euiia's picture
Update app.py
eda2fac verified
raw
history blame
26.5 kB
# app.py
#
# Copyright (C) August 4, 2025 Carlos Rodrigues dos Santos
#
# Version: 2.0.0
#
# Contact:
# Carlos Rodrigues dos Santos
# [email protected]
#
# Related Repositories and Projects:
# GitHub: https://github.com/carlex22/Aduc-sdr
# YouTube (Results): https://m.youtube.com/channel/UC3EgoJi_Fv7yuDpvfYNtoIQ
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by the
# Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
# PENDING PATENT NOTICE: The ADUC method and system implemented in this
# software is in the process of being patented. Please see NOTICE.md for details.
"""
This file serves as the main entry point for the ADUC-SDR Gradio user interface.
It orchestrates the multi-step workflow for AI-driven film creation, from
pre-production (storyboarding, keyframing) to production (original video rendering)
and post-production (upscaling, HD mastering, audio generation).
The UI is structured using Accordion blocks to guide the user through a logical
sequence of operations, while `gr.State` components manage the flow of data
(file paths of generated artifacts) between these independent steps.
"""
import gradio as gr
import yaml
import logging
import os
import sys
import shutil
import time
import json
from aduc_orchestrator import AducOrchestrator
# --- 1. CONFIGURATION AND INITIALIZATION ---
# This section sets up logging, loads internationalization strings, and initializes
# the core AducOrchestrator which manages all AI specialist models.
LOG_FILE_PATH = "aduc_log.txt"
if os.path.exists(LOG_FILE_PATH):
os.remove(LOG_FILE_PATH)
log_format = '%(asctime)s - %(levelname)s - [%(name)s:%(funcName)s] - %(message)s'
root_logger = logging.getLogger()
root_logger.setLevel(logging.INFO)
root_logger.handlers.clear()
stream_handler = logging.StreamHandler(sys.stdout)
stream_handler.setLevel(logging.INFO)
stream_handler.setFormatter(logging.Formatter(log_format))
root_logger.addHandler(stream_handler)
file_handler = logging.FileHandler(LOG_FILE_PATH, mode='w', encoding='utf-8')
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(logging.Formatter(log_format))
root_logger.addHandler(file_handler)
logger = logging.getLogger(__name__)
# Load translation strings for the UI
i18n = {}
try:
with open("i18n.json", "r", encoding="utf-8") as f:
i18n = json.load(f)
except Exception as e:
logger.error(f"Error loading i18n.json: {e}")
i18n = {"🇧🇷": {}, "🇺🇸": {}, "🇨🇳": {}}
# Fallback for missing languages
if '🇧🇷' not in i18n: i18n['🇧🇷'] = i18n.get('🇺🇸', {})
if '🇺🇸' not in i18n: i18n['🇺🇸'] = {}
if '🇨🇳' not in i18n: i18n['🇨🇳'] = i18n.get('🇺🇸', {})
# Initialize the main orchestrator from the configuration file
try:
with open("config.yaml", 'r') as f: config = yaml.safe_load(f)
WORKSPACE_DIR = config['application']['workspace_dir']
aduc = AducOrchestrator(workspace_dir=WORKSPACE_DIR)
logger.info("ADUC Orchestrator and Specialists initialized successfully.")
except Exception as e:
logger.error(f"CRITICAL ERROR during initialization: {e}", exc_info=True)
exit()
# --- 2. UI WRAPPER FUNCTIONS ---
# These functions act as intermediaries between the Gradio UI components and the
# AducOrchestrator. They handle input validation, progress tracking, and updating
# the UI state after each operation.
def run_pre_production_wrapper(prompt, num_keyframes, ref_files, resolution_str, duration_per_fragment, progress=gr.Progress()):
"""
Wrapper for Pre-Production (Steps 1 & 2): Generates storyboard and keyframes.
This corresponds to the "Art Director Mode".
