train_rte_1744902655

This model is a fine-tuned version of google/gemma-3-1b-it on the rte dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1195
  • Num Input Tokens Seen: 102120968

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.3
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • training_steps: 40000

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.1321 1.4207 200 0.1231 514544
0.1197 2.8414 400 0.1195 1025888
0.1301 4.2567 600 0.1233 1532968
0.1116 5.6774 800 0.1228 2047232
0.0992 7.0927 1000 0.1282 2553328
0.1323 8.5134 1200 0.1255 3064584
0.1105 9.9340 1400 0.1251 3578720
0.1121 11.3494 1600 0.1282 4086872
0.1009 12.7701 1800 0.1332 4597072
0.0998 14.1854 2000 0.1293 5107408
0.0902 15.6061 2200 0.1486 5618600
0.1227 17.0214 2400 0.1342 6127088
0.0904 18.4421 2600 0.1461 6640448
0.1155 19.8627 2800 0.1379 7149392
0.0939 21.2781 3000 0.1409 7655512
0.0719 22.6988 3200 0.1356 8170864
0.0586 24.1141 3400 0.1556 8679240
0.0645 25.5348 3600 0.1552 9186256
0.0803 26.9554 3800 0.1747 9701496
0.0397 28.3708 4000 0.1871 10208536
0.0786 29.7914 4200 0.1327 10718920
0.0407 31.2068 4400 0.1885 11238024
0.0572 32.6275 4600 0.1932 11745784
0.0432 34.0428 4800 0.2151 12256384
0.0354 35.4635 5000 0.2129 12764464
0.0424 36.8841 5200 0.2154 13274464
0.0094 38.2995 5400 0.2323 13783792
0.014 39.7201 5600 0.2442 14300048
0.0141 41.1355 5800 0.2620 14802928
0.0271 42.5561 6000 0.1869 15310736
0.0332 43.9768 6200 0.2084 15826504
0.0103 45.3922 6400 0.2522 16328920
0.0066 46.8128 6600 0.2455 16846456
0.0038 48.2282 6800 0.2697 17353504
0.0145 49.6488 7000 0.2433 17866072
0.0235 51.0642 7200 0.2026 18373808
0.0068 52.4848 7400 0.2659 18884136
0.0033 53.9055 7600 0.2798 19402904
0.0022 55.3209 7800 0.2970 19913320
0.0007 56.7415 8000 0.3229 20425320
0.0001 58.1569 8200 0.3296 20932224
0.0001 59.5775 8400 0.3392 21443632
0.0001 60.9982 8600 0.3464 21958520
0.0 62.4135 8800 0.3486 22465568
0.0 63.8342 9000 0.3514 22978872
0.0 65.2496 9200 0.3586 23489416
0.0 66.6702 9400 0.3598 23998568
0.0 68.0856 9600 0.3653 24508040
0.0 69.5062 9800 0.3683 25021816
0.0 70.9269 10000 0.3703 25536008
0.0 72.3422 10200 0.3763 26049360
0.0 73.7629 10400 0.3810 26563296
0.0 75.1783 10600 0.3837 27069112
0.0 76.5989 10800 0.3860 27583320
0.0 78.0143 11000 0.3908 28092696
0.0 79.4349 11200 0.3977 28604784
0.0 80.8556 11400 0.3998 29118496
0.0 82.2709 11600 0.4084 29628968
0.0 83.6916 11800 0.4119 30142648
0.0 85.1070 12000 0.4161 30650416
0.0 86.5276 12200 0.4217 31164200
0.0 87.9483 12400 0.4289 31680176
0.0 89.3636 12600 0.4302 32191784
0.0 90.7843 12800 0.4330 32704016
0.0 92.1996 13000 0.4356 33211832
0.0 93.6203 13200 0.4414 33725272
0.0 95.0357 13400 0.4492 34239520
0.0 96.4563 13600 0.4588 34749688
0.0 97.8770 13800 0.4593 35255888
0.0 99.2923 14000 0.4637 35764264
0.0 100.7130 14200 0.4699 36272560
0.0 102.1283 14400 0.4740 36779392
0.0 103.5490 14600 0.4847 37288688
0.0 104.9697 14800 0.4860 37798808
0.0 106.3850 15000 0.4899 38306176
0.0 107.8057 15200 0.5001 38818056
0.0 109.2210 15400 0.5031 39327152
0.0 110.6417 15600 0.5096 39834472
0.0 112.0570 15800 0.5221 40347168
0.0 113.4777 16000 0.5182 40861968
0.0 114.8984 16200 0.5316 41373408
0.0 116.3137 16400 0.5421 41884568
0.0 117.7344 16600 0.5512 42393232
0.0 119.1497 16800 0.5634 42901968
0.0 120.5704 17000 0.5670 43418880
0.0 121.9911 17200 0.5790 43930128
0.0 123.4064 17400 0.5871 44439224
0.0 124.8271 17600 0.5932 44949200
0.0 126.2424 17800 0.6018 45456488
0.0 127.6631 18000 0.6063 45966968
0.0 129.0784 18200 0.6114 46478752
0.0 130.4991 18400 0.6220 46990144
0.0 131.9198 18600 0.6228 47496384
0.0 133.3351 18800 0.6262 48002064
0.0 134.7558 19000 0.6324 48514080
0.0 136.1711 19200 0.6425 49020824
0.0 137.5918 19400 0.6399 49536472
