SentenceTransformer based on Alibaba-NLP/gte-Qwen2-1.5B-instruct
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-Qwen2-1.5B-instruct. It maps sentences & paragraphs to a 1536-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-Qwen2-1.5B-instruct
- Maximum Sequence Length: 32768 tokens
- Output Dimensionality: 1536 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 32768, 'do_lower_case': False, 'architecture': 'PeftModelForFeatureExtraction'})
(1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("praphul555/ohai_gte_qwen_1.5b_instruct")
# Run inference
queries = [
"\u003cuser\u003e Hi, I need to cancel a test.\n\u003cassistant\u003e Of course, which test needs cancellation?\n\u003cuser\u003e The reflex lactic acid that we ordered.\n\u003cassistant\u003e Got it, I\u0027ll cancel it.\n\u003cuser\u003e Perfect, cancel it now.",
]
documents = [
'Reflex Lactic Acid w/ Reflex, Plasma',
'pt may return to room in 30 min if vital signs stable',
'BH Social Services Assessment',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 1536] [3, 1536]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 0.7656, 0.0259, -0.0052]], dtype=torch.bfloat16)
Evaluation
Metrics
Information Retrieval
- Dataset:
ir-val - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.7729 |
| cosine_accuracy@3 | 0.9492 |
| cosine_accuracy@5 | 0.9671 |
| cosine_accuracy@10 | 0.9777 |
| cosine_precision@1 | 0.7729 |
| cosine_precision@3 | 0.3164 |
| cosine_precision@5 | 0.1934 |
| cosine_precision@10 | 0.0978 |
| cosine_recall@1 | 0.7729 |
| cosine_recall@3 | 0.9492 |
| cosine_recall@5 | 0.9671 |
| cosine_recall@10 | 0.9777 |
| cosine_ndcg@10 | 0.8903 |
| cosine_mrr@10 | 0.8606 |
| cosine_map@100 | 0.861 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 204,376 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 2 tokens
- mean: 20.11 tokens
- max: 71 tokens
- min: 2 tokens
- mean: 13.66 tokens
- max: 59 tokens
- Samples:
sentence_0 sentence_1 Please renew the calcium gluconate tabs.calcium gluconate (calcium gluconate 500 mg oral tablet)rMeasured WeightOrder celiac antibodies tTG IgA and total IgA w/ reflex test.Celiac Antibodies tTG IgA + Total IgA w/Rflx to tTG IgG and DGP IgG - Loss:
main.LoggingMNRwith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64fp16: Truemulti_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
Click to expand
| Epoch | Step | Training Loss | ir-val_cosine_ndcg@10 |
