TalentCLEF-2025
					Collection
				
Job to Job and Job to Skill matching sentence transformer models
					• 
				9 items
				• 
				Updated
					
				•
					
					1
Top performing model on TalentCLEF 2025 Task A. Use it for multilingual job title matching
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-pruned")
# Run inference
sentences = [
    'Entwicklerin für mobile Anwendungen',
    'Mergers-and-Acquisitions-Analyst/Mergers-and-Acquisitions-Analystin',
    'fashion design expert',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
full_en, full_es, full_de, full_zh, mix_es, mix_de and mix_zhInformationRetrievalEvaluator| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh | 
|---|---|---|---|---|---|---|---|
| cosine_accuracy@1 | 0.6476 | 0.1189 | 0.2956 | 0.6602 | 0.6297 | 0.5564 | 0.6086 | 
| cosine_accuracy@20 | 0.9714 | 1.0 | 0.9704 | 0.9709 | 0.9106 | 0.8866 | 0.9593 | 
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9754 | 0.9903 | 0.9496 | 0.9381 | 0.9791 | 
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.973 | 0.9594 | 0.9875 | 
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9834 | 0.9709 | 0.9911 | 
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9901 | 0.9776 | 0.9937 | 
| cosine_precision@1 | 0.6476 | 0.1189 | 0.2956 | 0.6602 | 0.6297 | 0.5564 | 0.6086 | 
| cosine_precision@20 | 0.4795 | 0.5268 | 0.4291 | 0.4481 | 0.1117 | 0.1095 | 0.1266 | 
| cosine_precision@50 | 0.2884 | 0.3438 | 0.298 | 0.2713 | 0.0485 | 0.0481 | 0.0552 | 
| cosine_precision@100 | 0.173 | 0.219 | 0.1943 | 0.1665 | 0.0254 | 0.0253 | 0.0287 | 
| cosine_precision@150 | 0.1244 | 0.1658 | 0.1482 | 0.1211 | 0.0172 | 0.0173 | 0.0194 | 
| cosine_precision@200 | 0.0986 | 0.1333 | 0.1198 | 0.0953 | 0.0131 | 0.0131 | 0.0147 | 
| cosine_recall@1 | 0.0661 | 0.0036 | 0.0111 | 0.0661 | 0.2434 | 0.2093 | 0.2044 | 
| cosine_recall@20 | 0.5122 | 0.3541 | 0.2668 | 0.4841 | 0.8288 | 0.7989 | 0.8346 | 
| cosine_recall@50 | 0.6835 | 0.5098 | 0.4092 | 0.6568 | 0.8987 | 0.8741 | 0.9096 | 
| cosine_recall@100 | 0.79 | 0.6076 | 0.5098 | 0.7685 | 0.9399 | 0.9173 | 0.9476 | 
| cosine_recall@150 | 0.84 | 0.6705 | 0.5729 | 0.8278 | 0.9577 | 0.9424 | 0.9609 | 
| cosine_recall@200 | 0.8759 | 0.7125 | 0.612 | 0.8617 | 0.9695 | 0.9536 | 0.9698 | 
| cosine_ndcg@1 | 0.6476 | 0.1189 | 0.2956 | 0.6602 | 0.6297 | 0.5564 | 0.6086 | 
| cosine_ndcg@20 | 0.6468 | 0.5708 | 0.4696 | 0.6231 | 0.701 | 0.6541 | 0.6853 | 
| cosine_ndcg@50 | 0.658 | 0.5355 | 0.4449 | 0.6383 | 0.7201 | 0.6748 | 0.7067 | 
| cosine_ndcg@100 | 0.7095 | 0.559 | 0.467 | 0.6917 | 0.7291 | 0.6845 | 0.7154 | 
| cosine_ndcg@150 | 0.731 | 0.59 | 0.4982 | 0.7167 | 0.7326 | 0.6894 | 0.7181 | 
| cosine_ndcg@200 | 0.7461 | 0.6095 | 0.5165 | 0.7303 | 0.7347 | 0.6915 | 0.7198 | 
| cosine_mrr@1 | 0.6476 | 0.1189 | 0.2956 | 0.6602 | 0.6297 | 0.5564 | 0.6086 | 
| cosine_mrr@20 | 0.7902 | 0.5532 | 0.5047 | 0.8016 | 0.7037 | 0.6477 | 0.7237 | 
| cosine_mrr@50 | 0.791 | 0.5532 | 0.5048 | 0.8021 | 0.705 | 0.6494 | 0.7243 | 
| cosine_mrr@100 | 0.791 | 0.5532 | 0.505 | 0.8021 | 0.7053 | 0.6497 | 0.7245 | 
| cosine_mrr@150 | 0.791 | 0.5532 | 0.505 | 0.8021 | 0.7054 | 0.6498 | 0.7245 | 
| cosine_mrr@200 | 0.791 | 0.5532 | 0.505 | 0.8021 | 0.7055 | 0.6498 | 0.7245 | 
