|
|
--- |
|
|
license: apache-2.0 |
|
|
datasets: |
|
|
- prithivMLmods/Math-Shapes |
|
|
language: |
|
|
- en |
|
|
base_model: |
|
|
- google/siglip2-base-patch16-224 |
|
|
pipeline_tag: image-classification |
|
|
library_name: transformers |
|
|
tags: |
|
|
- Shapes |
|
|
- Geometric |
|
|
- SigLIP2 |
|
|
- art |
|
|
--- |
|
|
|
|
|
 |
|
|
|
|
|
# **Geometric-Shapes-Classification** |
|
|
|
|
|
> **Geometric-Shapes-Classification** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a multi-class shape recognition task. It classifies various geometric shapes using the **SiglipForImageClassification** architecture. |
|
|
|
|
|
```py |
|
|
Classification Report: |
|
|
precision recall f1-score support |
|
|
|
|
|
Circle ◯ 0.9921 0.9987 0.9953 1500 |
|
|
Kite ⬰ 0.9927 0.9927 0.9927 1500 |
|
|
Parallelogram ▰ 0.9926 0.9840 0.9883 1500 |
|
|
Rectangle ▭ 0.9993 0.9913 0.9953 1500 |
|
|
Rhombus ◆ 0.9846 0.9820 0.9833 1500 |
|
|
Square ◼ 0.9914 0.9987 0.9950 1500 |
|
|
Trapezoid ⏢ 0.9966 0.9793 0.9879 1500 |
|
|
Triangle ▲ 0.9772 0.9993 0.9881 1500 |
|
|
|
|
|
accuracy 0.9908 12000 |
|
|
macro avg 0.9908 0.9908 0.9907 12000 |
|
|
weighted avg 0.9908 0.9908 0.9907 12000 |
|
|
``` |
|
|
|
|
|
 |
|
|
|
|
|
The model categorizes images into the following classes: |
|
|
|
|
|
- **Class 0:** Circle ◯ |
|
|
- **Class 1:** Kite ⬰ |
|
|
- **Class 2:** Parallelogram ▰ |
|
|
- **Class 3:** Rectangle ▭ |
|
|
- **Class 4:** Rhombus ◆ |
|
|
- **Class 5:** Square ◼ |
|
|
- **Class 6:** Trapezoid ⏢ |
|
|
- **Class 7:** Triangle ▲ |
|
|
|
|
|
--- |
|
|
|
|
|
# **Run with Transformers 🤗** |
|
|
|
|
|
```python |
|
|
!pip install -q transformers torch pillow gradio |
|
|
``` |
|
|
|
|
|
```python |
|
|
import gradio as gr |
|
|
from transformers import AutoImageProcessor |
|
|
from transformers import SiglipForImageClassification |
|
|
from PIL import Image |
|
|
import torch |
|
|
|
|
|
# Load model and processor |
|
|
model_name = "prithivMLmods/Geometric-Shapes-Classification" |
|
|
model = SiglipForImageClassification.from_pretrained(model_name) |
|
|
processor = AutoImageProcessor.from_pretrained(model_name) |
|
|
|
|
|
# Label mapping with symbols |
|
|
labels = { |
|
|
"0": "Circle ◯", |
|
|
"1": "Kite ⬰", |
|
|
"2": "Parallelogram ▰", |
|
|
"3": "Rectangle ▭", |
|
|
"4": "Rhombus ◆", |
|
|
"5": "Square ◼", |
|
|
"6": "Trapezoid ⏢", |
|
|
"7": "Triangle ▲" |
|
|
} |
|
|
|
|
|
def classify_shape(image): |
|
|
"""Classifies the geometric shape in the input image.""" |
|
|
image = Image.fromarray(image).convert("RGB") |
|
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = model(**inputs) |
|
|
logits = outputs.logits |
|
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() |
|
|
|
|
|
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} |
|
|
|
|
|
return predictions |
|
|
|
|
|
# Gradio interface |
|
|
iface = gr.Interface( |
|
|
fn=classify_shape, |
|
|
inputs=gr.Image(type="numpy"), |
|
|
outputs=gr.Label(label="Prediction Scores"), |
|
|
title="Geometric Shapes Classification", |
|
|
description="Upload an image to classify geometric shapes such as circle, triangle, square, and more." |
|
|
) |
|
|
|
|
|
# Launch the app |
|
|
if __name__ == "__main__": |
|
|
iface.launch() |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
# **Intended Use** |
|
|
|
|
|
The **Geometric-Shapes-Classification** model is designed to recognize basic geometric shapes in images. Example use cases: |
|
|
|
|
|
- **Educational Tools:** For learning and teaching geometry visually. |
|
|
- **Computer Vision Projects:** As a shape detector in robotics or automation. |
|
|
- **Image Analysis:** Recognizing symbols in diagrams or engineering drafts. |
|
|
- **Assistive Technology:** Supporting shape identification for visually impaired applications. |