Spaces:
Runtime error
Runtime error
| # app.py | |
| # | |
| # Copyright (C) August 4, 2025 Carlos Rodrigues dos Santos | |
| # | |
| # Version: 2.0.0 | |
| # | |
| # Contact: | |
| # Carlos Rodrigues dos Santos | |
| # [email protected] | |
| # | |
| # Related Repositories and Projects: | |
| # GitHub: https://github.com/carlex22/Aduc-sdr | |
| # YouTube (Results): https://m.youtube.com/channel/UC3EgoJi_Fv7yuDpvfYNtoIQ | |
| # | |
| # This program is free software: you can redistribute it and/or modify | |
| # it under the terms of the GNU Affero General Public License as published by the | |
| # Free Software Foundation, either version 3 of the License, or | |
| # (at your option) any later version. | |
| # | |
| # This program is distributed in the hope that it will be useful, | |
| # but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| # GNU Affero General Public License for more details. | |
| # | |
| # You should have received a copy of the GNU Affero General Public License | |
| # along with this program. If not, see <https://www.gnu.org/licenses/>. | |
| # | |
| # PENDING PATENT NOTICE: The ADUC method and system implemented in this | |
| # software is in the process of being patented. Please see NOTICE.md for details. | |
| """ | |
| This file serves as the main entry point for the ADUC-SDR Gradio user interface. | |
| It orchestrates the multi-step workflow for AI-driven film creation, from | |
| pre-production (storyboarding, keyframing) to production (original video rendering) | |
| and post-production (upscaling, HD mastering, audio generation). | |
| The UI is structured using Accordion blocks to guide the user through a logical | |
| sequence of operations, while `gr.State` components manage the flow of data | |
| (file paths of generated artifacts) between these independent steps. | |
| """ | |
| import gradio as gr | |
| import yaml | |
| import logging | |
| import os | |
| import sys | |
| import shutil | |
| import time | |
| import json | |
| from aduc_orchestrator import AducOrchestrator | |
| # --- 1. CONFIGURATION AND INITIALIZATION --- | |
| # This section sets up logging, loads internationalization strings, and initializes | |
| # the core AducOrchestrator which manages all AI specialist models. | |
| LOG_FILE_PATH = "aduc_log.txt" | |
| if os.path.exists(LOG_FILE_PATH): | |
| os.remove(LOG_FILE_PATH) | |
| log_format = '%(asctime)s - %(levelname)s - [%(name)s:%(funcName)s] - %(message)s' | |
| root_logger = logging.getLogger() | |
| root_logger.setLevel(logging.INFO) | |
| root_logger.handlers.clear() | |
| stream_handler = logging.StreamHandler(sys.stdout) | |
| stream_handler.setLevel(logging.INFO) | |
| stream_handler.setFormatter(logging.Formatter(log_format)) | |
| root_logger.addHandler(stream_handler) | |
| file_handler = logging.FileHandler(LOG_FILE_PATH, mode='w', encoding='utf-8') | |
| file_handler.setLevel(logging.INFO) | |
| file_handler.setFormatter(logging.Formatter(log_format)) | |
| root_logger.addHandler(file_handler) | |
| logger = logging.getLogger(__name__) | |
| # Load translation strings for the UI | |
| i18n = {} | |
| try: | |
| with open("i18n.json", "r", encoding="utf-8") as f: | |
| i18n = json.load(f) | |
| except Exception as e: | |
| logger.error(f"Error loading i18n.json: {e}") | |
| i18n = {"🇧🇷": {}, "🇺🇸": {}, "🇨🇳": {}} | |
| # Fallback for missing languages | |
| if '🇧🇷' not in i18n: i18n['🇧🇷'] = i18n.get('🇺🇸', {}) | |
| if '🇺🇸' not in i18n: i18n['🇺🇸'] = {} | |
| if '🇨🇳' not in i18n: i18n['🇨🇳'] = i18n.get('🇺🇸', {}) | |
| # Initialize the main orchestrator from the configuration file | |
| try: | |
| with open("config.yaml", 'r') as f: config = yaml.safe_load(f) | |
| WORKSPACE_DIR = config['application']['workspace_dir'] | |
