train_wsc_42_1760355875

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the wsc dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3453
  • Num Input Tokens Seen: 492304

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.03
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.7994 0.504 63 0.5149 24288
0.3727 1.008 126 0.4319 49584
0.3525 1.512 189 0.3483 74512
0.3517 2.016 252 0.3508 99264
0.3456 2.52 315 0.3498 123360
0.3684 3.024 378 0.3755 149120
0.3371 3.528 441 0.3488 174208
0.3435 4.032 504 0.3463 198016
0.3496 4.536 567 0.3453 223296
0.3514 5.04 630 0.3488 247344
0.337 5.5440 693 0.3498 271856
0.336 6.048 756 0.3467 297472
0.3464 6.552 819 0.3547 322272
0.3185 7.056 882 0.3476 347200
0.3416 7.5600 945 0.3508 372576
0.324 8.064 1008 0.3456 397008
0.3462 8.568 1071 0.3482 421904
0.3445 9.072 1134 0.3459 446720
0.3411 9.576 1197 0.3495 471168

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
125
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_wsc_42_1760355875

Adapter
(2013)
this model