"""
if not ref_files:
raise gr.Error("Please provide at least one reference image.")
ref_paths = [aduc.process_image_for_story(f.name, 480, f"ref_processed_{i}.png") for i, f in enumerate(ref_files)]
progress(0.1, desc="Generating storyboard...")
storyboard, initial_ref_path, _ = aduc.task_generate_storyboard(prompt, num_keyframes, ref_paths, progress)
resolution = int(resolution_str.split('x')[0])
# Callback factory to create progress updates for keyframe generation
def cb_factory(scene_index, total_scenes):
start_time = time.time()
total_steps = 12 # Standard steps for Flux model
def callback(pipe_self, step, timestep, callback_kwargs):
elapsed = time.time() - start_time
current_step = step + 1
if current_step > 0:
it_per_sec = current_step / elapsed
eta = (total_steps - current_step) / it_per_sec if it_per_sec > 0 else 0
desc = f"Keyframe {scene_index}/{total_scenes}: {int((current_step/total_steps)*100)}% | {current_step}/{total_steps} [{elapsed:.0f}s<{eta:.0f}s, {it_per_sec:.2f}it/s]"
base_progress = 0.2 + (scene_index - 1) * (0.8 / total_scenes)
step_progress = (current_step / total_steps) * (0.8 / total_scenes)
progress(base_progress + step_progress, desc=desc)
return {}
return callback
final_keyframes = aduc.task_generate_keyframes(storyboard, initial_ref_path, prompt, resolution, cb_factory)
# Make the next step (Production) visible
return gr.update(value=storyboard), gr.update(value=final_keyframes), gr.update(visible=True, open=True)
def run_pre_production_photo_wrapper(prompt, num_keyframes, ref_files, progress=gr.Progress()):
"""
Wrapper for Pre-Production (Steps 1 & 2) in "Photographer Mode".
Generates a storyboard and selects the best matching keyframes from a user-provided pool.
"""
if not ref_files or len(ref_files) < 2:
raise gr.Error("Photographer Mode requires at least 2 images: one base and one for the scene pool.")
base_ref_paths = [aduc.process_image_for_story(ref_files[0].name, 480, "base_ref_processed_0.png")]
pool_ref_paths = [aduc.process_image_for_story(f.name, 480, f"pool_ref_{i+1}.png") for i, f in enumerate(ref_files[1:])]
progress(0.1, desc="Generating storyboard...")
storyboard, _, _ = aduc.task_generate_storyboard(prompt, num_keyframes, base_ref_paths, progress)
progress(0.5, desc="AI Photographer is selecting the best scenes...")
selected_keyframes = aduc.task_select_keyframes(storyboard, base_ref_paths, pool_ref_paths)
return gr.update(value=storyboard), gr.update(value=selected_keyframes), gr.update(visible=True, open=True)
def run_original_production_wrapper(keyframes, prompt, duration,
trim_percent, handler_strength, destination_convergence_strength,
guidance_scale, stg_scale, inference_steps,
video_resolution,
progress=gr.Progress()):
"""
Wrapper for Step 3: Production. Generates the original master video using LTX.
Yields UI updates to show progress and final output.
"""
yield {
original_video_output: gr.update(value=None, visible=True, label="🎬 Producing your original master video... Please wait."),
final_video_output: gr.update(value=None, visible=True, label="🎬 Production in progress..."),
step4_accordion: gr.update(visible=False) # Hide post-production until this is done
}
resolution = int(video_resolution.split('x')[0])
# The orchestrator now returns the paths to the generated artifacts
result = aduc.task_produce_original_movie(
keyframes, prompt, duration,
int(trim_percent), handler_strength, destination_convergence_strength,
guidance_scale, stg_scale, int(inference_steps),
resolution, use_continuity_director=True, progress=progress
)
original_latents = result["latent_paths"]
original_video = result["final_path"]
yield {
original_video_output: gr.update(value=original_video, label="✅ Original Master Video"),
final_video_output: gr.update(value=original_video, label="Final Film (Result of the Last Step)"),
step4_accordion: gr.update(visible=True, open=True), # Show post-production tools
# Update state for the next steps
original_latents_paths_state: original_latents,
original_video_path_state: original_video,
current_source_video_state: original_video,
}
def run_upscaler_wrapper(latent_paths, chunk_size, progress=gr.Progress()):
"""
Wrapper for Post-Production Step 4A: Latent Upscaler.