|---|---|---|---|
| 0.0063 | 10 | - | 0.7871 |
| 0.0125 | 20 | - | 0.7863 |
| 0.0188 | 30 | - | 0.7846 |
| 0.0250 | 40 | - | 0.7848 |
| 0.0313 | 50 | - | 0.7875 |
| 0.0376 | 60 | - | 0.7887 |
| 0.0438 | 70 | - | 0.7912 |
| 0.0501 | 80 | - | 0.7922 |
| 0.0564 | 90 | - | 0.7989 |
| 0.0626 | 100 | - | 0.8035 |
| 0.0689 | 110 | - | 0.8112 |
| 0.0751 | 120 | - | 0.8138 |
| 0.0814 | 130 | - | 0.8232 |
| 0.0877 | 140 | - | 0.8265 |
| 0.0939 | 150 | - | 0.8310 |
| 0.1002 | 160 | - | 0.8340 |
| 0.1064 | 170 | - | 0.8402 |
| 0.1127 | 180 | - | 0.8442 |
| 0.1190 | 190 | - | 0.8453 |
| 0.1252 | 200 | - | 0.8469 |
| 0.1315 | 210 | - | 0.8498 |
| 0.1378 | 220 | - | 0.8500 |
| 0.1440 | 230 | - | 0.8502 |
| 0.1503 | 240 | - | 0.8537 |
| 0.1565 | 250 | - | 0.8544 |
| 0.1628 | 260 | - | 0.8544 |
| 0.1691 | 270 | - | 0.8562 |
| 0.1753 | 280 | - | 0.8560 |
| 0.1816 | 290 | - | 0.8572 |
| 0.1879 | 300 | - | 0.8597 |
| 0.1941 | 310 | - | 0.8617 |
| 0.2004 | 320 | - | 0.8621 |
| 0.2066 | 330 | - | 0.8624 |
| 0.2129 | 340 | - | 0.8638 |
| 0.2192 | 350 | - | 0.8631 |
| 0.2254 | 360 | - | 0.8628 |
| 0.2317 | 370 | - | 0.8632 |
| 0.2379 | 380 | - | 0.8678 |
| 0.2442 | 390 | - | 0.8653 |
| 0.2505 | 400 | - | 0.8655 |
| 0.2567 | 410 | - | 0.8671 |
| 0.2630 | 420 | - | 0.8668 |
| 0.2693 | 430 | - | 0.8674 |
| 0.2755 | 440 | - | 0.8675 |
| 0.2818 | 450 | - | 0.8678 |
| 0.2880 | 460 | - | 0.8675 |
| 0.2943 | 470 | - | 0.8679 |
| 0.3006 | 480 | - | 0.8685 |
| 0.3068 | 490 | - | 0.8674 |
| 0.3131 | 500 | 0.3129 | 0.8686 |
| 0.3193 | 510 | - | 0.8698 |
| 0.3256 | 520 | - | 0.8695 |
| 0.3319 | 530 | - | 0.8693 |
| 0.3381 | 540 | - | 0.8713 |
| 0.3444 | 550 | - | 0.8707 |
| 0.3507 | 560 | - | 0.8713 |
| 0.3569 | 570 | - | 0.8692 |
| 0.3632 | 580 | - | 0.8716 |
| 0.3694 | 590 | - | 0.8728 |
| 0.3757 | 600 | - | 0.8716 |
| 0.3820 | 610 | - | 0.8747 |
| 0.3882 | 620 | - | 0.8730 |
| 0.3945 | 630 | - | 0.8736 |
| 0.4008 | 640 | - | 0.8744 |
| 0.4070 | 650 | - | 0.8746 |
| 0.4133 | 660 | - | 0.8751 |
| 0.4195 | 670 | - | 0.8746 |
| 0.4258 | 680 | - | 0.8727 |
| 0.4321 | 690 | - | 0.8735 |
| 0.4383 | 700 | - | 0.8737 |
| 0.4446 | 710 | - | 0.8726 |
| 0.4508 | 720 | - | 0.8714 |
| 0.4571 | 730 | - | 0.8735 |
| 0.4634 | 740 | - | 0.8735 |
| 0.4696 | 750 | - | 0.8719 |
| 0.4759 | 760 | - | 0.8721 |
| 0.4822 | 770 | - | 0.8734 |
| 0.4884 | 780 | - | 0.8729 |
| 0.4947 | 790 | - | 0.8732 |
| 0.5009 | 800 | - | 0.8739 |
