Model Card for shisa-ai/shisa-v2.1c-lfm2-350m
SOTA Japanese Shaberi Benchmarks @ <0.5B and <1B!
This was made just for fun on a Saturday for the Liquid AI Hackathon, but this is an early preview of our upcoming V2.1 models...
For full code and related evals see:
Presentation here:
- https://docs.google.com/presentation/d/1wZmfGE3bDloHNXjvYQBfGJ5jH-d1ksX9LGQn_aVfHbI/edit?usp=sharing
| Model | Average | ELYZA 100 | JA-MT | Rakuda | Tengu |
|---|---|---|---|---|---|
| google/gemma-3-4b-it | 6.44 | 7.34 | 6.78 | 5.68 | 5.97 |
| 045-llama3.2-1b-v2new-dpo405b | 5.40 | 5.44 | 5.22 | 6.35 | 4.61 |
| 037-rakuten-2.0-mini-instruct-1.5b-v2new-dpo405b | 5.10 | 5.42 | 4.60 | 5.68 | 4.70 |
| augmxnt/shisa-gamma-7b-v1 | 4.80 | 5.86 | 4.07 | 4.55 | 4.72 |
| shisa-ai/shisa-v2.1c-lfm2-350m | 4.51 | 4.30 | 4.75 | 5.03 | 3.95 |
| meta-llama/Llama-3.2-3B-Instruct | 4.49 | 5.62 | 4.50 | 3.43 | 4.43 |
| Qwen/Qwen3-0.6B | 4.14 | 5.16 | 4.00 | 3.18 | 4.23 |
| augmxnt/shisa-7b-v1 | 3.95 | 4.36 | 3.75 | 3.88 | 3.83 |
| shisa-ai/shisa-v2.1c-lfm2-350m-sft3-tlonly | 3.87 | 3.78 | 3.70 | 4.50 | 3.51 |
| LiquidAI/LFM2-350M | 3.76 | 3.92 | 4.07 | 3.55 | 3.51 |
| meta-llama/Llama-3.2-1B-Instruct | 2.97 | 3.82 | 2.82 | 2.45 | 2.79 |
| google/gemma3-270m-it | 2.53 | 3.42 | 2.33 | 2.10 | 2.28 |
| LiquidAI/LFM2-350M-ENJP-MT | 1.69 | 2.98 | 1.37 | 1.00 | 1.42 |
| tiiuae/Falcon-H1-0.5B-Instruct | 1.30 | 2.32 | 1.47 | 1.00 | 0.41 |
Framework versions
- TRL: 0.23.0
- Transformers: 4.56.1
- Pytorch: 2.10.0.dev20251008+cu130
- Datasets: 4.2.0
- Tokenizers: 0.22.1
Compute
This model was trained on an 8xMI300X node on the AMD Developer Cloud with compute generously sponsored by AMD.
- Downloads last month
- 87