"""
if not latent_paths:
raise gr.Error("Cannot run Upscaler. No original latents found. Please complete Step 3 first.")
yield {
upscaler_video_output: gr.update(value=None, visible=True, label="Upscaling latents and decoding video..."),
final_video_output: gr.update(label="Post-Production in progress: Latent Upscaling...")
}
upscaled_video_path = aduc.task_run_latent_upscaler(
latent_paths, int(chunk_size), progress=progress
)
yield {
upscaler_video_output: gr.update(value=upscaled_video_path, label="✅ Latent Upscale Complete"),
final_video_output: gr.update(value=upscaled_video_path),
# Update states for subsequent steps
upscaled_video_path_state: upscaled_video_path,
current_source_video_state: upscaled_video_path,
}
def run_hd_wrapper(source_video, model_version, steps, progress=gr.Progress()):
"""
Wrapper for Post-Production Step 4B: HD Mastering.
"""
if not source_video:
raise gr.Error("Cannot run HD Mastering. No source video found. Please complete a previous step first.")
yield {
hd_video_output: gr.update(value=None, visible=True, label="Applying HD mastering... This may take a while."),
final_video_output: gr.update(label="Post-Production in progress: HD Mastering...")
}
hd_video_path = aduc.task_run_hd_mastering(
source_video, model_version, int(steps), progress=progress
)
yield {
hd_video_output: gr.update(value=hd_video_path, label="✅ HD Mastering Complete"),
final_video_output: gr.update(value=hd_video_path),
hd_video_path_state: hd_video_path,
current_source_video_state: hd_video_path,
}
def run_audio_wrapper(source_video, audio_prompt, global_prompt, progress=gr.Progress()):
"""
Wrapper for Post-Production Step 4C: Audio Generation.
"""
if not source_video:
raise gr.Error("Cannot run Audio Generation. No source video found. Please complete a previous step first.")
yield {
audio_video_output: gr.update(value=None, visible=True, label="Generating audio and muxing..."),
final_video_output: gr.update(label="Post-Production in progress: Audio Generation...")
}
# Use the specific audio prompt if provided, otherwise fall back to the global prompt
final_audio_prompt = audio_prompt if audio_prompt and audio_prompt.strip() else global_prompt
video_with_audio_path = aduc.task_run_audio_generation(
source_video, final_audio_prompt, progress=progress
)
yield {
audio_video_output: gr.update(value=video_with_audio_path, label="✅ Audio Generation Complete"),
final_video_output: gr.update(value=video_with_audio_path),
}
def get_log_content():
"""
Reads and returns the content of the log file for display in the UI.
"""
try:
with open(LOG_FILE_PATH, "r", encoding="utf-8") as f:
return f.read()
except FileNotFoundError:
return "Log file not yet created. Start a generation."
def update_ui_language(lang_code):
"""
Updates all text components in the UI to the selected language.
It fetches the translation map from the `i18n` dictionary.
"""
lang_map = i18n.get(lang_code, i18n.get('en', {}))
# This dictionary maps each UI component variable to its new value from the language map.
return {
# General
title_md: gr.update(value=f"# {lang_map.get('app_title')}"),
subtitle_md: gr.update(value=lang_map.get('app_subtitle')),
lang_selector: gr.update(label=lang_map.get('lang_selector_label')),
# Step 1: Pre-Production
step1_accordion: gr.update(label=lang_map.get('step1_accordion')),
prompt_input: gr.update(label=lang_map.get('prompt_label')),
ref_image_input: gr.update(label=lang_map.get('ref_images_label')),
num_keyframes_slider: gr.update(label=lang_map.get('keyframes_label')),
duration_per_fragment_slider: gr.update(label=lang_map.get('duration_label'), info=lang_map.get('duration_info')),
storyboard_and_keyframes_button: gr.update(value=lang_map.get('storyboard_and_keyframes_button')),
storyboard_from_photos_button: gr.update(value=lang_map.get('storyboard_from_photos_button')),
step1_mode_b_info_md: gr.update(value=f"*{lang_map.get('step1_mode_b_info')}*"),
storyboard_output: gr.update(label=lang_map.get('storyboard_output_label')),
keyframe_gallery: gr.update(label=lang_map.get('keyframes_gallery_label')),
