efficient-vit-CEMEDE

This model is a fine-tuned version of timm/efficientvit_b0.r224_in1k on the cemede dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6180
  • Accuracy: 0.8509
  • F1: 0.8444

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.9118 0.1805 100 1.9387 0.3228 0.2463
0.6981 0.3610 200 1.6077 0.5209 0.4149
0.6379 0.5415 300 1.5493 0.4831 0.3859
0.416 0.7220 400 1.5264 0.5189 0.4446
0.3693 0.9025 500 0.9290 0.7222 0.7056
0.1812 1.0830 600 0.8405 0.7303 0.7215
0.3498 1.2635 700 0.9218 0.6782 0.6857
0.4033 1.4440 800 0.9365 0.7222 0.6804
0.2255 1.6245 900 0.8100 0.7477 0.7230
0.2097 1.8051 1000 0.8573 0.7518 0.7383
0.2249 1.9856 1100 0.7763 0.7692 0.7380
0.2095 2.1661 1200 0.7481 0.8090 0.8067
0.1396 2.3466 1300 0.8119 0.7855 0.7643
0.1162 2.5271 1400 0.8413 0.7600 0.7484
0.1021 2.7076 1500 0.6809 0.8304 0.8191
0.1814 2.8881 1600 0.7544 0.7926 0.7830
0.0639 3.0686 1700 0.8922 0.7773 0.7810
0.0605 3.2491 1800 0.7686 0.8059 0.7995
0.158 3.4296 1900 0.6717 0.8233 0.8119
0.0637 3.6101 2000 0.7710 0.8172 0.8100
0.0119 3.7906 2100 0.7053 0.8315 0.8187
0.0528 3.9711 2200 0.6618 0.8345 0.8199
0.1595 4.1516 2300 0.6665 0.8447 0.8342
0.002 4.3321 2400 0.7287 0.8264 0.8157
0.005 4.5126 2500 0.6861 0.8417 0.8316
0.0036 4.6931 2600 0.6310 0.8539 0.8441
0.0197 4.8736 2700 0.6180 0.8509 0.8444

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
2
Safetensors
Model size
2.15M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for redbioma/efficient-vit-cemede-redbioma-ct-fewer-classes

Finetuned
(4)
this model