| 0.5072 | 810 | - | 0.8731 |
| 0.5135 | 820 | - | 0.8740 |
| 0.5197 | 830 | - | 0.8723 |
| 0.5260 | 840 | - | 0.8715 |
| 0.5322 | 850 | - | 0.8742 |
| 0.5385 | 860 | - | 0.8738 |
| 0.5448 | 870 | - | 0.8742 |
| 0.5510 | 880 | - | 0.8727 |
| 0.5573 | 890 | - | 0.8718 |
| 0.5636 | 900 | - | 0.8735 |
| 0.5698 | 910 | - | 0.8747 |
| 0.5761 | 920 | - | 0.8743 |
| 0.5823 | 930 | - | 0.8725 |
| 0.5886 | 940 | - | 0.8741 |
| 0.5949 | 950 | - | 0.8726 |
| 0.6011 | 960 | - | 0.8724 |
| 0.6074 | 970 | - | 0.8740 |
| 0.6137 | 980 | - | 0.8751 |
| 0.6199 | 990 | - | 0.8751 |
| 0.6262 | 1000 | 0.1567 | 0.8760 |
| 0.6324 | 1010 | - | 0.8745 |
| 0.6387 | 1020 | - | 0.8729 |
| 0.6450 | 1030 | - | 0.8737 |
| 0.6512 | 1040 | - | 0.8778 |
| 0.6575 | 1050 | - | 0.8771 |
| 0.6637 | 1060 | - | 0.8765 |
| 0.6700 | 1070 | - | 0.8787 |
| 0.6763 | 1080 | - | 0.8780 |
| 0.6825 | 1090 | - | 0.8775 |
| 0.6888 | 1100 | - | 0.8761 |
| 0.6951 | 1110 | - | 0.8762 |
| 0.7013 | 1120 | - | 0.8770 |
| 0.7076 | 1130 | - | 0.8768 |
| 0.7138 | 1140 | - | 0.8778 |
| 0.7201 | 1150 | - | 0.8770 |
| 0.7264 | 1160 | - | 0.8777 |
| 0.7326 | 1170 | - | 0.8792 |
| 0.7389 | 1180 | - | 0.8796 |
| 0.7451 | 1190 | - | 0.8793 |
| 0.7514 | 1200 | - | 0.8795 |
| 0.7577 | 1210 | - | 0.8794 |
| 0.7639 | 1220 | - | 0.8770 |
| 0.7702 | 1230 | - | 0.8771 |
| 0.7765 | 1240 | - | 0.8770 |
| 0.7827 | 1250 | - | 0.8766 |
| 0.7890 | 1260 | - | 0.8772 |
| 0.7952 | 1270 | - | 0.8780 |
| 0.8015 | 1280 | - | 0.8796 |
| 0.8078 | 1290 | - | 0.8787 |
| 0.8140 | 1300 | - | 0.8793 |
| 0.8203 | 1310 | - | 0.8784 |
| 0.8265 | 1320 | - | 0.8794 |
| 0.8328 | 1330 | - | 0.8774 |
| 0.8391 | 1340 | - | 0.8805 |
| 0.8453 | 1350 | - | 0.8807 |
| 0.8516 | 1360 | - | 0.8793 |
| 0.8579 | 1370 | - | 0.8805 |
| 0.8641 | 1380 | - | 0.8792 |
| 0.8704 | 1390 | - | 0.8799 |
| 0.8766 | 1400 | - | 0.8789 |
| 0.8829 | 1410 | - | 0.8789 |
| 0.8892 | 1420 | - | 0.8805 |
| 0.8954 | 1430 | - | 0.8792 |
| 0.9017 | 1440 | - | 0.8822 |
| 0.9080 | 1450 | - | 0.8797 |
| 0.9142 | 1460 | - | 0.8793 |
| 0.9205 | 1470 | - | 0.8796 |
| 0.9267 | 1480 | - | 0.8791 |
| 0.9330 | 1490 | - | 0.8802 |
| 0.9393 | 1500 | 0.147 | 0.8804 |
| 0.9455 | 1510 | - | 0.8806 |
| 0.9518 | 1520 | - | 0.8786 |
| 0.9580 | 1530 | - | 0.8794 |
| 0.9643 | 1540 | - | 0.8799 |
| 0.9706 | 1550 | - | 0.8812 |
| 0.9768 | 1560 | - | 0.8802 |
| 0.9831 | 1570 | - | 0.8808 |
| 0.9894 | 1580 | - | 0.8808 |
| 0.9956 | 1590 | - | 0.8805 |