| aduc = AducOrchestrator(workspace_dir=WORKSPACE_DIR) | |
| logger.info("ADUC Orchestrator and Specialists initialized successfully.") | |
| except Exception as e: | |
| logger.error(f"CRITICAL ERROR during initialization: {e}", exc_info=True) | |
| exit() | |
| # --- 2. UI WRAPPER FUNCTIONS --- | |
| # These functions act as intermediaries between the Gradio UI components and the | |
| # AducOrchestrator. They handle input validation, progress tracking, and updating | |
| # the UI state after each operation. | |
| def run_pre_production_wrapper(prompt, num_keyframes, ref_files, resolution_str, duration_per_fragment, progress=gr.Progress()): | |
| """ | |
| Wrapper for Pre-Production (Steps 1 & 2): Generates storyboard and keyframes. | |
| This corresponds to the "Art Director Mode". | |
| """ | |
| if not ref_files: | |
| raise gr.Error("Please provide at least one reference image.") | |
| ref_paths = [aduc.process_image_for_story(f.name, 480, f"ref_processed_{i}.png") for i, f in enumerate(ref_files)] | |
| progress(0.1, desc="Generating storyboard...") | |
| storyboard, initial_ref_path, _ = aduc.task_generate_storyboard(prompt, num_keyframes, ref_paths, progress) | |
| resolution = int(resolution_str.split('x')[0]) | |
| # Callback factory to create progress updates for keyframe generation | |
| def cb_factory(scene_index, total_scenes): | |
| start_time = time.time() | |
| total_steps = 12 # Standard steps for Flux model | |
| def callback(pipe_self, step, timestep, callback_kwargs): | |
| elapsed = time.time() - start_time | |
| current_step = step + 1 | |
| if current_step > 0: | |
| it_per_sec = current_step / elapsed | |
| eta = (total_steps - current_step) / it_per_sec if it_per_sec > 0 else 0 | |
| desc = f"Keyframe {scene_index}/{total_scenes}: {int((current_step/total_steps)*100)}% | {current_step}/{total_steps} [{elapsed:.0f}s<{eta:.0f}s, {it_per_sec:.2f}it/s]" | |
| base_progress = 0.2 + (scene_index - 1) * (0.8 / total_scenes) | |
| step_progress = (current_step / total_steps) * (0.8 / total_scenes) | |
| progress(base_progress + step_progress, desc=desc) | |
| return {} | |
| return callback | |
| final_keyframes = aduc.task_generate_keyframes(storyboard, initial_ref_path, prompt, resolution, cb_factory) | |
| # Make the next step (Production) visible | |
| return gr.update(value=storyboard), gr.update(value=final_keyframes), gr.update(visible=True, open=True) | |
| def run_pre_production_photo_wrapper(prompt, num_keyframes, ref_files, progress=gr.Progress()): | |
| """ | |
| Wrapper for Pre-Production (Steps 1 & 2) in "Photographer Mode". | |
| Generates a storyboard and selects the best matching keyframes from a user-provided pool. | |
| """ | |
| if not ref_files or len(ref_files) < 2: | |
| raise gr.Error("Photographer Mode requires at least 2 images: one base and one for the scene pool.") | |
| base_ref_paths = [aduc.process_image_for_story(ref_files[0].name, 480, "base_ref_processed_0.png")] | |
| pool_ref_paths = [aduc.process_image_for_story(f.name, 480, f"pool_ref_{i+1}.png") for i, f in enumerate(ref_files[1:])] | |
| progress(0.1, desc="Generating storyboard...") | |
| storyboard, _, _ = aduc.task_generate_storyboard(prompt, num_keyframes, base_ref_paths, progress) | |
| progress(0.5, desc="AI Photographer is selecting the best scenes...") | |
| selected_keyframes = aduc.task_select_keyframes(storyboard, base_ref_paths, pool_ref_paths) | |
| return gr.update(value=storyboard), gr.update(value=selected_keyframes), gr.update(visible=True, open=True) | |
| def run_original_production_wrapper(keyframes, prompt, duration, | |
| trim_percent, handler_strength, destination_convergence_strength, | |
| guidance_scale, stg_scale, inference_steps, | |
| video_resolution, | |