| cosine_map@1 | 0.6476 | 0.1189 | 0.2956 | 0.6602 | 0.6297 | 0.5564 | 0.6086 | 
| cosine_map@20 | 0.5026 | 0.4379 | 0.3366 | 0.475 | 0.6194 | 0.5648 | 0.5652 | 
| cosine_map@50 | 0.484 | 0.3739 | 0.2853 | 0.4579 | 0.6244 | 0.57 | 0.5716 | 
| cosine_map@100 | 0.5118 | 0.3763 | 0.2818 | 0.4848 | 0.6257 | 0.5714 | 0.5731 | 
| cosine_map@150 | 0.5202 | 0.3892 | 0.2931 | 0.4937 | 0.626 | 0.5719 | 0.5734 | 
| cosine_map@200 | 0.5249 | 0.3958 | 0.2988 | 0.4978 | 0.6262 | 0.572 | 0.5735 | 
| cosine_map@500 | 0.5304 | 0.4063 | 0.3109 | 0.504 | 0.6263 | 0.5723 | 0.5736 | 
sentence and label| sentence | label | |
|---|---|---|
| type | string | list | 
| details | 
 | 
 | 
| sentence | label | 
|---|---|
|  | [-0.07171934843063354, 0.03595816716551781, -0.029780959710478783, 0.006593302357941866, 0.040611181408166885, ...] | 
| airport environment officer | [-0.022075481712818146, 0.02999737113714218, -0.02189866080880165, 0.016531817615032196, 0.012234307825565338, ...] | 
| Flake操作员 | [-0.04815564677119255, 0.023524893447756767, -0.01583661139011383, 0.042527906596660614, 0.03815540298819542, ...] | 
MSELosseval_strategy: stepsper_device_train_batch_size: 128per_device_eval_batch_size: 128gradient_accumulation_steps: 2learning_rate: 0.0001num_train_epochs: 5warmup_ratio: 0.05log_on_each_node: Falsefp16: Truedataloader_num_workers: 4ddp_find_unused_parameters: Truebatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 2eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 0.0001weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.05warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Falselogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Truedataloader_num_workers: 4dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Trueddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 | 
|---|---|---|---|---|---|---|---|---|---|
| -1 | -1 | - | 0.5348 | 0.4311 | 0.3678 | 0.5333 | 0.2580 | 0.1924 | 0.2871 | 
| 0.0030 | 1 | 0.0017 | - | - | - | - | - | - | - | 
| 0.2959 | 100 | 0.001 | - | - | - | - | - | - | - | 
| 0.5917 | 200 | 0.0005 | 0.6702 | 0.5287 | 0.4566 | 0.6809 | 0.5864 | 0.5302 | 0.4739 | 
| 0.8876 | 300 | 0.0004 | - | - | - | - | - | - | - | 
| 1.1834 | 400 | 0.0004 | 0.7057 | 0.5643 | 0.4790 | 0.7033 | 0.6604 | 0.6055 | 0.6003 | 
| 1.4793 | 500 | 0.0004 | - | - | - | - | - | - | - | 
| 1.7751 | 600 | 0.0003 | 0.7184 | 0.5783 | 0.4910 | 0.7127 | 0.6927 | 0.6416 | 0.6485 | 
| 2.0710 | 700 | 0.0003 | - | - | - | - | - | - | - | 
| 2.3669 | 800 | 0.0003 | 0.7307 | 0.5938 | 0.5023 | 0.7233 | 0.7125 | 0.6639 | 0.6847 | 
| 2.6627 | 900 | 0.0003 | - | - | - | - | - | - | - | 
| 2.9586 | 1000 | 0.0003 | 0.7371 | 0.6002 | 0.5085 | 0.7228 | 0.7222 | 0.6761 | 0.6998 | 
| 3.2544 | 1100 | 0.0003 | - | - | - | - | - | - | - | 
| 3.5503 | 1200 | 0.0003 | 0.7402 | 0.6059 | 0.5109 | 0.7279 | 0.7285 | 0.6841 | 0.7120 | 
| 3.8462 | 1300 | 0.0003 | - | - | - | - | - | - | - | 
| 4.1420 | 1400 | 0.0003 | 0.7449 | 0.6083 | 0.5154 | 0.7294 | 0.7333 | 0.6894 | 0.7176 | 
| 4.4379 | 1500 | 0.0003 | - | - | - | - | - | - | - | 
| 4.7337 | 1600 | 0.0003 | 0.7461 | 0.6095 | 0.5165 | 0.7303 | 0.7347 | 0.6915 | 0.7198 | 
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}