See axolotl config
axolotl version: 0.12.2
base_model: google/gemma-3-12b-it
load_in_4bit: true
# gemma3 doesn't seem to play nice with ddp
ddp_find_unused_parameters: true
# huggingface repo
chat_template: gemma3
eot_tokens:
- <end_of_turn>
datasets:
- path: sam2ai/en-or-hi-ml-bn-translation
type: chat_template
field_messages: conversations
message_property_mappings:
role: from
content: value
roles:
assistant:
- gpt
user:
- human
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./outputs/gemma-3-12b-wat2025-qlora
adapter: qlora
lora_model_dir:
sequence_len: 2048
sample_packing: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules: 'model.language_model.layers.[\d]+.(mlp|cross_attn|self_attn).(up|down|gate|q|k|v|o)_proj'
wandb_project: gemma3-en-indic-wat2025
wandb_entity:
wandb_watch:
wandb_name: gemma3-12b-qlora
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
logging_steps: 1
flash_attention: true
eager_attention:
warmup_ratio: 0.1
evals_per_epoch: 1
saves_per_epoch: 1
weight_decay: 0.0
# save_first_step: true # uncomment this to validate checkpoint saving works with your config
outputs/gemma-3-12b-wat2025-qlora
This model is a fine-tuned version of google/gemma-3-12b-it on the sam2ai/en-or-hi-ml-bn-translation dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 45
- training_steps: 457
Training results
Framework versions
- PEFT 0.17.0
- Transformers 4.55.2
- Pytorch 2.7.0+gitf717b2a
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- -