| progress=gr.Progress()): | |
| """ | |
| Wrapper for Step 3: Production. Generates the original master video using LTX. | |
| Yields UI updates to show progress and final output. | |
| """ | |
| yield { | |
| original_video_output: gr.update(value=None, visible=True, label="🎬 Producing your original master video... Please wait."), | |
| final_video_output: gr.update(value=None, visible=True, label="🎬 Production in progress..."), | |
| step4_accordion: gr.update(visible=False) # Hide post-production until this is done | |
| } | |
| resolution = int(video_resolution.split('x')[0]) | |
| # The orchestrator now returns the paths to the generated artifacts | |
| result = aduc.task_produce_original_movie( | |
| keyframes, prompt, duration, | |
| int(trim_percent), handler_strength, destination_convergence_strength, | |
| guidance_scale, stg_scale, int(inference_steps), | |
| resolution, use_continuity_director=True, progress=progress | |
| ) | |
| original_latents = result["latent_paths"] | |
| original_video = result["final_path"] | |
| yield { | |
| original_video_output: gr.update(value=original_video, label="✅ Original Master Video"), | |
| final_video_output: gr.update(value=original_video, label="Final Film (Result of the Last Step)"), | |
| step4_accordion: gr.update(visible=True, open=True), # Show post-production tools | |
| # Update state for the next steps | |
| original_latents_paths_state: original_latents, | |
| original_video_path_state: original_video, | |
| current_source_video_state: original_video, | |
| } | |
| def run_upscaler_wrapper(latent_paths, chunk_size, progress=gr.Progress()): | |
| """ | |
| Wrapper for Post-Production Step 4A: Latent Upscaler. | |
| """ | |
| if not latent_paths: | |
| raise gr.Error("Cannot run Upscaler. No original latents found. Please complete Step 3 first.") | |
| yield { | |
| upscaler_video_output: gr.update(value=None, visible=True, label="Upscaling latents and decoding video..."), | |
| final_video_output: gr.update(label="Post-Production in progress: Latent Upscaling...") | |
| } | |
| upscaled_video_path = aduc.task_run_latent_upscaler( | |
| latent_paths, int(chunk_size), progress=progress | |
| ) | |
| yield { | |
| upscaler_video_output: gr.update(value=upscaled_video_path, label="✅ Latent Upscale Complete"), | |
| final_video_output: gr.update(value=upscaled_video_path), | |
| # Update states for subsequent steps | |
| upscaled_video_path_state: upscaled_video_path, | |
| current_source_video_state: upscaled_video_path, | |
| } | |
| def run_hd_wrapper(source_video, model_version, steps, progress=gr.Progress()): | |
| """ | |
| Wrapper for Post-Production Step 4B: HD Mastering. | |
| """ | |
| if not source_video: | |
| raise gr.Error("Cannot run HD Mastering. No source video found. Please complete a previous step first.") | |
| yield { | |
| hd_video_output: gr.update(value=None, visible=True, label="Applying HD mastering... This may take a while."), | |
| final_video_output: gr.update(label="Post-Production in progress: HD Mastering...") | |
| } | |
| hd_video_path = aduc.task_run_hd_mastering( | |
| source_video, model_version, int(steps), progress=progress | |
| ) | |
| yield { | |
| hd_video_output: gr.update(value=hd_video_path, label="✅ HD Mastering Complete"), | |
| final_video_output: gr.update(value=hd_video_path), | |
| hd_video_path_state: hd_video_path, | |
| current_source_video_state: hd_video_path, | |
| } | |
| def run_audio_wrapper(source_video, audio_prompt, global_prompt, progress=gr.Progress()): | |
| """ | |
| Wrapper for Post-Production Step 4C: Audio Generation. | |
| """ | |
| if not source_video: | |
| raise gr.Error("Cannot run Audio Generation. No source video found. Please complete a previous step first.") | |