# Step 3: Production
step3_accordion: gr.update(label=lang_map.get('step3_accordion')),
step3_description_md: gr.update(value=lang_map.get('step3_description')),
produce_original_button: gr.update(value=lang_map.get('produce_original_button')),
causality_accordion: gr.update(label=lang_map.get('causality_controls_title')),
trim_percent_slider: gr.update(label=lang_map.get('trim_percent_label'), info=lang_map.get('trim_percent_info')),
forca_guia_slider: gr.update(label=lang_map.get('forca_guia_label'), info=lang_map.get('forca_guia_info')),
convergencia_destino_slider: gr.update(label=lang_map.get('convergencia_final_label'), info=lang_map.get('convergencia_final_info')),
ltx_pipeline_accordion: gr.update(label=lang_map.get('ltx_pipeline_options')),
guidance_scale_slider: gr.update(label=lang_map.get('guidance_scale_label'), info=lang_map.get('guidance_scale_info')),
stg_scale_slider: gr.update(label=lang_map.get('stg_scale_label'), info=lang_map.get('stg_scale_info')),
inference_steps_slider: gr.update(label=lang_map.get('steps_label'), info=lang_map.get('steps_info')),
# Step 4: Post-Production
step4_accordion: gr.update(label=lang_map.get('step4_accordion')),
step4_description_md: gr.update(value=lang_map.get('step4_description')),
sub_step_a_accordion: gr.update(label=lang_map.get('sub_step_a_upscaler')),
upscaler_description_md: gr.update(value=lang_map.get('upscaler_description')),
upscaler_options_accordion: gr.update(label=lang_map.get('upscaler_options')),
upscaler_chunk_size_slider: gr.update(label=lang_map.get('upscaler_chunk_size_label'), info=lang_map.get('upscaler_chunk_size_info')),
run_upscaler_button: gr.update(value=lang_map.get('run_upscaler_button')),
sub_step_b_accordion: gr.update(label=lang_map.get('sub_step_b_hd')),
hd_description_md: gr.update(value=lang_map.get('hd_description')),
hd_options_accordion: gr.update(label=lang_map.get('hd_options')),
hd_model_radio: gr.update(label=lang_map.get('hd_model_label')),
hd_steps_slider: gr.update(label=lang_map.get('hd_steps_label'), info=lang_map.get('hd_steps_info')),
run_hd_button: gr.update(value=lang_map.get('run_hd_button')),
sub_step_c_accordion: gr.update(label=lang_map.get('sub_step_c_audio')),
audio_description_md: gr.update(value=lang_map.get('audio_description')),
audio_options_accordion: gr.update(label=lang_map.get('audio_options')),
audio_prompt_input: gr.update(label=lang_map.get('audio_prompt_label'), info=lang_map.get('audio_prompt_info')),
run_audio_button: gr.update(value=lang_map.get('run_audio_button')),
# Final Outputs & Logs
final_video_output: gr.update(label=lang_map.get('final_video_label')),
log_accordion: gr.update(label=lang_map.get('log_accordion_label')),
log_display: gr.update(label=lang_map.get('log_display_label')),
update_log_button: gr.update(value=lang_map.get('update_log_button')),
}
# --- 3. GRADIO UI DEFINITION ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# Initialize UI with default language (Portuguese)
default_lang = i18n.get('pt', {})
# State components to manage the pipeline artifacts
original_latents_paths_state = gr.State(value=None)
original_video_path_state = gr.State(value=None)
upscaled_video_path_state = gr.State(value=None)
hd_video_path_state = gr.State(value=None)
current_source_video_state = gr.State(value=None) # Tracks the latest video for post-production steps
# --- UI Header ---
title_md = gr.Markdown(f"# {default_lang.get('app_title')}")
subtitle_md = gr.Markdown(default_lang.get('app_subtitle'))
with gr.Row():
lang_selector = gr.Radio(["🇧🇷", "🇺🇸", "🇨🇳"], value="pt", label=default_lang.get('lang_selector_label'))
resolution_selector = gr.Radio(["480x480", "720x720", "960x960"], value="480x480", label="Base Resolution")
# --- Step 1 & 2: Pre-Production ---
with gr.Accordion(default_lang.get('step1_accordion'), open=True) as step1_accordion:
prompt_input = gr.Textbox(label=default_lang.get('prompt_label'), value="A majestic lion walks across the savanna, sits down, and then roars at the setting sun.")
