βββ    βββ ββββββ   ββββββ  ββββββ 
    βββ    βββββββββββ ββββββββββββββββ
    βββ ββ βββββββββββ ββββββββββββββββ
    ββββββββββββββββββ ββββββββββββββββ
    ββββββββββββββββββ βββ  βββββββββββ
     ββββββββ  ββββββ  βββ  βββ ββββββ 
        ποΈ COMPRESSED & OPTIMIZED π
Qwen3-30B-A3B-Instruct-2507 W8A8 Quantized
W8A8 (8-bit weights and activations) quantized version of Qwen/Qwen3-30B-A3B-Instruct-2507 using LLM-Compressor.
- ποΈ Memory: ~50% reduction vs FP16
- π Speed: Faster inference on supported hardware
- π Original model: Qwen/Qwen3-30B-A3B-Instruct-2507
- ποΈ Recommended architectures: Ampere and older
Click to view compression code
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.transformers import oneshot
from llmcompressor.utils import dispatch_for_generation
from llmcompressor.modifiers.quantization import QuantizationModifier
# Select model and load it.
model_id = "Qwen/Qwen3-30B-A3B-Instruct-2507"
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype="auto",
    device_map="auto",
    low_cpu_mem_usage=True,
    offload_folder="./offload_tmp",  # Add offload directory
    max_memory={0: "22GB", 1: "22GB", "cpu": "64GB"},
)
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
# Select calibration dataset.
DATASET_ID = "mit-han-lab/pile-val-backup"
DATASET_SPLIT = "validation"
# Select number of samples. 512 samples is a good place to start.
# Increasing the number of samples can improve accuracy.
NUM_CALIBRATION_SAMPLES = 256
MAX_SEQUENCE_LENGTH = 512
# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]")
ds = ds.shuffle(seed=42)
def preprocess(example):
    return {
        "text": tokenizer.apply_chat_template(
            [{"role": "user", "content": example["text"]}],
            tokenize=False,
        )
    }
ds = ds.map(preprocess)
# Tokenize inputs.
def tokenize(sample):
    return tokenizer(
        sample["text"],
        padding=False,
        max_length=MAX_SEQUENCE_LENGTH,
        truncation=True,
        add_special_tokens=False,
    )
ds = ds.map(tokenize, remove_columns=ds.column_names)
# Configure the quantization algorithm to run.
#   * quantize the activations to int8 (dynamic per token)
recipe = QuantizationModifier(targets="Linear", scheme="W8A8", ignore=["lm_head", "re:.*mlp.gate$"])
# Apply algorithms.
oneshot(
    model=model,
    dataset=ds,
    recipe=recipe,
    max_seq_length=MAX_SEQUENCE_LENGTH,
    num_calibration_samples=NUM_CALIBRATION_SAMPLES,
    output_dir="./Qwen3-30B-A3B-Instruct-2507-W8A8",  # Add this line
)
# Save to disk compressed.
SAVE_DIR = model_id.rstrip("/").split("/")[-1] + "-W8A8"
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
π Original Model README
Qwen3-30B-A3B-Instruct-2507
Highlights
We introduce the updated version of the Qwen3-30B-A3B non-thinking mode, named Qwen3-30B-A3B-Instruct-2507, featuring the following key enhancements:
- Significant improvements in general capabilities, including instruction following, logical reasoning, text comprehension, mathematics, science, coding and tool usage.
- Substantial gains in long-tail knowledge coverage across multiple languages.
- Markedly better alignment with user preferences in subjective and open-ended tasks, enabling more helpful responses and higher-quality text generation.
- Enhanced capabilities in 256K long-context understanding.
Model Overview
Qwen3-30B-A3B-Instruct-2507 has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Number of Parameters: 30.5B in total and 3.3B activated
- Number of Paramaters (Non-Embedding): 29.9B
- Number of Layers: 48
- Number of Attention Heads (GQA): 32 for Q and 4 for KV
- Number of Experts: 128
- Number of Activated Experts: 8
- Context Length: 262,144 natively.
NOTE: This model supports only non-thinking mode and does not generate <think></think> blocks in its output. Meanwhile, specifying enable_thinking=False is no longer required.
For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our blog, GitHub, and Documentation.