| yield { | |
| audio_video_output: gr.update(value=None, visible=True, label="Generating audio and muxing..."), | |
| final_video_output: gr.update(label="Post-Production in progress: Audio Generation...") | |
| } | |
| # Use the specific audio prompt if provided, otherwise fall back to the global prompt | |
| final_audio_prompt = audio_prompt if audio_prompt and audio_prompt.strip() else global_prompt | |
| video_with_audio_path = aduc.task_run_audio_generation( | |
| source_video, final_audio_prompt, progress=progress | |
| ) | |
| yield { | |
| audio_video_output: gr.update(value=video_with_audio_path, label="✅ Audio Generation Complete"), | |
| final_video_output: gr.update(value=video_with_audio_path), | |
| } | |
| def get_log_content(): | |
| """ | |
| Reads and returns the content of the log file for display in the UI. | |
| """ | |
| try: | |
| with open(LOG_FILE_PATH, "r", encoding="utf-8") as f: | |
| return f.read() | |
| except FileNotFoundError: | |
| return "Log file not yet created. Start a generation." | |
| def update_ui_language(lang_code): | |
| """ | |
| Updates all text components in the UI to the selected language. | |
| It fetches the translation map from the `i18n` dictionary. | |
| """ | |
| lang_map = i18n.get(lang_code, i18n.get('en', {})) | |
| # This dictionary maps each UI component variable to its new value from the language map. | |
| return { | |
| # General | |
| title_md: gr.update(value=f"# {lang_map.get('app_title')}"), | |
| subtitle_md: gr.update(value=lang_map.get('app_subtitle')), | |
| lang_selector: gr.update(label=lang_map.get('lang_selector_label')), | |
| # Step 1: Pre-Production | |
| step1_accordion: gr.update(label=lang_map.get('step1_accordion')), | |
| prompt_input: gr.update(label=lang_map.get('prompt_label')), | |
| ref_image_input: gr.update(label=lang_map.get('ref_images_label')), | |
| num_keyframes_slider: gr.update(label=lang_map.get('keyframes_label')), | |
| duration_per_fragment_slider: gr.update(label=lang_map.get('duration_label'), info=lang_map.get('duration_info')), | |
| storyboard_and_keyframes_button: gr.update(value=lang_map.get('storyboard_and_keyframes_button')), | |
| storyboard_from_photos_button: gr.update(value=lang_map.get('storyboard_from_photos_button')), | |
| step1_mode_b_info_md: gr.update(value=f"*{lang_map.get('step1_mode_b_info')}*"), | |
| storyboard_output: gr.update(label=lang_map.get('storyboard_output_label')), | |
| keyframe_gallery: gr.update(label=lang_map.get('keyframes_gallery_label')), | |
| # Step 3: Production | |
| step3_accordion: gr.update(label=lang_map.get('step3_accordion')), | |
| step3_description_md: gr.update(value=lang_map.get('step3_description')), | |
| produce_original_button: gr.update(value=lang_map.get('produce_original_button')), | |
| causality_accordion: gr.update(label=lang_map.get('causality_controls_title')), | |
| trim_percent_slider: gr.update(label=lang_map.get('trim_percent_label'), info=lang_map.get('trim_percent_info')), | |
| forca_guia_slider: gr.update(label=lang_map.get('forca_guia_label'), info=lang_map.get('forca_guia_info')), | |
| convergencia_destino_slider: gr.update(label=lang_map.get('convergencia_final_label'), info=lang_map.get('convergencia_final_info')), | |
| ltx_pipeline_accordion: gr.update(label=lang_map.get('ltx_pipeline_options')), | |
| guidance_scale_slider: gr.update(label=lang_map.get('guidance_scale_label'), info=lang_map.get('guidance_scale_info')), | |
| stg_scale_slider: gr.update(label=lang_map.get('stg_scale_label'), info=lang_map.get('stg_scale_info')), | |
| inference_steps_slider: gr.update(label=lang_map.get('steps_label'), info=lang_map.get('steps_info')), | |
| # Step 4: Post-Production | |
