train_qqp_1752826675

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the qqp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1218
  • Num Input Tokens Seen: 250787112

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.1748 0.5 40933 0.2304 12552544
0.2322 1.0 81866 0.1896 25087944
0.2315 1.5 122799 0.1723 37621672
0.1378 2.0 163732 0.1531 50164864
0.0891 2.5 204665 0.1446 62700096
0.1223 3.0 245598 0.1387 75242048
0.1895 3.5 286531 0.1417 87769248
0.2392 4.0 327464 0.1310 100320328
0.1416 4.5 368397 0.1299 112855464
0.2114 5.0 409330 0.1270 125387608
0.1165 5.5 450263 0.1258 137931704
0.1377 6.0 491196 0.1263 150463800
0.1099 6.5 532129 0.1239 163003576
0.1588 7.0 573062 0.1233 175543400
0.0516 7.5 613995 0.1224 188096200
0.0705 8.0 654928 0.1223 200622552
0.0748 8.5 695861 0.1220 213151000
0.2471 9.0 736794 0.1221 225701792
0.0588 9.5 777727 0.1220 238243968
0.0732 10.0 818660 0.1218 250787112

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_qqp_1752826675

Adapter
(2015)
this model