| 1.0 | 1597 | - | 0.8805 |
| 1.0019 | 1600 | - | 0.8806 |
| 1.0081 | 1610 | - | 0.8806 |
| 1.0144 | 1620 | - | 0.8804 |
| 1.0207 | 1630 | - | 0.8791 |
| 1.0269 | 1640 | - | 0.8804 |
| 1.0332 | 1650 | - | 0.8802 |
| 1.0394 | 1660 | - | 0.8823 |
| 1.0457 | 1670 | - | 0.8805 |
| 1.0520 | 1680 | - | 0.8808 |
| 1.0582 | 1690 | - | 0.8824 |
| 1.0645 | 1700 | - | 0.8801 |
| 1.0708 | 1710 | - | 0.8810 |
| 1.0770 | 1720 | - | 0.8812 |
| 1.0833 | 1730 | - | 0.8817 |
| 1.0895 | 1740 | - | 0.8812 |
| 1.0958 | 1750 | - | 0.8806 |
| 1.1021 | 1760 | - | 0.8820 |
| 1.1083 | 1770 | - | 0.8826 |
| 1.1146 | 1780 | - | 0.8825 |
| 1.1209 | 1790 | - | 0.8800 |
| 1.1271 | 1800 | - | 0.8805 |
| 1.1334 | 1810 | - | 0.8801 |
| 1.1396 | 1820 | - | 0.8819 |
| 1.1459 | 1830 | - | 0.8810 |
| 1.1522 | 1840 | - | 0.8800 |
| 1.1584 | 1850 | - | 0.8813 |
| 1.1647 | 1860 | - | 0.8817 |
| 1.1709 | 1870 | - | 0.8801 |
| 1.1772 | 1880 | - | 0.8809 |
| 1.1835 | 1890 | - | 0.8821 |
| 1.1897 | 1900 | - | 0.8838 |
| 1.1960 | 1910 | - | 0.8819 |
| 1.2023 | 1920 | - | 0.8821 |
| 1.2085 | 1930 | - | 0.8826 |
| 1.2148 | 1940 | - | 0.8841 |
| 1.2210 | 1950 | - | 0.8845 |
| 1.2273 | 1960 | - | 0.8829 |
| 1.2336 | 1970 | - | 0.8817 |
| 1.2398 | 1980 | - | 0.8833 |
| 1.2461 | 1990 | - | 0.8861 |
| 1.2523 | 2000 | 0.1343 | 0.8825 |
| 1.2586 | 2010 | - | 0.8821 |
| 1.2649 | 2020 | - | 0.8840 |
| 1.2711 | 2030 | - | 0.8836 |
| 1.2774 | 2040 | - | 0.8832 |
| 1.2837 | 2050 | - | 0.8806 |
| 1.2899 | 2060 | - | 0.8820 |
| 1.2962 | 2070 | - | 0.8805 |
| 1.3024 | 2080 | - | 0.8818 |
| 1.3087 | 2090 | - | 0.8834 |
| 1.3150 | 2100 | - | 0.8819 |
| 1.3212 | 2110 | - | 0.8854 |
| 1.3275 | 2120 | - | 0.8824 |
| 1.3338 | 2130 | - | 0.8811 |
| 1.3400 | 2140 | - | 0.8823 |
| 1.3463 | 2150 | - | 0.8810 |
| 1.3525 | 2160 | - | 0.8819 |
| 1.3588 | 2170 | - | 0.8816 |
| 1.3651 | 2180 | - | 0.8828 |
| 1.3713 | 2190 | - | 0.8828 |
| 1.3776 | 2200 | - | 0.8850 |
| 1.3838 | 2210 | - | 0.8833 |
| 1.3901 | 2220 | - | 0.8849 |
| 1.3964 | 2230 | - | 0.8834 |
| 1.4026 | 2240 | - | 0.8815 |
| 1.4089 | 2250 | - | 0.8821 |
| 1.4152 | 2260 | - | 0.8830 |
| 1.4214 | 2270 | - | 0.8822 |
| 1.4277 | 2280 | - | 0.8809 |
| 1.4339 | 2290 | - | 0.8831 |
| 1.4402 | 2300 | - | 0.8838 |
| 1.4465 | 2310 | - | 0.8840 |
| 1.4527 | 2320 | - | 0.8836 |
| 1.4590 | 2330 | - | 0.8827 |
| 1.4652 | 2340 | - | 0.8833 |
| 1.4715 | 2350 | - | 0.8836 |
| 1.4778 | 2360 | - | 0.8823 |