0.0 139.0071 19600 0.6509 50047616
0.0 140.4278 19800 0.6482 50560928
0.0 141.8485 20000 0.6538 51077560
0.0 143.2638 20200 0.6571 51589728
0.0 144.6845 20400 0.6552 52091960
0.0 146.0998 20600 0.6578 52599968
0.0 147.5205 20800 0.6641 53105080
0.0 148.9412 21000 0.6706 53615088
0.0 150.3565 21200 0.6691 54126520
0.0 151.7772 21400 0.6694 54637568
0.0 153.1925 21600 0.6776 55145992
0.0 154.6132 21800 0.6807 55658768
0.0 156.0285 22000 0.6860 56165752
0.0 157.4492 22200 0.6850 56680344
0.0 158.8699 22400 0.6974 57190184
0.0 160.2852 22600 0.6964 57701264
0.0 161.7059 22800 0.6949 58206800
0.0 163.1212 23000 0.6987 58714616
0.0 164.5419 23200 0.7047 59223288
0.0 165.9626 23400 0.6966 59731816
0.0 167.3779 23600 0.7038 60238984
0.0 168.7986 23800 0.7018 60751824
0.0 170.2139 24000 0.7071 61264200
0.0 171.6346 24200 0.7152 61774128
0.0 173.0499 24400 0.7094 62287528
0.0 174.4706 24600 0.7154 62802568
0.0 175.8913 24800 0.7197 63313384
0.0 177.3066 25000 0.7192 63824360
0.0 178.7273 25200 0.7186 64334200
0.0 180.1426 25400 0.7183 64843720
0.0 181.5633 25600 0.7273 65355856
0.0 182.9840 25800 0.7218 65867080
0.0 184.3993 26000 0.7336 66376432
0.0 185.8200 26200 0.7276 66891552
0.0 187.2353 26400 0.7350 67395432
0.0 188.6560 26600 0.7361 67911272
0.0 190.0713 26800 0.7267 68421624
0.0 191.4920 27000 0.7250 68928904
0.0 192.9127 27200 0.7296 69438872
0.0 194.3280 27400 0.7293 69956344
0.0 195.7487 27600 0.7352 70469232
0.0 197.1640 27800 0.7307 70980552
0.0 198.5847 28000 0.7366 71494368
0.0 200.0 28200 0.7284 71999768
0.0 201.4207 28400 0.7383 72508480
0.0 202.8414 28600 0.7312 73019472
0.0 204.2567 28800 0.7297 73527632
0.0 205.6774 29000 0.7340 74041024
0.0 207.0927 29200 0.7349 74544840
0.0 208.5134 29400 0.7338 75056168
0.0 209.9340 29600 0.7326 75568152
0.0 211.3494 29800 0.7315 76079080
0.0 212.7701 30000 0.7351 76588464
0.0 214.1854 30200 0.7281 77091184
0.0 215.6061 30400 0.7327 77604592
0.0 217.0214 30600 0.7384 78117872
0.0 218.4421 30800 0.7419 78636456
0.0 219.8627 31000 0.7453 79145648
0.0 221.2781 31200 0.7284 79656680
0.0 222.6988 31400 0.7349 80170976
0.0 224.1141 31600 0.7390 80680568
0.0 225.5348 31800 0.7478 81190016
0.0 226.9554 32000 0.7319 81700080
0.0 228.3708 32200 0.7360 82211496
0.0 229.7914 32400 0.7368 82723360
0.0 231.2068 32600 0.7448 83233760
0.0 232.6275 32800 0.7450 83744152
0.0 234.0428 33000 0.7488 84252696
0.0 235.4635 33200 0.7445 84766920
0.0 236.8841 33400 0.7465 85270792
0.0 238.2995 33600 0.7358 85785816
0.0 239.7201 33800 0.7376 86297192
0.0 241.1355 34000 0.7384 86800112
0.0 242.5561 34200 0.7356 87308856
0.0 243.9768 34400 0.7371 87823904
0.0 245.3922 34600 0.7321 88328184
0.0 246.8128 34800 0.7373 88842368
0.0 248.2282 35000 0.7502 89352024
0.0 249.6488 35200 0.7458 89859880
0.0 251.0642 35400 0.7294 90371864
0.0 252.4848 35600 0.7376 90889904
0.0 253.9055 35800 0.7463 91398024
0.0 255.3209 36000 0.7443 91909952
0.0 256.7415 36200 0.7363 92415808
0.0 258.1569 36400 0.7447 92924744
0.0 259.5775 36600 0.7379 93438136
0.0 260.9982 36800 0.7337 93945688
0.0 262.4135 37000 0.7392 94456488
0.0 263.8342 37200 0.7355 94967816
0.0 265.2496 37400 0.7408 95480152
0.0 266.6702 37600 0.7326 95992952
0.0 268.0856 37800 0.7443 96503784
0.0 269.5062 38000 0.7358 97017704
0.0 270.9269 38200 0.7360 97525848
0.0 272.3422 38400 0.7276 98034592
0.0 273.7629 38600 0.7340 98546400
0.0 275.1783 38800 0.7424 99055216
0.0 276.5989 39000 0.7350 99570208
0.0 278.0143 39200 0.7424 100077240
0.0 279.4349 39400 0.7336 100585296
0.0 280.8556 39600 0.7351 101096120
0.0 282.2709 39800 0.7435 101609904
0.0 283.6916 40000 0.7423 102120968

Framework versions

  • PEFT 0.15.1
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_rte_1744902655

Adapter
(142)
this model