Mcgregor_WanLora / README.md
shauray's picture
Update README.md
07cae29 verified
---
license: apache-2.0
language:
- en
base_model:
- Wan-AI/Wan2.1-T2V-14B
tags:
- text-to-video
- lora
- diffusers
- template:diffusion-lora
widget:
- text: >-
[conor] a man fighting another man in the MMA ring, landing a right hook towards the starting.
output:
url: videos/conor_2.mp4
- text: >-
[conor] a man sitting drinking whiskey, the bottle of whiskey says "proper twelve", with girls sitting around.
output:
url: videos/conor_1.mp4
---
# Conor McGregor Lora for WanVideo2.1
<Gallery />
## Trigger words
You should use `conor` to trigger the video generation.
## Using with Diffusers
```py
pip install git+https://github.com/huggingface/diffusers.git
```
```py
import torch
from diffusers.utils import export_to_video
from diffusers import AutoencoderKLWan, WanPipeline
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
# Available models: Wan-AI/Wan2.1-T2V-14B-Diffusers, Wan-AI/Wan2.1-T2V-1.3B-Diffusers
model_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
flow_shift = 5.0 # 5.0 for 720P, 3.0 for 480P
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
pipe.to("cuda")
pipe.load_lora_weights("shauray/Mcgregor_WanLora")
pipe.enable_model_cpu_offload() #for low-vram environments
prompt = "conor a man walking through a bar"
output = pipe(
prompt=prompt,
height=480,
width=720,
num_frames=81,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "output.mp4", fps=16)
```
## Download model
Weights for this model are available in Safetensors format.
[Download](/shauray/Mcgregor_WanLora/tree/main) them in the Files & versions tab.