| step4_accordion: gr.update(label=lang_map.get('step4_accordion')), | |
| step4_description_md: gr.update(value=lang_map.get('step4_description')), | |
| sub_step_a_accordion: gr.update(label=lang_map.get('sub_step_a_upscaler')), | |
| upscaler_description_md: gr.update(value=lang_map.get('upscaler_description')), | |
| upscaler_options_accordion: gr.update(label=lang_map.get('upscaler_options')), | |
| upscaler_chunk_size_slider: gr.update(label=lang_map.get('upscaler_chunk_size_label'), info=lang_map.get('upscaler_chunk_size_info')), | |
| run_upscaler_button: gr.update(value=lang_map.get('run_upscaler_button')), | |
| sub_step_b_accordion: gr.update(label=lang_map.get('sub_step_b_hd')), | |
| hd_description_md: gr.update(value=lang_map.get('hd_description')), | |
| hd_options_accordion: gr.update(label=lang_map.get('hd_options')), | |
| hd_model_radio: gr.update(label=lang_map.get('hd_model_label')), | |
| hd_steps_slider: gr.update(label=lang_map.get('hd_steps_label'), info=lang_map.get('hd_steps_info')), | |
| run_hd_button: gr.update(value=lang_map.get('run_hd_button')), | |
| sub_step_c_accordion: gr.update(label=lang_map.get('sub_step_c_audio')), | |
| audio_description_md: gr.update(value=lang_map.get('audio_description')), | |
| audio_options_accordion: gr.update(label=lang_map.get('audio_options')), | |
| audio_prompt_input: gr.update(label=lang_map.get('audio_prompt_label'), info=lang_map.get('audio_prompt_info')), | |
| run_audio_button: gr.update(value=lang_map.get('run_audio_button')), | |
| # Final Outputs & Logs | |
| final_video_output: gr.update(label=lang_map.get('final_video_label')), | |
| log_accordion: gr.update(label=lang_map.get('log_accordion_label')), | |
| log_display: gr.update(label=lang_map.get('log_display_label')), | |
| update_log_button: gr.update(value=lang_map.get('update_log_button')), | |
| } | |
| # --- 3. GRADIO UI DEFINITION --- | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| # Initialize UI with default language (Portuguese) | |
| default_lang = i18n.get('pt', {}) | |
| # State components to manage the pipeline artifacts | |
| original_latents_paths_state = gr.State(value=None) | |
| original_video_path_state = gr.State(value=None) | |
| upscaled_video_path_state = gr.State(value=None) | |
| hd_video_path_state = gr.State(value=None) | |
| current_source_video_state = gr.State(value=None) # Tracks the latest video for post-production steps | |
| # --- UI Header --- | |
| title_md = gr.Markdown(f"# {default_lang.get('app_title')}") | |
| subtitle_md = gr.Markdown(default_lang.get('app_subtitle')) | |
| with gr.Row(): | |
| lang_selector = gr.Radio(["🇧🇷", "🇺🇸", "🇨🇳"], value="pt", label=default_lang.get('lang_selector_label')) | |
| resolution_selector = gr.Radio(["480x480", "720x720", "960x960"], value="480x480", label="Base Resolution") | |
| # --- Step 1 & 2: Pre-Production --- | |
| with gr.Accordion(default_lang.get('step1_accordion'), open=True) as step1_accordion: | |
| prompt_input = gr.Textbox(label=default_lang.get('prompt_label'), value="A majestic lion walks across the savanna, sits down, and then roars at the setting sun.") | |
| ref_image_input = gr.File(label=default_lang.get('ref_images_label'), file_count="multiple", file_types=["image"]) | |
| with gr.Row(): | |
| num_keyframes_slider = gr.Slider(minimum=3, maximum=42, value=5, step=1, label=default_lang.get('keyframes_label')) | |
| duration_per_fragment_slider = gr.Slider(label=default_lang.get('duration_label'), info=default_lang.get('duration_info'), minimum=2.0, maximum=10.0, value=4.0, step=0.1) | |
| with gr.Row(): | |
| storyboard_and_keyframes_button = gr.Button(default_lang.get('storyboard_and_keyframes_button'), variant="primary") | |