| 1.4840 | 2370 | - | 0.8823 |
| 1.4903 | 2380 | - | 0.8829 |
| 1.4966 | 2390 | - | 0.8823 |
| 1.5028 | 2400 | - | 0.8826 |
| 1.5091 | 2410 | - | 0.8839 |
| 1.5153 | 2420 | - | 0.8833 |
| 1.5216 | 2430 | - | 0.8830 |
| 1.5279 | 2440 | - | 0.8829 |
| 1.5341 | 2450 | - | 0.8828 |
| 1.5404 | 2460 | - | 0.8849 |
| 1.5466 | 2470 | - | 0.8827 |
| 1.5529 | 2480 | - | 0.8833 |
| 1.5592 | 2490 | - | 0.8832 |
| 1.5654 | 2500 | 0.1315 | 0.8841 |
| 1.5717 | 2510 | - | 0.8835 |
| 1.5780 | 2520 | - | 0.8839 |
| 1.5842 | 2530 | - | 0.8834 |
| 1.5905 | 2540 | - | 0.8847 |
| 1.5967 | 2550 | - | 0.8829 |
| 1.6030 | 2560 | - | 0.8815 |
| 1.6093 | 2570 | - | 0.8815 |
| 1.6155 | 2580 | - | 0.8815 |
| 1.6218 | 2590 | - | 0.8828 |
| 1.6281 | 2600 | - | 0.8839 |
| 1.6343 | 2610 | - | 0.8831 |
| 1.6406 | 2620 | - | 0.8848 |
| 1.6468 | 2630 | - | 0.8840 |
| 1.6531 | 2640 | - | 0.8821 |
| 1.6594 | 2650 | - | 0.8849 |
| 1.6656 | 2660 | - | 0.8833 |
| 1.6719 | 2670 | - | 0.8824 |
| 1.6781 | 2680 | - | 0.8826 |
| 1.6844 | 2690 | - | 0.8819 |
| 1.6907 | 2700 | - | 0.8831 |
| 1.6969 | 2710 | - | 0.8831 |
| 1.7032 | 2720 | - | 0.8845 |
| 1.7095 | 2730 | - | 0.8820 |
| 1.7157 | 2740 | - | 0.8814 |
| 1.7220 | 2750 | - | 0.8813 |
| 1.7282 | 2760 | - | 0.8830 |
| 1.7345 | 2770 | - | 0.8838 |
| 1.7408 | 2780 | - | 0.8833 |
| 1.7470 | 2790 | - | 0.8825 |
| 1.7533 | 2800 | - | 0.8814 |
| 1.7595 | 2810 | - | 0.8821 |
| 1.7658 | 2820 | - | 0.8817 |
| 1.7721 | 2830 | - | 0.8829 |
| 1.7783 | 2840 | - | 0.8837 |
| 1.7846 | 2850 | - | 0.8840 |
| 1.7909 | 2860 | - | 0.8838 |
| 1.7971 | 2870 | - | 0.8842 |
| 1.8034 | 2880 | - | 0.8867 |
| 1.8096 | 2890 | - | 0.8865 |
| 1.8159 | 2900 | - | 0.8863 |
| 1.8222 | 2910 | - | 0.8857 |
| 1.8284 | 2920 | - | 0.8846 |
| 1.8347 | 2930 | - | 0.8842 |
| 1.8410 | 2940 | - | 0.8860 |
| 1.8472 | 2950 | - | 0.8857 |
| 1.8535 | 2960 | - | 0.8851 |
| 1.8597 | 2970 | - | 0.8852 |
| 1.8660 | 2980 | - | 0.8852 |
| 1.8723 | 2990 | - | 0.8862 |
| 1.8785 | 3000 | 0.1249 | 0.8850 |
| 1.8848 | 3010 | - | 0.8843 |
| 1.8910 | 3020 | - | 0.8845 |
| 1.8973 | 3030 | - | 0.8862 |
| 1.9036 | 3040 | - | 0.8862 |
| 1.9098 | 3050 | - | 0.8848 |
| 1.9161 | 3060 | - | 0.8847 |
| 1.9224 | 3070 | - | 0.8865 |
| 1.9286 | 3080 | - | 0.8857 |
| 1.9349 | 3090 | - | 0.8874 |
| 1.9411 | 3100 | - | 0.8855 |
| 1.9474 | 3110 | - | 0.8873 |
| 1.9537 | 3120 | - | 0.8872 |
| 1.9599 | 3130 | - | 0.8856 |
