SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'show me list of Employee department details',
'Update the employee dependent marital status to Married',
'Display the average performance rating of employees in the marketing department',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.9259 |
| cosine_accuracy@3 | 0.963 |
| cosine_accuracy@5 | 0.963 |
| cosine_accuracy@10 | 0.963 |
| cosine_precision@1 | 0.9259 |
| cosine_precision@3 | 0.9136 |
| cosine_precision@5 | 0.9185 |
| cosine_precision@10 | 0.9111 |
| cosine_recall@1 | 0.0492 |
| cosine_recall@3 | 0.1401 |
| cosine_recall@5 | 0.234 |
| cosine_recall@10 | 0.4538 |
| cosine_ndcg@10 | 0.9289 |
| cosine_mrr@10 | 0.9444 |
| cosine_map@100 | 0.9023 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,441 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 7 tokens
- mean: 7.37 tokens
- max: 10 tokens
- min: 5 tokens
- mean: 9.75 tokens
- max: 18 tokens
- Samples:
sentence_0 sentence_1 Show me list of applicantShow applicant ratingShow me list of applicantUpdate my objective statementShow me list of applicantUpdate my job title preferences - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 30per_device_eval_batch_size: 30num_train_epochs: 111multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 30per_device_eval_batch_size: 30per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 111max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss | cosine_ndcg@10 |
|---|---|---|---|
| 0.6098 | 50 | - | 0.5941 |
| 1.0 | 82 | - | 0.6506 |
| 1.2195 | 100 | - | 0.6689 |
| 1.8293 | 150 | - | 0.6894 |
| 2.0 | 164 | - | 0.6963 |
| 2.4390 | 200 | - | 0.7201 |
| 3.0 | 246 | - | 0.7488 |
| 3.0488 | 250 | - | 0.7519 |
| 3.6585 | 300 | - | 0.7863 |
| 4.0 | 328 | - | 0.8176 |
| 4.2683 | 350 | - | 0.8238 |
| 4.8780 | 400 | - | 0.8320 |
| 5.0 | 410 | - | 0.8471 |
| 5.4878 | 450 | - | 0.8525 |
| 6.0 | 492 | - | 0.8568 |
| 6.0976 | 500 | 1.6965 | 0.8533 |
| 6.7073 | 550 | - | 0.8646 |
| 7.0 | 574 | - | 0.8631 |
| 7.3171 | 600 | - | 0.8676 |
| 7.9268 | 650 | - | 0.8718 |
| 8.0 | 656 | - | 0.8765 |
| 8.5366 | 700 | - | 0.8764 |
| 9.0 | 738 | - | 0.8845 |
| 9.1463 | 750 | - | 0.8778 |
| 9.7561 | 800 | - | 0.8894 |
| 10.0 | 820 | - | 0.8848 |
| 10.3659 | 850 | - | 0.9048 |
| 10.9756 | 900 | - | 0.9029 |
| 11.0 | 902 | - | 0.9026 |
| 11.5854 | 950 | - | 0.8995 |
| 12.0 | 984 | - | 0.8956 |
| 12.1951 | 1000 | 1.0614 | 0.8922 |
| 12.8049 | 1050 | - | 0.9043 |
| 13.0 | 1066 | - | 0.9103 |
| 13.4146 | 1100 | - | 0.9057 |
| 14.0 | 1148 | - | 0.9097 |
| 14.0244 | 1150 | - | 0.9096 |
| 14.6341 | 1200 | - | 0.9223 |
| 15.0 | 1230 | - | 0.9258 |
| 15.2439 | 1250 | - | 0.9118 |
| 15.8537 | 1300 | - | 0.9207 |
| 16.0 | 1312 | - | 0.9239 |
| 16.4634 | 1350 | - | 0.9250 |
| 17.0 | 1394 | - | 0.9161 |
| 17.0732 | 1400 | - | 0.9203 |
| 17.6829 | 1450 | - | 0.9146 |
| 18.0 | 1476 | - | 0.9198 |
| 18.2927 | 1500 | 0.9705 | 0.9197 |
| 18.9024 | 1550 | - | 0.9250 |
| 19.0 | 1558 | - | 0.9248 |
| 19.5122 | 1600 | - | 0.9289 |
Framework Versions
- Python: 3.12.7
- Sentence Transformers: 3.3.0
- Transformers: 4.46.2
- PyTorch: 2.5.1
- Accelerate: 0.26.0
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- -
Model tree for shubhamrathore081/bge_base_en_1.5_ft
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.926
- Cosine Accuracy@3 on Unknownself-reported0.963
- Cosine Accuracy@5 on Unknownself-reported0.963
- Cosine Accuracy@10 on Unknownself-reported0.963
- Cosine Precision@1 on Unknownself-reported0.926
- Cosine Precision@3 on Unknownself-reported0.914
- Cosine Precision@5 on Unknownself-reported0.919
- Cosine Precision@10 on Unknownself-reported0.911
- Cosine Recall@1 on Unknownself-reported0.049
- Cosine Recall@3 on Unknownself-reported0.140