| storyboard_from_photos_button = gr.Button(default_lang.get('storyboard_from_photos_button')) | |
| step1_mode_b_info_md = gr.Markdown(f"*{default_lang.get('step1_mode_b_info')}*") | |
| storyboard_output = gr.JSON(label=default_lang.get('storyboard_output_label')) | |
| keyframe_gallery = gr.Gallery(label=default_lang.get('keyframes_gallery_label'), visible=True, object_fit="contain", height="auto", type="filepath") | |
| # --- Step 3: Production --- | |
| with gr.Accordion(default_lang.get('step3_accordion'), open=False, visible=False) as step3_accordion: | |
| step3_description_md = gr.Markdown(default_lang.get('step3_description')) | |
| with gr.Accordion(default_lang.get('ltx_advanced_options'), open=False) as ltx_advanced_options_accordion: | |
| with gr.Accordion(default_lang.get('causality_controls_title'), open=True) as causality_accordion: | |
| trim_percent_slider = gr.Slider(minimum=10, maximum=90, value=50, step=5, label=default_lang.get('trim_percent_label'), info=default_lang.get('trim_percent_info')) | |
| with gr.Row(): | |
| forca_guia_slider = gr.Slider(label=default_lang.get('forca_guia_label'), minimum=0.0, maximum=1.0, value=0.5, step=0.05, info=default_lang.get('forca_guia_info')) | |
| convergencia_destino_slider = gr.Slider(label=default_lang.get('convergencia_final_label'), minimum=0.0, maximum=1.0, value=0.75, step=0.05, info=default_lang.get('convergencia_final_info')) | |
| with gr.Accordion(default_lang.get('ltx_pipeline_options'), open=True) as ltx_pipeline_accordion: | |
| with gr.Row(): | |
| guidance_scale_slider = gr.Slider(minimum=1.0, maximum=10.0, value=2.0, step=0.1, label=default_lang.get('guidance_scale_label'), info=default_lang.get('guidance_scale_info')) | |
| stg_scale_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.025, step=0.005, label=default_lang.get('stg_scale_label'), info=default_lang.get('stg_scale_info')) | |
| inference_steps_slider = gr.Slider(minimum=10, maximum=50, value=20, step=1, label=default_lang.get('steps_label'), info=default_lang.get('steps_info')) | |
| produce_original_button = gr.Button(default_lang.get('produce_original_button'), variant="primary") | |
| original_video_output = gr.Video(label="Original Master Video", visible=False) | |
| # --- Step 4: Post-Production --- | |
| with gr.Accordion(default_lang.get('step4_accordion'), open=False, visible=False) as step4_accordion: | |
| step4_description_md = gr.Markdown(default_lang.get('step4_description')) | |
| # Sub-Step 4A: Latent Upscaler | |
| with gr.Accordion(default_lang.get('sub_step_a_upscaler'), open=True) as sub_step_a_accordion: | |
| upscaler_description_md = gr.Markdown(default_lang.get('upscaler_description')) | |
| with gr.Accordion(default_lang.get('upscaler_options'), open=False) as upscaler_options_accordion: | |
| upscaler_chunk_size_slider = gr.Slider(minimum=1, maximum=10, value=4, step=1, label=default_lang.get('upscaler_chunk_size_label'), info=default_lang.get('upscaler_chunk_size_info')) | |
| run_upscaler_button = gr.Button(default_lang.get('run_upscaler_button'), variant="secondary") | |
| upscaler_video_output = gr.Video(label="Upscaled Video", visible=False) | |
| # Sub-Step 4B: HD Mastering | |
| with gr.Accordion(default_lang.get('sub_step_b_hd'), open=True) as sub_step_b_accordion: | |
| hd_description_md = gr.Markdown(default_lang.get('hd_description')) | |
| with gr.Accordion(default_lang.get('hd_options'), open=False) as hd_options_accordion: | |
| hd_model_radio = gr.Radio(["3B", "7B"], value="3B", label=default_lang.get('hd_model_label')) | |
| hd_steps_slider = gr.Slider(minimum=20, maximum=150, value=50, step=5, label=default_lang.get('hd_steps_label'), info=default_lang.get('hd_steps_info')) | |
| run_hd_button = gr.Button(default_lang.get('run_hd_button'), variant="secondary") | |
