Built with Axolotl

See axolotl config

axolotl version: 0.12.2

base_model: google/gemma-3-12b-it

load_in_4bit: true

# gemma3 doesn't seem to play nice with ddp
ddp_find_unused_parameters: true

# huggingface repo
chat_template: gemma3
eot_tokens:
  - <end_of_turn>
datasets:
  - path: sam2ai/en-or-hi-ml-bn-translation
    type: chat_template
    field_messages: conversations
    message_property_mappings:
      role: from
      content: value
    roles:
      assistant:
        - gpt
      user:
        - human


dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./outputs/gemma-3-12b-wat2025-qlora

adapter: qlora
lora_model_dir:

sequence_len: 2048
sample_packing: true


lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules: 'model.language_model.layers.[\d]+.(mlp|cross_attn|self_attn).(up|down|gate|q|k|v|o)_proj'

wandb_project: gemma3-en-indic-wat2025
wandb_entity:
wandb_watch:
wandb_name: gemma3-12b-qlora
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

bf16: true
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
logging_steps: 1
flash_attention: true
eager_attention:

warmup_ratio: 0.1
evals_per_epoch: 1
saves_per_epoch: 1
weight_decay: 0.0

# save_first_step: true  # uncomment this to validate checkpoint saving works with your config

outputs/gemma-3-12b-wat2025-qlora

This model is a fine-tuned version of google/gemma-3-12b-it on the sam2ai/en-or-hi-ml-bn-translation dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 45
  • training_steps: 457

Training results

Framework versions

  • PEFT 0.17.0
  • Transformers 4.55.2
  • Pytorch 2.7.0+gitf717b2a
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
-
Safetensors
Model size
12B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for sam2ai/gemma3-12b-en-indic-mt

Adapter
(89)
this model
Adapters
1 model

Dataset used to train sam2ai/gemma3-12b-en-indic-mt