Performance
| Deepseek-V3-0324 | GPT-4o-0327 | Gemini-2.5-Flash Non-Thinking | Qwen3-235B-A22B Non-Thinking | Qwen3-30B-A3B Non-Thinking | Qwen3-30B-A3B-Instruct-2507 | |
|---|---|---|---|---|---|---|
| Knowledge | ||||||
| MMLU-Pro | 81.2 | 79.8 | 81.1 | 75.2 | 69.1 | 78.4 | 
| MMLU-Redux | 90.4 | 91.3 | 90.6 | 89.2 | 84.1 | 89.3 | 
| GPQA | 68.4 | 66.9 | 78.3 | 62.9 | 54.8 | 70.4 | 
| SuperGPQA | 57.3 | 51.0 | 54.6 | 48.2 | 42.2 | 53.4 | 
| Reasoning | ||||||
| AIME25 | 46.6 | 26.7 | 61.6 | 24.7 | 21.6 | 61.3 | 
| HMMT25 | 27.5 | 7.9 | 45.8 | 10.0 | 12.0 | 43.0 | 
| ZebraLogic | 83.4 | 52.6 | 57.9 | 37.7 | 33.2 | 90.0 | 
| LiveBench 20241125 | 66.9 | 63.7 | 69.1 | 62.5 | 59.4 | 69.0 | 
| Coding | ||||||
| LiveCodeBench v6 (25.02-25.05) | 45.2 | 35.8 | 40.1 | 32.9 | 29.0 | 43.2 | 
| MultiPL-E | 82.2 | 82.7 | 77.7 | 79.3 | 74.6 | 83.8 | 
| Aider-Polyglot | 55.1 | 45.3 | 44.0 | 59.6 | 24.4 | 35.6 | 
| Alignment | ||||||
| IFEval | 82.3 | 83.9 | 84.3 | 83.2 | 83.7 | 84.7 | 
| Arena-Hard v2* | 45.6 | 61.9 | 58.3 | 52.0 | 24.8 | 69.0 | 
| Creative Writing v3 | 81.6 | 84.9 | 84.6 | 80.4 | 68.1 | 86.0 | 
| WritingBench | 74.5 | 75.5 | 80.5 | 77.0 | 72.2 | 85.5 | 
| Agent | ||||||
| BFCL-v3 | 64.7 | 66.5 | 66.1 | 68.0 | 58.6 | 65.1 | 
| TAU1-Retail | 49.6 | 60.3# | 65.2 | 65.2 | 38.3 | 59.1 | 
| TAU1-Airline | 32.0 | 42.8# | 48.0 | 32.0 | 18.0 | 40.0 | 
| TAU2-Retail | 71.1 | 66.7# | 64.3 | 64.9 | 31.6 | 57.0 | 
| TAU2-Airline | 36.0 | 42.0# | 42.5 | 36.0 | 18.0 | 38.0 | 
| TAU2-Telecom | 34.0 | 29.8# | 16.9 | 24.6 | 18.4 | 12.3 | 
| Multilingualism | ||||||
| MultiIF | 66.5 | 70.4 | 69.4 | 70.2 | 70.8 | 67.9 | 
| MMLU-ProX | 75.8 | 76.2 | 78.3 | 73.2 | 65.1 | 72.0 | 
| INCLUDE | 80.1 | 82.1 | 83.8 | 75.6 | 67.8 | 71.9 | 
| PolyMATH | 32.2 | 25.5 | 41.9 | 27.0 | 23.3 | 43.1 | 
*: For reproducibility, we report the win rates evaluated by GPT-4.1.
#: Results were generated using GPT-4o-20241120, as access to the native function calling API of GPT-4o-0327 was unavailable.
Quickstart
The code of Qwen3-MoE has been in the latest Hugging Face transformers and we advise you to use the latest version of transformers.
With transformers<4.51.0, you will encounter the following error:
KeyError: 'qwen3_moe'
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen3-30B-A3B-Instruct-2507"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=16384
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() 
content = tokenizer.decode(output_ids, skip_special_tokens=True)
print("content:", content)
For deployment, you can use sglang>=0.4.6.post1 or vllm>=0.8.5 or to create an OpenAI-compatible API endpoint:
- SGLang:python -m sglang.launch_server --model-path Qwen/Qwen3-30B-A3B-Instruct-2507 --context-length 262144
- vLLM:vllm serve Qwen/Qwen3-30B-A3B-Instruct-2507 --max-model-len 262144
Note: If you encounter out-of-memory (OOM) issues, consider reducing the context length to a shorter value, such as 32,768.
For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
Agentic Use
Qwen3 excels in tool calling capabilities. We recommend using Qwen-Agent to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
from qwen_agent.agents import Assistant
# Define LLM
llm_cfg = {
    'model': 'Qwen3-30B-A3B-Instruct-2507',
    # Use a custom endpoint compatible with OpenAI API:
    'model_server': 'http://localhost:8000/v1',  # api_base
    'api_key': 'EMPTY',
}
# Define Tools
tools = [
    {'mcpServers': {  # You can specify the MCP configuration file
            'time': {
                'command': 'uvx',
                'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
            },
            "fetch": {
                "command": "uvx",
                "args": ["mcp-server-fetch"]
            }
        }
    },
  'code_interpreter',  # Built-in tools
]
# Define Agent
bot = Assistant(llm=llm_cfg, function_list=tools)
# Streaming generation
messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
for responses in bot.run(messages=messages):
    pass
print(responses)
Best Practices
To achieve optimal performance, we recommend the following settings:
- Sampling Parameters: - We suggest using Temperature=0.7,TopP=0.8,TopK=20, andMinP=0.
- For supported frameworks, you can adjust the presence_penaltyparameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
 
- We suggest using 
- Adequate Output Length: We recommend using an output length of 16,384 tokens for most queries, which is adequate for instruct models. 
- Standardize Output Format: We recommend using prompts to standardize model outputs when benchmarking. - Math Problems: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
- Multiple-Choice Questions: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the answerfield with only the choice letter, e.g.,"answer": "C"."
 
Citation
If you find our work helpful, feel free to give us a cite.
@misc{qwen3technicalreport,
      title={Qwen3 Technical Report}, 
      author={Qwen Team},
      year={2025},
      eprint={2505.09388},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2505.09388}, 
}
- Downloads last month
- 485
Model tree for ramblingpolymath/Qwen3-30B-A3B-Instruct-2507-W8A8
Base model
Qwen/Qwen3-30B-A3B-Instruct-2507