train_winogrande_1754507494

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the winogrande dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1269
  • Num Input Tokens Seen: 30830624

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.2219 0.5 4545 0.1793 1541600
0.117 1.0 9090 0.1384 3081600
0.1759 1.5 13635 0.1386 4623680
0.0729 2.0 18180 0.1352 6165104
0.3377 2.5 22725 0.1298 7706064
0.1626 3.0 27270 0.1327 9248016
0.0735 3.5 31815 0.1381 10789584
0.1049 4.0 36360 0.1307 12330800
0.0654 4.5 40905 0.1334 13871920
0.001 5.0 45450 0.1381 15413776
0.2929 5.5 49995 0.1352 16954320
0.2065 6.0 54540 0.1269 18496992
0.1853 6.5 59085 0.1326 20039264
0.2249 7.0 63630 0.1306 21579792
0.135 7.5 68175 0.1313 23122160
0.0009 8.0 72720 0.1314 24664400
0.005 8.5 77265 0.1320 26207280
0.0321 9.0 81810 0.1328 27747856
0.2766 9.5 86355 0.1317 29287888
0.0005 10.0 90900 0.1324 30830624

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_winogrande_1754507494

Adapter
(2016)
this model