| hd_video_output = gr.Video(label="HD Mastered Video", visible=False) | |
| # Sub-Step 4C: Audio Generation | |
| with gr.Accordion(default_lang.get('sub_step_c_audio'), open=True) as sub_step_c_accordion: | |
| audio_description_md = gr.Markdown(default_lang.get('audio_description')) | |
| with gr.Accordion(default_lang.get('audio_options'), open=False) as audio_options_accordion: | |
| audio_prompt_input = gr.Textbox(label=default_lang.get('audio_prompt_label'), info=default_lang.get('audio_prompt_info'), lines=3) | |
| run_audio_button = gr.Button(default_lang.get('run_audio_button'), variant="secondary") | |
| audio_video_output = gr.Video(label="Video with Audio", visible=False) | |
| # --- Final Output & Logs --- | |
| final_video_output = gr.Video(label=default_lang.get('final_video_label'), visible=False) | |
| with gr.Accordion(default_lang.get('log_accordion_label'), open=False) as log_accordion: | |
| log_display = gr.Textbox(label=default_lang.get('log_display_label'), lines=20, interactive=False, autoscroll=True) | |
| update_log_button = gr.Button(default_lang.get('update_log_button')) | |
| # --- 4. UI EVENT CONNECTIONS --- | |
| # Collect all UI components that need language updates | |
| all_ui_components = list(update_ui_language('pt').keys()) | |
| lang_selector.change(fn=update_ui_language, inputs=lang_selector, outputs=all_ui_components) | |
| # Pre-Production Button Clicks | |
| storyboard_and_keyframes_button.click( | |
| fn=run_pre_production_wrapper, | |
| inputs=[prompt_input, num_keyframes_slider, ref_image_input, resolution_selector, duration_per_fragment_slider], | |
| outputs=[storyboard_output, keyframe_gallery, step3_accordion] | |
| ) | |
| storyboard_from_photos_button.click( | |
| fn=run_pre_production_photo_wrapper, | |
| inputs=[prompt_input, num_keyframes_slider, ref_image_input], | |
| outputs=[storyboard_output, keyframe_gallery, step3_accordion] | |
| ) | |
| # Production Button Click | |
| produce_original_button.click( | |
| fn=run_original_production_wrapper, | |
| inputs=[ | |
| keyframe_gallery, prompt_input, duration_per_fragment_slider, | |
| trim_percent_slider, forca_guia_slider, convergencia_destino_slider, | |
| guidance_scale_slider, stg_scale_slider, inference_steps_slider, | |
| resolution_selector | |
| ], | |
| outputs=[ | |
| original_video_output, final_video_output, step4_accordion, | |
| original_latents_paths_state, original_video_path_state, current_source_video_state | |
| ] | |
| ) | |
| # Post-Production Button Clicks | |
| run_upscaler_button.click( | |
| fn=run_upscaler_wrapper, | |
| inputs=[original_latents_paths_state, upscaler_chunk_size_slider], | |
| outputs=[ | |
| upscaler_video_output, final_video_output, | |
| upscaled_video_path_state, current_source_video_state | |
| ] | |
| ) | |
| run_hd_button.click( | |
| fn=run_hd_wrapper, | |
| inputs=[current_source_video_state, hd_model_radio, hd_steps_slider], | |
| outputs=[ | |
| hd_video_output, final_video_output, | |
| hd_video_path_state, current_source_video_state | |
| ] | |
| ) | |
| run_audio_button.click( | |
| fn=run_audio_wrapper, | |
| inputs=[current_source_video_state, audio_prompt_input, prompt_input], | |
| outputs=[audio_video_output, final_video_output] | |
| ) | |
| # Log Button Click | |
| update_log_button.click(fn=get_log_content, inputs=[], outputs=[log_display]) | |
| # --- 5. APPLICATION LAUNCH --- | |
| if __name__ == "__main__": | |
| if os.path.exists(WORKSPACE_DIR): | |
| logger.info(f"Clearing previous workspace at: {WORKSPACE_DIR}") | |
| shutil.rmtree(WORKSPACE_DIR) | |
| os.makedirs(WORKSPACE_DIR) | |
| logger.info(f"Application started. Launching Gradio interface...") | |
| demo.queue().launch() |