ref_image_input = gr.File(label=default_lang.get('ref_images_label'), file_count="multiple", file_types=["image"])
with gr.Row():
num_keyframes_slider = gr.Slider(minimum=3, maximum=42, value=5, step=1, label=default_lang.get('keyframes_label'))
duration_per_fragment_slider = gr.Slider(label=default_lang.get('duration_label'), info=default_lang.get('duration_info'), minimum=2.0, maximum=10.0, value=4.0, step=0.1)
with gr.Row():
storyboard_and_keyframes_button = gr.Button(default_lang.get('storyboard_and_keyframes_button'), variant="primary")
storyboard_from_photos_button = gr.Button(default_lang.get('storyboard_from_photos_button'))
step1_mode_b_info_md = gr.Markdown(f"*{default_lang.get('step1_mode_b_info')}*")
storyboard_output = gr.JSON(label=default_lang.get('storyboard_output_label'))
keyframe_gallery = gr.Gallery(label=default_lang.get('keyframes_gallery_label'), visible=True, object_fit="contain", height="auto", type="filepath")
# --- Step 3: Production ---
with gr.Accordion(default_lang.get('step3_accordion'), open=False, visible=False) as step3_accordion:
step3_description_md = gr.Markdown(default_lang.get('step3_description'))
with gr.Accordion(default_lang.get('ltx_advanced_options'), open=False) as ltx_advanced_options_accordion:
with gr.Accordion(default_lang.get('causality_controls_title'), open=True) as causality_accordion:
trim_percent_slider = gr.Slider(minimum=10, maximum=90, value=50, step=5, label=default_lang.get('trim_percent_label'), info=default_lang.get('trim_percent_info'))
with gr.Row():
forca_guia_slider = gr.Slider(label=default_lang.get('forca_guia_label'), minimum=0.0, maximum=1.0, value=0.5, step=0.05, info=default_lang.get('forca_guia_info'))
convergencia_destino_slider = gr.Slider(label=default_lang.get('convergencia_final_label'), minimum=0.0, maximum=1.0, value=0.75, step=0.05, info=default_lang.get('convergencia_final_info'))
with gr.Accordion(default_lang.get('ltx_pipeline_options'), open=True) as ltx_pipeline_accordion:
with gr.Row():
guidance_scale_slider = gr.Slider(minimum=1.0, maximum=10.0, value=2.0, step=0.1, label=default_lang.get('guidance_scale_label'), info=default_lang.get('guidance_scale_info'))
stg_scale_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.025, step=0.005, label=default_lang.get('stg_scale_label'), info=default_lang.get('stg_scale_info'))
inference_steps_slider = gr.Slider(minimum=10, maximum=50, value=20, step=1, label=default_lang.get('steps_label'), info=default_lang.get('steps_info'))
produce_original_button = gr.Button(default_lang.get('produce_original_button'), variant="primary")
original_video_output = gr.Video(label="Original Master Video", visible=False)
# --- Step 4: Post-Production ---
with gr.Accordion(default_lang.get('step4_accordion'), open=False, visible=False) as step4_accordion:
step4_description_md = gr.Markdown(default_lang.get('step4_description'))
# Sub-Step 4A: Latent Upscaler
with gr.Accordion(default_lang.get('sub_step_a_upscaler'), open=True) as sub_step_a_accordion:
upscaler_description_md = gr.Markdown(default_lang.get('upscaler_description'))
with gr.Accordion(default_lang.get('upscaler_options'), open=False) as upscaler_options_accordion:
upscaler_chunk_size_slider = gr.Slider(minimum=1, maximum=10, value=4, step=1, label=default_lang.get('upscaler_chunk_size_label'), info=default_lang.get('upscaler_chunk_size_info'))
run_upscaler_button = gr.Button(default_lang.get('run_upscaler_button'), variant="secondary")
upscaler_video_output = gr.Video(label="Upscaled Video", visible=False)
# Sub-Step 4B: HD Mastering
with gr.Accordion(default_lang.get('sub_step_b_hd'), open=True) as sub_step_b_accordion:
hd_description_md = gr.Markdown(default_lang.get('hd_description'))
