909089146879,0.08609331519458653,0.08818546993655318,0.08896673947185972,0.08933010821121676,0.09023018861885118
|
| 8 |
+
2.8847736625514404,1400,0.09029227557411273,0.34916492693110646,0.48173277661795405,0.5918580375782881,0.6591858037578288,0.6998956158663883,0.09029227557411273,0.031228253305497562,0.030140918580375778,0.20077915299731583,0.01823590814196242,0.30093448652947613,0.011430062630480168,0.3776191304635981,0.008688239387613084,0.4305294595221526,0.007053757828810021,0.4662984226397588,0.09029227557411273,0.14336088613781903,0.14756949454073856,0.14913405152461043,0.1496922228441261,0.14992535322486242,0.09029227557411273,0.1311830673444814,0.1593514410099947,0.1768598075045411,0.18762130889604253,0.19437250124374303,0.09029227557411273,0.08197943711425079,0.08776780524028141,0.08964869225330131,0.09044677981509988,0.09082973714886453,0.09175129729258544
|
| 9 |
+
3.2983539094650207,1600,0.09394572025052192,0.35386221294363257,0.4869519832985386,0.5955114822546973,0.662839248434238,0.7009394572025052,0.09394572025052192,0.03218510786360473,0.0308455114822547,0.2054242469430361,0.01838204592901879,0.3032918282135401,0.011565762004175365,0.3818466878748716,0.008764787752261655,0.4343829737879842,0.0070720250521920675,0.46733356529807474,0.09394572025052192,0.1486268139347834,0.15284573002617868,0.15439034982296526,0.1549448592625029,0.15516529379486205,0.09394572025052192,0.13526182724058286,0.16273403880201556,0.180685476350191,0.1913175060746284,0.19756360996316394,0.09394572025052192,0.08491818175758956,0.09052948294713963,0.09248066772963609,0.09326228290776101,0.09361529404962608,0.09455859576932324
|
| 10 |
+
3.7098765432098766,1800,0.09394572025052192,0.35281837160751567,0.48329853862212946,0.5918580375782881,0.6649269311064718,0.7004175365344467,0.09394572025052192,0.03185455810716771,0.030897703549060546,0.20592877025549258,0.018204592901878917,0.30069837956059253,0.011362212943632568,0.3754792557245584,0.008639526791927627,0.4282591046160983,0.007019832985386221,0.46372361401067036,0.09394572025052192,0.14710513443845905,0.15122849766144658,0.15275090014884107,0.1533445728241347,0.1535456563541225,0.09394572025052192,0.13433471892252347,0.16091824243484512,0.1780017996510726,0.1886875211403746,0.19541417908856412,0.09394572025052192,0.083759101073897,0.08908800548950695,0.09092612397080438,0.09168814149038751,0.09208168156532727,0.09301554391402207
|
| 11 |
+
4.1234567901234565,2000,0.09551148225469729,0.34812108559498955,0.4932150313152401,0.5970772442588727,0.6623173277661796,0.7035490605427975,0.09551148225469729,0.03220250521920668,0.030480167014613778,0.20316259071478276,0.018402922755741128,0.3040399145044239,0.01144572025052192,0.37823300858269543,0.00861864996520529,0.4274327302250057,0.0070720250521920675,0.467568429598701,0.09551148225469729,0.148796848074501,0.15342712486814447,0.15489924735195337,0.15543781318663716,0.15567492413016254,0.09551148225469729,0.13449413074843178,0.16281375869650408,0.1798079117342116,0.18976873702750593,0.19737879358914515,0.09551148225469729,0.08472355170504958,0.09038650929811239,0.0922515804329945,0.09296251507722719,0.09340391507908284,0.09434895514443004
|
| 12 |
+
4.534979423868313,2200,0.09498956158663883,0.35281837160751567,0.48851774530271397,0.5960334029227558,0.657098121085595,0.7025052192066806,0.09498956158663883,0.03218510786360473,0.03102818371607516,0.20682473406899293,0.018528183716075158,0.30616239188786165,0.011550104384133612,0.38175970109686186,0.008601252609603338,0.4266063558339132,0.007074634655532359,0.4677598005103224,0.09498956158663883,0.15082760305134044,0.1552139914541245,0.1567682757261486,0.1572599746321091,0.15752063728764779,0.09498956158663883,0.13726194438538974,0.16515347653846224,0.18245718935168395,0.1915123607890909,0.1993072789458329,0.09498956158663883,0.08696228866764828,0.0925585898977933,0.09443690504503688,0.09508196706389692,0.09552658777692054,0.09647934265199021
|
| 13 |
+
4.946502057613169,2400,0.09707724425887265,0.3585594989561587,0.4900835073068894,0.6002087682672234,0.6612734864300627,0.7061586638830898,0.09707724425887265,0.032868575405109846,0.03144572025052192,0.20912118500845014,0.018486430062630482,0.305353414852371,0.011612734864300627,0.3834696126188819,0.008688239387613084,0.43087740663419155,0.007132045929018789,0.4714567385757365,0.09707724425887265,0.15220960831749397,0.15642354470896513,0.1580041495008456,0.15850022553236756,0.1587557913720219,0.09707724425887265,0.13847583254619214,0.16556220177827802,0.1834871578549362,0.1930615498205831,0.20074882110420836,0.09707724425887265,0.08751052569766739,0.09304075210745723,0.09500635866296525,0.09570276054684158,0.09614394028730197,0.09706713378133278
|