| 1.9662 | 3140 | - | 0.8857 |
| 1.9724 | 3150 | - | 0.8862 |
| 1.9787 | 3160 | - | 0.8861 |
| 1.9850 | 3170 | - | 0.8861 |
| 1.9912 | 3180 | - | 0.8872 |
| 1.9975 | 3190 | - | 0.8869 |
| 2.0 | 3194 | - | 0.8850 |
| 2.0038 | 3200 | - | 0.8865 |
| 2.0100 | 3210 | - | 0.8854 |
| 2.0163 | 3220 | - | 0.8865 |
| 2.0225 | 3230 | - | 0.8847 |
| 2.0288 | 3240 | - | 0.8860 |
| 2.0351 | 3250 | - | 0.8883 |
| 2.0413 | 3260 | - | 0.8868 |
| 2.0476 | 3270 | - | 0.8842 |
| 2.0539 | 3280 | - | 0.8829 |
| 2.0601 | 3290 | - | 0.8830 |
| 2.0664 | 3300 | - | 0.8847 |
| 2.0726 | 3310 | - | 0.8840 |
| 2.0789 | 3320 | - | 0.8866 |
| 2.0852 | 3330 | - | 0.8845 |
| 2.0914 | 3340 | - | 0.8852 |
| 2.0977 | 3350 | - | 0.8864 |
| 2.1039 | 3360 | - | 0.8873 |
| 2.1102 | 3370 | - | 0.8877 |
| 2.1165 | 3380 | - | 0.8861 |
| 2.1227 | 3390 | - | 0.8865 |
| 2.1290 | 3400 | - | 0.8857 |
| 2.1353 | 3410 | - | 0.8857 |
| 2.1415 | 3420 | - | 0.8873 |
| 2.1478 | 3430 | - | 0.8866 |
| 2.1540 | 3440 | - | 0.8851 |
| 2.1603 | 3450 | - | 0.8865 |
| 2.1666 | 3460 | - | 0.8850 |
| 2.1728 | 3470 | - | 0.8837 |
| 2.1791 | 3480 | - | 0.8869 |
| 2.1853 | 3490 | - | 0.8861 |
| 2.1916 | 3500 | 0.1171 | 0.8861 |
| 2.1979 | 3510 | - | 0.8862 |
| 2.2041 | 3520 | - | 0.8889 |
| 2.2104 | 3530 | - | 0.8851 |
| 2.2167 | 3540 | - | 0.8878 |
| 2.2229 | 3550 | - | 0.8868 |
| 2.2292 | 3560 | - | 0.8858 |
| 2.2354 | 3570 | - | 0.8859 |
| 2.2417 | 3580 | - | 0.8844 |
| 2.2480 | 3590 | - | 0.8876 |
| 2.2542 | 3600 | - | 0.8881 |
| 2.2605 | 3610 | - | 0.8872 |
| 2.2668 | 3620 | - | 0.8846 |
| 2.2730 | 3630 | - | 0.8848 |
| 2.2793 | 3640 | - | 0.8846 |
| 2.2855 | 3650 | - | 0.8860 |
| 2.2918 | 3660 | - | 0.8864 |
| 2.2981 | 3670 | - | 0.8867 |
| 2.3043 | 3680 | - | 0.8860 |
| 2.3106 | 3690 | - | 0.8884 |
| 2.3168 | 3700 | - | 0.8881 |
| 2.3231 | 3710 | - | 0.8869 |
| 2.3294 | 3720 | - | 0.8869 |
| 2.3356 | 3730 | - | 0.8857 |
| 2.3419 | 3740 | - | 0.8866 |
| 2.3482 | 3750 | - | 0.8860 |
| 2.3544 | 3760 | - | 0.8872 |
| 2.3607 | 3770 | - | 0.8877 |
| 2.3669 | 3780 | - | 0.8887 |
| 2.3732 | 3790 | - | 0.8875 |
| 2.3795 | 3800 | - | 0.8883 |
| 2.3857 | 3810 | - | 0.8875 |
| 2.3920 | 3820 | - | 0.8879 |
| 2.3982 | 3830 | - | 0.8853 |
| 2.4045 | 3840 | - | 0.8877 |
| 2.4108 | 3850 | - | 0.8867 |
| 2.4170 | 3860 | - | 0.8879 |
| 2.4233 | 3870 | - | 0.8883 |
| 2.4296 | 3880 | - | 0.8897 |
| 2.4358 | 3890 | - | 0.8898 |
| 2.4421 | 3900 | - | 0.8865 |
| 2.4483 | 3910 | - | 0.8867 |