with gr.Accordion(default_lang.get('hd_options'), open=False) as hd_options_accordion:
hd_model_radio = gr.Radio(["3B", "7B"], value="3B", label=default_lang.get('hd_model_label'))
hd_steps_slider = gr.Slider(minimum=20, maximum=150, value=50, step=5, label=default_lang.get('hd_steps_label'), info=default_lang.get('hd_steps_info'))
run_hd_button = gr.Button(default_lang.get('run_hd_button'), variant="secondary")
hd_video_output = gr.Video(label="HD Mastered Video", visible=False)
# Sub-Step 4C: Audio Generation
with gr.Accordion(default_lang.get('sub_step_c_audio'), open=True) as sub_step_c_accordion:
audio_description_md = gr.Markdown(default_lang.get('audio_description'))
with gr.Accordion(default_lang.get('audio_options'), open=False) as audio_options_accordion:
audio_prompt_input = gr.Textbox(label=default_lang.get('audio_prompt_label'), info=default_lang.get('audio_prompt_info'), lines=3)
run_audio_button = gr.Button(default_lang.get('run_audio_button'), variant="secondary")
audio_video_output = gr.Video(label="Video with Audio", visible=False)
# --- Final Output & Logs ---
final_video_output = gr.Video(label=default_lang.get('final_video_label'), visible=False)
with gr.Accordion(default_lang.get('log_accordion_label'), open=False) as log_accordion:
log_display = gr.Textbox(label=default_lang.get('log_display_label'), lines=20, interactive=False, autoscroll=True)
update_log_button = gr.Button(default_lang.get('update_log_button'))
# --- 4. UI EVENT CONNECTIONS ---
# Collect all UI components that need language updates
all_ui_components = list(update_ui_language('pt').keys())
lang_selector.change(fn=update_ui_language, inputs=lang_selector, outputs=all_ui_components)
# Pre-Production Button Clicks
storyboard_and_keyframes_button.click(
fn=run_pre_production_wrapper,
inputs=[prompt_input, num_keyframes_slider, ref_image_input, resolution_selector, duration_per_fragment_slider],
outputs=[storyboard_output, keyframe_gallery, step3_accordion]
)
storyboard_from_photos_button.click(
fn=run_pre_production_photo_wrapper,
inputs=[prompt_input, num_keyframes_slider, ref_image_input],
outputs=[storyboard_output, keyframe_gallery, step3_accordion]
)
# Production Button Click
produce_original_button.click(
fn=run_original_production_wrapper,
inputs=[
keyframe_gallery, prompt_input, duration_per_fragment_slider,
trim_percent_slider, forca_guia_slider, convergencia_destino_slider,
guidance_scale_slider, stg_scale_slider, inference_steps_slider,
resolution_selector
],
outputs=[
original_video_output, final_video_output, step4_accordion,
original_latents_paths_state, original_video_path_state, current_source_video_state
]
)
# Post-Production Button Clicks
run_upscaler_button.click(
fn=run_upscaler_wrapper,
inputs=[original_latents_paths_state, upscaler_chunk_size_slider],
outputs=[
upscaler_video_output, final_video_output,
upscaled_video_path_state, current_source_video_state
]
)
run_hd_button.click(
fn=run_hd_wrapper,
inputs=[current_source_video_state, hd_model_radio, hd_steps_slider],
outputs=[
hd_video_output, final_video_output,
hd_video_path_state, current_source_video_state
]
)
run_audio_button.click(
fn=run_audio_wrapper,
inputs=[current_source_video_state, audio_prompt_input, prompt_input],
outputs=[audio_video_output, final_video_output]
)
# Log Button Click
update_log_button.click(fn=get_log_content, inputs=[], outputs=[log_display])
# --- 5. APPLICATION LAUNCH ---
if __name__ == "__main__":
if os.path.exists(WORKSPACE_DIR):
logger.info(f"Clearing previous workspace at: {WORKSPACE_DIR}")
shutil.rmtree(WORKSPACE_DIR)
os.makedirs(WORKSPACE_DIR)
logger.info(f"Application started. Launching Gradio interface...")
demo.queue().launch()