| 2.4546 | 3920 | - | 0.8866 |
| 2.4609 | 3930 | - | 0.8868 |
| 2.4671 | 3940 | - | 0.8866 |
| 2.4734 | 3950 | - | 0.8854 |
| 2.4796 | 3960 | - | 0.8884 |
| 2.4859 | 3970 | - | 0.8855 |
| 2.4922 | 3980 | - | 0.8858 |
| 2.4984 | 3990 | - | 0.8854 |
| 2.5047 | 4000 | 0.117 | 0.8861 |
| 2.5110 | 4010 | - | 0.8865 |
| 2.5172 | 4020 | - | 0.8855 |
| 2.5235 | 4030 | - | 0.8863 |
| 2.5297 | 4040 | - | 0.8864 |
| 2.5360 | 4050 | - | 0.8898 |
| 2.5423 | 4060 | - | 0.8890 |
| 2.5485 | 4070 | - | 0.8893 |
| 2.5548 | 4080 | - | 0.8902 |
| 2.5611 | 4090 | - | 0.8886 |
| 2.5673 | 4100 | - | 0.8882 |
| 2.5736 | 4110 | - | 0.8884 |
| 2.5798 | 4120 | - | 0.8876 |
| 2.5861 | 4130 | - | 0.8877 |
| 2.5924 | 4140 | - | 0.8879 |
| 2.5986 | 4150 | - | 0.8871 |
| 2.6049 | 4160 | - | 0.8881 |
| 2.6111 | 4170 | - | 0.8870 |
| 2.6174 | 4180 | - | 0.8883 |
| 2.6237 | 4190 | - | 0.8878 |
| 2.6299 | 4200 | - | 0.8890 |
| 2.6362 | 4210 | - | 0.8878 |
| 2.6425 | 4220 | - | 0.8897 |
| 2.6487 | 4230 | - | 0.8864 |
| 2.6550 | 4240 | - | 0.8871 |
| 2.6612 | 4250 | - | 0.8876 |
| 2.6675 | 4260 | - | 0.8856 |
| 2.6738 | 4270 | - | 0.8878 |
| 2.6800 | 4280 | - | 0.8884 |
| 2.6863 | 4290 | - | 0.8891 |
| 2.6925 | 4300 | - | 0.8891 |
| 2.6988 | 4310 | - | 0.8880 |
| 2.7051 | 4320 | - | 0.8865 |
| 2.7113 | 4330 | - | 0.8877 |
| 2.7176 | 4340 | - | 0.8859 |
| 2.7239 | 4350 | - | 0.8861 |
| 2.7301 | 4360 | - | 0.8853 |
| 2.7364 | 4370 | - | 0.8851 |
| 2.7426 | 4380 | - | 0.8868 |
| 2.7489 | 4390 | - | 0.8875 |
| 2.7552 | 4400 | - | 0.8869 |
| 2.7614 | 4410 | - | 0.8903 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.0.0
- Transformers: 4.53.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 4.0.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
LoggingMNR
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Model tree for praphul555/ohai_gte_qwen_1.5b_instruct
Base model
Alibaba-NLP/gte-Qwen2-1.5B-instructEvaluation results
- Cosine Accuracy@1 on ir valself-reported0.773
- Cosine Accuracy@3 on ir valself-reported0.949
- Cosine Accuracy@5 on ir valself-reported0.967
- Cosine Accuracy@10 on ir valself-reported0.978
- Cosine Precision@1 on ir valself-reported0.773
- Cosine Precision@3 on ir valself-reported0.316
- Cosine Precision@5 on ir valself-reported0.193
- Cosine Precision@10 on ir valself-reported0.098
- Cosine Recall@1 on ir valself-reported0.773
- Cosine Recall@3 on ir valself-reported0.949